1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_X64)
31
32#include "serialize.h"
33#include "unicode.h"
34#include "log.h"
35#include "regexp-stack.h"
36#include "macro-assembler.h"
37#include "regexp-macro-assembler.h"
38#include "x64/regexp-macro-assembler-x64.h"
39
40namespace v8 {
41namespace internal {
42
43#ifndef V8_INTERPRETED_REGEXP
44
45/*
46 * This assembler uses the following register assignment convention
47 * - rdx : currently loaded character(s) as ASCII or UC16. Must be loaded using
48 *         LoadCurrentCharacter before using any of the dispatch methods.
49 * - rdi : current position in input, as negative offset from end of string.
50 *         Please notice that this is the byte offset, not the character
51 *         offset! Is always a 32-bit signed (negative) offset, but must be
52 *         maintained sign-extended to 64 bits, since it is used as index.
53 * - rsi : end of input (points to byte after last character in input),
54 *         so that rsi+rdi points to the current character.
55 * - rbp : frame pointer. Used to access arguments, local variables and
56 *         RegExp registers.
57 * - rsp : points to tip of C stack.
58 * - rcx : points to tip of backtrack stack. The backtrack stack contains
59 *         only 32-bit values. Most are offsets from some base (e.g., character
60 *         positions from end of string or code location from Code* pointer).
61 * - r8  : code object pointer. Used to convert between absolute and
62 *         code-object-relative addresses.
63 *
64 * The registers rax, rbx, r9 and r11 are free to use for computations.
65 * If changed to use r12+, they should be saved as callee-save registers.
66 * The macro assembler special registers r12 and r13 (kSmiConstantRegister,
67 * kRootRegister) aren't special during execution of RegExp code (they don't
68 * hold the values assumed when creating JS code), so no Smi or Root related
69 * macro operations can be used.
70 *
71 * Each call to a C++ method should retain these registers.
72 *
73 * The stack will have the following content, in some order, indexable from the
74 * frame pointer (see, e.g., kStackHighEnd):
75 *    - Isolate* isolate     (Address of the current isolate)
76 *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
77 *                            through the runtime system)
78 *    - stack_area_base      (High end of the memory area to use as
79 *                            backtracking stack)
80 *    - int* capture_array   (int[num_saved_registers_], for output).
81 *    - end of input         (Address of end of string)
82 *    - start of input       (Address of first character in string)
83 *    - start index          (character index of start)
84 *    - String* input_string (input string)
85 *    - return address
86 *    - backup of callee save registers (rbx, possibly rsi and rdi).
87 *    - Offset of location before start of input (effectively character
88 *      position -1). Used to initialize capture registers to a non-position.
89 *    - At start of string (if 1, we are starting at the start of the
90 *      string, otherwise 0)
91 *    - register 0  rbp[-n]   (Only positions must be stored in the first
92 *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
93 *    - ...
94 *
95 * The first num_saved_registers_ registers are initialized to point to
96 * "character -1" in the string (i.e., char_size() bytes before the first
97 * character of the string). The remaining registers starts out uninitialized.
98 *
99 * The first seven values must be provided by the calling code by
100 * calling the code's entry address cast to a function pointer with the
101 * following signature:
102 * int (*match)(String* input_string,
103 *              int start_index,
104 *              Address start,
105 *              Address end,
106 *              int* capture_output_array,
107 *              bool at_start,
108 *              byte* stack_area_base,
109 *              bool direct_call)
110 */
111
112#define __ ACCESS_MASM((&masm_))
113
114RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(
115    Mode mode,
116    int registers_to_save)
117    : masm_(Isolate::Current(), NULL, kRegExpCodeSize),
118      no_root_array_scope_(&masm_),
119      code_relative_fixup_positions_(4),
120      mode_(mode),
121      num_registers_(registers_to_save),
122      num_saved_registers_(registers_to_save),
123      entry_label_(),
124      start_label_(),
125      success_label_(),
126      backtrack_label_(),
127      exit_label_() {
128  ASSERT_EQ(0, registers_to_save % 2);
129  __ jmp(&entry_label_);   // We'll write the entry code when we know more.
130  __ bind(&start_label_);  // And then continue from here.
131}
132
133
134RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
135  // Unuse labels in case we throw away the assembler without calling GetCode.
136  entry_label_.Unuse();
137  start_label_.Unuse();
138  success_label_.Unuse();
139  backtrack_label_.Unuse();
140  exit_label_.Unuse();
141  check_preempt_label_.Unuse();
142  stack_overflow_label_.Unuse();
143}
144
145
146int RegExpMacroAssemblerX64::stack_limit_slack()  {
147  return RegExpStack::kStackLimitSlack;
148}
149
150
151void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
152  if (by != 0) {
153    __ addq(rdi, Immediate(by * char_size()));
154  }
155}
156
157
158void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
159  ASSERT(reg >= 0);
160  ASSERT(reg < num_registers_);
161  if (by != 0) {
162    __ addq(register_location(reg), Immediate(by));
163  }
164}
165
166
167void RegExpMacroAssemblerX64::Backtrack() {
168  CheckPreemption();
169  // Pop Code* offset from backtrack stack, add Code* and jump to location.
170  Pop(rbx);
171  __ addq(rbx, code_object_pointer());
172  __ jmp(rbx);
173}
174
175
176void RegExpMacroAssemblerX64::Bind(Label* label) {
177  __ bind(label);
178}
179
180
181void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
182  __ cmpl(current_character(), Immediate(c));
183  BranchOrBacktrack(equal, on_equal);
184}
185
186
187void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
188  __ cmpl(current_character(), Immediate(limit));
189  BranchOrBacktrack(greater, on_greater);
190}
191
192
193void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
194  Label not_at_start;
195  // Did we start the match at the start of the string at all?
196  __ cmpb(Operand(rbp, kStartIndex), Immediate(0));
197  BranchOrBacktrack(not_equal, &not_at_start);
198  // If we did, are we still at the start of the input?
199  __ lea(rax, Operand(rsi, rdi, times_1, 0));
200  __ cmpq(rax, Operand(rbp, kInputStart));
201  BranchOrBacktrack(equal, on_at_start);
202  __ bind(&not_at_start);
203}
204
205
206void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) {
207  // Did we start the match at the start of the string at all?
208  __ cmpb(Operand(rbp, kStartIndex), Immediate(0));
209  BranchOrBacktrack(not_equal, on_not_at_start);
210  // If we did, are we still at the start of the input?
211  __ lea(rax, Operand(rsi, rdi, times_1, 0));
212  __ cmpq(rax, Operand(rbp, kInputStart));
213  BranchOrBacktrack(not_equal, on_not_at_start);
214}
215
216
217void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
218  __ cmpl(current_character(), Immediate(limit));
219  BranchOrBacktrack(less, on_less);
220}
221
222
223void RegExpMacroAssemblerX64::CheckCharacters(Vector<const uc16> str,
224                                              int cp_offset,
225                                              Label* on_failure,
226                                              bool check_end_of_string) {
227#ifdef DEBUG
228  // If input is ASCII, don't even bother calling here if the string to
229  // match contains a non-ascii character.
230  if (mode_ == ASCII) {
231    ASSERT(String::IsAscii(str.start(), str.length()));
232  }
233#endif
234  int byte_length = str.length() * char_size();
235  int byte_offset = cp_offset * char_size();
236  if (check_end_of_string) {
237    // Check that there are at least str.length() characters left in the input.
238    __ cmpl(rdi, Immediate(-(byte_offset + byte_length)));
239    BranchOrBacktrack(greater, on_failure);
240  }
241
242  if (on_failure == NULL) {
243    // Instead of inlining a backtrack, (re)use the global backtrack target.
244    on_failure = &backtrack_label_;
245  }
246
247  // Do one character test first to minimize loading for the case that
248  // we don't match at all (loading more than one character introduces that
249  // chance of reading unaligned and reading across cache boundaries).
250  // If the first character matches, expect a larger chance of matching the
251  // string, and start loading more characters at a time.
252  if (mode_ == ASCII) {
253    __ cmpb(Operand(rsi, rdi, times_1, byte_offset),
254            Immediate(static_cast<int8_t>(str[0])));
255  } else {
256    // Don't use 16-bit immediate. The size changing prefix throws off
257    // pre-decoding.
258    __ movzxwl(rax,
259               Operand(rsi, rdi, times_1, byte_offset));
260    __ cmpl(rax, Immediate(static_cast<int32_t>(str[0])));
261  }
262  BranchOrBacktrack(not_equal, on_failure);
263
264  __ lea(rbx, Operand(rsi, rdi, times_1, 0));
265  for (int i = 1, n = str.length(); i < n; ) {
266    if (mode_ == ASCII) {
267      if (i + 8 <= n) {
268        uint64_t combined_chars =
269            (static_cast<uint64_t>(str[i + 0]) << 0) ||
270            (static_cast<uint64_t>(str[i + 1]) << 8) ||
271            (static_cast<uint64_t>(str[i + 2]) << 16) ||
272            (static_cast<uint64_t>(str[i + 3]) << 24) ||
273            (static_cast<uint64_t>(str[i + 4]) << 32) ||
274            (static_cast<uint64_t>(str[i + 5]) << 40) ||
275            (static_cast<uint64_t>(str[i + 6]) << 48) ||
276            (static_cast<uint64_t>(str[i + 7]) << 56);
277        __ movq(rax, combined_chars, RelocInfo::NONE);
278        __ cmpq(rax, Operand(rbx, byte_offset + i));
279        i += 8;
280      } else if (i + 4 <= n) {
281        uint32_t combined_chars =
282            (static_cast<uint32_t>(str[i + 0]) << 0) ||
283            (static_cast<uint32_t>(str[i + 1]) << 8) ||
284            (static_cast<uint32_t>(str[i + 2]) << 16) ||
285            (static_cast<uint32_t>(str[i + 3]) << 24);
286        __ cmpl(Operand(rbx, byte_offset + i), Immediate(combined_chars));
287        i += 4;
288      } else {
289        __ cmpb(Operand(rbx, byte_offset + i),
290                Immediate(static_cast<int8_t>(str[i])));
291        i++;
292      }
293    } else {
294      ASSERT(mode_ == UC16);
295      if (i + 4 <= n) {
296        uint64_t combined_chars = *reinterpret_cast<const uint64_t*>(&str[i]);
297        __ movq(rax, combined_chars, RelocInfo::NONE);
298        __ cmpq(rax,
299                Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)));
300        i += 4;
301      } else if (i + 2 <= n) {
302        uint32_t combined_chars = *reinterpret_cast<const uint32_t*>(&str[i]);
303        __ cmpl(Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)),
304                Immediate(combined_chars));
305        i += 2;
306      } else {
307        __ movzxwl(rax,
308                   Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)));
309        __ cmpl(rax, Immediate(str[i]));
310        i++;
311      }
312    }
313    BranchOrBacktrack(not_equal, on_failure);
314  }
315}
316
317
318void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
319  Label fallthrough;
320  __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
321  __ j(not_equal, &fallthrough);
322  Drop();
323  BranchOrBacktrack(no_condition, on_equal);
324  __ bind(&fallthrough);
325}
326
327
328void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
329    int start_reg,
330    Label* on_no_match) {
331  Label fallthrough;
332  __ movq(rdx, register_location(start_reg));  // Offset of start of capture
333  __ movq(rbx, register_location(start_reg + 1));  // Offset of end of capture
334  __ subq(rbx, rdx);  // Length of capture.
335
336  // -----------------------
337  // rdx  = Start offset of capture.
338  // rbx = Length of capture
339
340  // If length is negative, this code will fail (it's a symptom of a partial or
341  // illegal capture where start of capture after end of capture).
342  // This must not happen (no back-reference can reference a capture that wasn't
343  // closed before in the reg-exp, and we must not generate code that can cause
344  // this condition).
345
346  // If length is zero, either the capture is empty or it is nonparticipating.
347  // In either case succeed immediately.
348  __ j(equal, &fallthrough);
349
350  if (mode_ == ASCII) {
351    Label loop_increment;
352    if (on_no_match == NULL) {
353      on_no_match = &backtrack_label_;
354    }
355
356    __ lea(r9, Operand(rsi, rdx, times_1, 0));
357    __ lea(r11, Operand(rsi, rdi, times_1, 0));
358    __ addq(rbx, r9);  // End of capture
359    // ---------------------
360    // r11 - current input character address
361    // r9 - current capture character address
362    // rbx - end of capture
363
364    Label loop;
365    __ bind(&loop);
366    __ movzxbl(rdx, Operand(r9, 0));
367    __ movzxbl(rax, Operand(r11, 0));
368    // al - input character
369    // dl - capture character
370    __ cmpb(rax, rdx);
371    __ j(equal, &loop_increment);
372
373    // Mismatch, try case-insensitive match (converting letters to lower-case).
374    // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
375    // a match.
376    __ or_(rax, Immediate(0x20));  // Convert match character to lower-case.
377    __ or_(rdx, Immediate(0x20));  // Convert capture character to lower-case.
378    __ cmpb(rax, rdx);
379    __ j(not_equal, on_no_match);  // Definitely not equal.
380    __ subb(rax, Immediate('a'));
381    __ cmpb(rax, Immediate('z' - 'a'));
382    __ j(above, on_no_match);  // Weren't letters anyway.
383
384    __ bind(&loop_increment);
385    // Increment pointers into match and capture strings.
386    __ addq(r11, Immediate(1));
387    __ addq(r9, Immediate(1));
388    // Compare to end of capture, and loop if not done.
389    __ cmpq(r9, rbx);
390    __ j(below, &loop);
391
392    // Compute new value of character position after the matched part.
393    __ movq(rdi, r11);
394    __ subq(rdi, rsi);
395  } else {
396    ASSERT(mode_ == UC16);
397    // Save important/volatile registers before calling C function.
398#ifndef _WIN64
399    // Caller save on Linux and callee save in Windows.
400    __ push(rsi);
401    __ push(rdi);
402#endif
403    __ push(backtrack_stackpointer());
404
405    static const int num_arguments = 4;
406    __ PrepareCallCFunction(num_arguments);
407
408    // Put arguments into parameter registers. Parameters are
409    //   Address byte_offset1 - Address captured substring's start.
410    //   Address byte_offset2 - Address of current character position.
411    //   size_t byte_length - length of capture in bytes(!)
412    //   Isolate* isolate
413#ifdef _WIN64
414    // Compute and set byte_offset1 (start of capture).
415    __ lea(rcx, Operand(rsi, rdx, times_1, 0));
416    // Set byte_offset2.
417    __ lea(rdx, Operand(rsi, rdi, times_1, 0));
418    // Set byte_length.
419    __ movq(r8, rbx);
420    // Isolate.
421    __ LoadAddress(r9, ExternalReference::isolate_address());
422#else  // AMD64 calling convention
423    // Compute byte_offset2 (current position = rsi+rdi).
424    __ lea(rax, Operand(rsi, rdi, times_1, 0));
425    // Compute and set byte_offset1 (start of capture).
426    __ lea(rdi, Operand(rsi, rdx, times_1, 0));
427    // Set byte_offset2.
428    __ movq(rsi, rax);
429    // Set byte_length.
430    __ movq(rdx, rbx);
431    // Isolate.
432    __ LoadAddress(rcx, ExternalReference::isolate_address());
433#endif
434    ExternalReference compare =
435        ExternalReference::re_case_insensitive_compare_uc16(masm_.isolate());
436    __ CallCFunction(compare, num_arguments);
437
438    // Restore original values before reacting on result value.
439    __ Move(code_object_pointer(), masm_.CodeObject());
440    __ pop(backtrack_stackpointer());
441#ifndef _WIN64
442    __ pop(rdi);
443    __ pop(rsi);
444#endif
445
446    // Check if function returned non-zero for success or zero for failure.
447    __ testq(rax, rax);
448    BranchOrBacktrack(zero, on_no_match);
449    // On success, increment position by length of capture.
450    // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
451    __ addq(rdi, rbx);
452  }
453  __ bind(&fallthrough);
454}
455
456
457void RegExpMacroAssemblerX64::CheckNotBackReference(
458    int start_reg,
459    Label* on_no_match) {
460  Label fallthrough;
461
462  // Find length of back-referenced capture.
463  __ movq(rdx, register_location(start_reg));
464  __ movq(rax, register_location(start_reg + 1));
465  __ subq(rax, rdx);  // Length to check.
466
467  // Fail on partial or illegal capture (start of capture after end of capture).
468  // This must not happen (no back-reference can reference a capture that wasn't
469  // closed before in the reg-exp).
470  __ Check(greater_equal, "Invalid capture referenced");
471
472  // Succeed on empty capture (including non-participating capture)
473  __ j(equal, &fallthrough);
474
475  // -----------------------
476  // rdx - Start of capture
477  // rax - length of capture
478
479  // Check that there are sufficient characters left in the input.
480  __ movl(rbx, rdi);
481  __ addl(rbx, rax);
482  BranchOrBacktrack(greater, on_no_match);
483
484  // Compute pointers to match string and capture string
485  __ lea(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
486  __ addq(rdx, rsi);  // Start of capture.
487  __ lea(r9, Operand(rdx, rax, times_1, 0));  // End of capture
488
489  // -----------------------
490  // rbx - current capture character address.
491  // rbx - current input character address .
492  // r9 - end of input to match (capture length after rbx).
493
494  Label loop;
495  __ bind(&loop);
496  if (mode_ == ASCII) {
497    __ movzxbl(rax, Operand(rdx, 0));
498    __ cmpb(rax, Operand(rbx, 0));
499  } else {
500    ASSERT(mode_ == UC16);
501    __ movzxwl(rax, Operand(rdx, 0));
502    __ cmpw(rax, Operand(rbx, 0));
503  }
504  BranchOrBacktrack(not_equal, on_no_match);
505  // Increment pointers into capture and match string.
506  __ addq(rbx, Immediate(char_size()));
507  __ addq(rdx, Immediate(char_size()));
508  // Check if we have reached end of match area.
509  __ cmpq(rdx, r9);
510  __ j(below, &loop);
511
512  // Success.
513  // Set current character position to position after match.
514  __ movq(rdi, rbx);
515  __ subq(rdi, rsi);
516
517  __ bind(&fallthrough);
518}
519
520
521void RegExpMacroAssemblerX64::CheckNotRegistersEqual(int reg1,
522                                                     int reg2,
523                                                     Label* on_not_equal) {
524  __ movq(rax, register_location(reg1));
525  __ cmpq(rax, register_location(reg2));
526  BranchOrBacktrack(not_equal, on_not_equal);
527}
528
529
530void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
531                                                Label* on_not_equal) {
532  __ cmpl(current_character(), Immediate(c));
533  BranchOrBacktrack(not_equal, on_not_equal);
534}
535
536
537void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
538                                                     uint32_t mask,
539                                                     Label* on_equal) {
540  __ movl(rax, current_character());
541  __ and_(rax, Immediate(mask));
542  __ cmpl(rax, Immediate(c));
543  BranchOrBacktrack(equal, on_equal);
544}
545
546
547void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
548                                                        uint32_t mask,
549                                                        Label* on_not_equal) {
550  __ movl(rax, current_character());
551  __ and_(rax, Immediate(mask));
552  __ cmpl(rax, Immediate(c));
553  BranchOrBacktrack(not_equal, on_not_equal);
554}
555
556
557void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
558    uc16 c,
559    uc16 minus,
560    uc16 mask,
561    Label* on_not_equal) {
562  ASSERT(minus < String::kMaxUC16CharCode);
563  __ lea(rax, Operand(current_character(), -minus));
564  __ and_(rax, Immediate(mask));
565  __ cmpl(rax, Immediate(c));
566  BranchOrBacktrack(not_equal, on_not_equal);
567}
568
569
570bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
571                                                         Label* on_no_match) {
572  // Range checks (c in min..max) are generally implemented by an unsigned
573  // (c - min) <= (max - min) check, using the sequence:
574  //   lea(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
575  //   cmp(rax, Immediate(max - min))
576  switch (type) {
577  case 's':
578    // Match space-characters
579    if (mode_ == ASCII) {
580      // ASCII space characters are '\t'..'\r' and ' '.
581      Label success;
582      __ cmpl(current_character(), Immediate(' '));
583      __ j(equal, &success);
584      // Check range 0x09..0x0d
585      __ lea(rax, Operand(current_character(), -'\t'));
586      __ cmpl(rax, Immediate('\r' - '\t'));
587      BranchOrBacktrack(above, on_no_match);
588      __ bind(&success);
589      return true;
590    }
591    return false;
592  case 'S':
593    // Match non-space characters.
594    if (mode_ == ASCII) {
595      // ASCII space characters are '\t'..'\r' and ' '.
596      __ cmpl(current_character(), Immediate(' '));
597      BranchOrBacktrack(equal, on_no_match);
598      __ lea(rax, Operand(current_character(), -'\t'));
599      __ cmpl(rax, Immediate('\r' - '\t'));
600      BranchOrBacktrack(below_equal, on_no_match);
601      return true;
602    }
603    return false;
604  case 'd':
605    // Match ASCII digits ('0'..'9')
606    __ lea(rax, Operand(current_character(), -'0'));
607    __ cmpl(rax, Immediate('9' - '0'));
608    BranchOrBacktrack(above, on_no_match);
609    return true;
610  case 'D':
611    // Match non ASCII-digits
612    __ lea(rax, Operand(current_character(), -'0'));
613    __ cmpl(rax, Immediate('9' - '0'));
614    BranchOrBacktrack(below_equal, on_no_match);
615    return true;
616  case '.': {
617    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
618    __ movl(rax, current_character());
619    __ xor_(rax, Immediate(0x01));
620    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
621    __ subl(rax, Immediate(0x0b));
622    __ cmpl(rax, Immediate(0x0c - 0x0b));
623    BranchOrBacktrack(below_equal, on_no_match);
624    if (mode_ == UC16) {
625      // Compare original value to 0x2028 and 0x2029, using the already
626      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
627      // 0x201d (0x2028 - 0x0b) or 0x201e.
628      __ subl(rax, Immediate(0x2028 - 0x0b));
629      __ cmpl(rax, Immediate(0x2029 - 0x2028));
630      BranchOrBacktrack(below_equal, on_no_match);
631    }
632    return true;
633  }
634  case 'n': {
635    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
636    __ movl(rax, current_character());
637    __ xor_(rax, Immediate(0x01));
638    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
639    __ subl(rax, Immediate(0x0b));
640    __ cmpl(rax, Immediate(0x0c - 0x0b));
641    if (mode_ == ASCII) {
642      BranchOrBacktrack(above, on_no_match);
643    } else {
644      Label done;
645      BranchOrBacktrack(below_equal, &done);
646      // Compare original value to 0x2028 and 0x2029, using the already
647      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
648      // 0x201d (0x2028 - 0x0b) or 0x201e.
649      __ subl(rax, Immediate(0x2028 - 0x0b));
650      __ cmpl(rax, Immediate(0x2029 - 0x2028));
651      BranchOrBacktrack(above, on_no_match);
652      __ bind(&done);
653    }
654    return true;
655  }
656  case 'w': {
657    if (mode_ != ASCII) {
658      // Table is 128 entries, so all ASCII characters can be tested.
659      __ cmpl(current_character(), Immediate('z'));
660      BranchOrBacktrack(above, on_no_match);
661    }
662    __ movq(rbx, ExternalReference::re_word_character_map());
663    ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
664    ExternalReference word_map = ExternalReference::re_word_character_map();
665    __ testb(Operand(rbx, current_character(), times_1, 0),
666             current_character());
667    BranchOrBacktrack(zero, on_no_match);
668    return true;
669  }
670  case 'W': {
671    Label done;
672    if (mode_ != ASCII) {
673      // Table is 128 entries, so all ASCII characters can be tested.
674      __ cmpl(current_character(), Immediate('z'));
675      __ j(above, &done);
676    }
677    __ movq(rbx, ExternalReference::re_word_character_map());
678    ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
679    ExternalReference word_map = ExternalReference::re_word_character_map();
680    __ testb(Operand(rbx, current_character(), times_1, 0),
681             current_character());
682    BranchOrBacktrack(not_zero, on_no_match);
683    if (mode_ != ASCII) {
684      __ bind(&done);
685    }
686    return true;
687  }
688
689  case '*':
690    // Match any character.
691    return true;
692  // No custom implementation (yet): s(UC16), S(UC16).
693  default:
694    return false;
695  }
696}
697
698
699void RegExpMacroAssemblerX64::Fail() {
700  ASSERT(FAILURE == 0);  // Return value for failure is zero.
701  __ Set(rax, 0);
702  __ jmp(&exit_label_);
703}
704
705
706Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
707  // Finalize code - write the entry point code now we know how many
708  // registers we need.
709  // Entry code:
710  __ bind(&entry_label_);
711  // Start new stack frame.
712  __ push(rbp);
713  __ movq(rbp, rsp);
714  // Save parameters and callee-save registers. Order here should correspond
715  //  to order of kBackup_ebx etc.
716#ifdef _WIN64
717  // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
718  // Store register parameters in pre-allocated stack slots,
719  __ movq(Operand(rbp, kInputString), rcx);
720  __ movq(Operand(rbp, kStartIndex), rdx);  // Passed as int32 in edx.
721  __ movq(Operand(rbp, kInputStart), r8);
722  __ movq(Operand(rbp, kInputEnd), r9);
723  // Callee-save on Win64.
724  __ push(rsi);
725  __ push(rdi);
726  __ push(rbx);
727#else
728  // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
729  // Push register parameters on stack for reference.
730  ASSERT_EQ(kInputString, -1 * kPointerSize);
731  ASSERT_EQ(kStartIndex, -2 * kPointerSize);
732  ASSERT_EQ(kInputStart, -3 * kPointerSize);
733  ASSERT_EQ(kInputEnd, -4 * kPointerSize);
734  ASSERT_EQ(kRegisterOutput, -5 * kPointerSize);
735  ASSERT_EQ(kStackHighEnd, -6 * kPointerSize);
736  __ push(rdi);
737  __ push(rsi);
738  __ push(rdx);
739  __ push(rcx);
740  __ push(r8);
741  __ push(r9);
742
743  __ push(rbx);  // Callee-save
744#endif
745
746  __ push(Immediate(0));  // Make room for "at start" constant.
747
748  // Check if we have space on the stack for registers.
749  Label stack_limit_hit;
750  Label stack_ok;
751
752  ExternalReference stack_limit =
753      ExternalReference::address_of_stack_limit(masm_.isolate());
754  __ movq(rcx, rsp);
755  __ movq(kScratchRegister, stack_limit);
756  __ subq(rcx, Operand(kScratchRegister, 0));
757  // Handle it if the stack pointer is already below the stack limit.
758  __ j(below_equal, &stack_limit_hit);
759  // Check if there is room for the variable number of registers above
760  // the stack limit.
761  __ cmpq(rcx, Immediate(num_registers_ * kPointerSize));
762  __ j(above_equal, &stack_ok);
763  // Exit with OutOfMemory exception. There is not enough space on the stack
764  // for our working registers.
765  __ Set(rax, EXCEPTION);
766  __ jmp(&exit_label_);
767
768  __ bind(&stack_limit_hit);
769  __ Move(code_object_pointer(), masm_.CodeObject());
770  CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
771  __ testq(rax, rax);
772  // If returned value is non-zero, we exit with the returned value as result.
773  __ j(not_zero, &exit_label_);
774
775  __ bind(&stack_ok);
776
777  // Allocate space on stack for registers.
778  __ subq(rsp, Immediate(num_registers_ * kPointerSize));
779  // Load string length.
780  __ movq(rsi, Operand(rbp, kInputEnd));
781  // Load input position.
782  __ movq(rdi, Operand(rbp, kInputStart));
783  // Set up rdi to be negative offset from string end.
784  __ subq(rdi, rsi);
785  // Set rax to address of char before start of the string
786  // (effectively string position -1).
787  __ movq(rbx, Operand(rbp, kStartIndex));
788  __ neg(rbx);
789  if (mode_ == UC16) {
790    __ lea(rax, Operand(rdi, rbx, times_2, -char_size()));
791  } else {
792    __ lea(rax, Operand(rdi, rbx, times_1, -char_size()));
793  }
794  // Store this value in a local variable, for use when clearing
795  // position registers.
796  __ movq(Operand(rbp, kInputStartMinusOne), rax);
797
798  if (num_saved_registers_ > 0) {
799    // Fill saved registers with initial value = start offset - 1
800    // Fill in stack push order, to avoid accessing across an unwritten
801    // page (a problem on Windows).
802    __ Set(rcx, kRegisterZero);
803    Label init_loop;
804    __ bind(&init_loop);
805    __ movq(Operand(rbp, rcx, times_1, 0), rax);
806    __ subq(rcx, Immediate(kPointerSize));
807    __ cmpq(rcx,
808            Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
809    __ j(greater, &init_loop);
810  }
811  // Ensure that we have written to each stack page, in order. Skipping a page
812  // on Windows can cause segmentation faults. Assuming page size is 4k.
813  const int kPageSize = 4096;
814  const int kRegistersPerPage = kPageSize / kPointerSize;
815  for (int i = num_saved_registers_ + kRegistersPerPage - 1;
816      i < num_registers_;
817      i += kRegistersPerPage) {
818    __ movq(register_location(i), rax);  // One write every page.
819  }
820
821  // Initialize backtrack stack pointer.
822  __ movq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
823  // Initialize code object pointer.
824  __ Move(code_object_pointer(), masm_.CodeObject());
825  // Load previous char as initial value of current-character.
826  Label at_start;
827  __ cmpb(Operand(rbp, kStartIndex), Immediate(0));
828  __ j(equal, &at_start);
829  LoadCurrentCharacterUnchecked(-1, 1);  // Load previous char.
830  __ jmp(&start_label_);
831  __ bind(&at_start);
832  __ Set(current_character(), '\n');
833  __ jmp(&start_label_);
834
835
836  // Exit code:
837  if (success_label_.is_linked()) {
838    // Save captures when successful.
839    __ bind(&success_label_);
840    if (num_saved_registers_ > 0) {
841      // copy captures to output
842      __ movq(rdx, Operand(rbp, kStartIndex));
843      __ movq(rbx, Operand(rbp, kRegisterOutput));
844      __ movq(rcx, Operand(rbp, kInputEnd));
845      __ subq(rcx, Operand(rbp, kInputStart));
846      if (mode_ == UC16) {
847        __ lea(rcx, Operand(rcx, rdx, times_2, 0));
848      } else {
849        __ addq(rcx, rdx);
850      }
851      for (int i = 0; i < num_saved_registers_; i++) {
852        __ movq(rax, register_location(i));
853        __ addq(rax, rcx);  // Convert to index from start, not end.
854        if (mode_ == UC16) {
855          __ sar(rax, Immediate(1));  // Convert byte index to character index.
856        }
857        __ movl(Operand(rbx, i * kIntSize), rax);
858      }
859    }
860    __ Set(rax, SUCCESS);
861  }
862
863  // Exit and return rax
864  __ bind(&exit_label_);
865
866#ifdef _WIN64
867  // Restore callee save registers.
868  __ lea(rsp, Operand(rbp, kLastCalleeSaveRegister));
869  __ pop(rbx);
870  __ pop(rdi);
871  __ pop(rsi);
872  // Stack now at rbp.
873#else
874  // Restore callee save register.
875  __ movq(rbx, Operand(rbp, kBackup_rbx));
876  // Skip rsp to rbp.
877  __ movq(rsp, rbp);
878#endif
879  // Exit function frame, restore previous one.
880  __ pop(rbp);
881  __ ret(0);
882
883  // Backtrack code (branch target for conditional backtracks).
884  if (backtrack_label_.is_linked()) {
885    __ bind(&backtrack_label_);
886    Backtrack();
887  }
888
889  Label exit_with_exception;
890
891  // Preempt-code
892  if (check_preempt_label_.is_linked()) {
893    SafeCallTarget(&check_preempt_label_);
894
895    __ push(backtrack_stackpointer());
896    __ push(rdi);
897
898    CallCheckStackGuardState();
899    __ testq(rax, rax);
900    // If returning non-zero, we should end execution with the given
901    // result as return value.
902    __ j(not_zero, &exit_label_);
903
904    // Restore registers.
905    __ Move(code_object_pointer(), masm_.CodeObject());
906    __ pop(rdi);
907    __ pop(backtrack_stackpointer());
908    // String might have moved: Reload esi from frame.
909    __ movq(rsi, Operand(rbp, kInputEnd));
910    SafeReturn();
911  }
912
913  // Backtrack stack overflow code.
914  if (stack_overflow_label_.is_linked()) {
915    SafeCallTarget(&stack_overflow_label_);
916    // Reached if the backtrack-stack limit has been hit.
917
918    Label grow_failed;
919    // Save registers before calling C function
920#ifndef _WIN64
921    // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
922    __ push(rsi);
923    __ push(rdi);
924#endif
925
926    // Call GrowStack(backtrack_stackpointer())
927    static const int num_arguments = 3;
928    __ PrepareCallCFunction(num_arguments);
929#ifdef _WIN64
930    // Microsoft passes parameters in rcx, rdx, r8.
931    // First argument, backtrack stackpointer, is already in rcx.
932    __ lea(rdx, Operand(rbp, kStackHighEnd));  // Second argument
933    __ LoadAddress(r8, ExternalReference::isolate_address());
934#else
935    // AMD64 ABI passes parameters in rdi, rsi, rdx.
936    __ movq(rdi, backtrack_stackpointer());   // First argument.
937    __ lea(rsi, Operand(rbp, kStackHighEnd));  // Second argument.
938    __ LoadAddress(rdx, ExternalReference::isolate_address());
939#endif
940    ExternalReference grow_stack =
941        ExternalReference::re_grow_stack(masm_.isolate());
942    __ CallCFunction(grow_stack, num_arguments);
943    // If return NULL, we have failed to grow the stack, and
944    // must exit with a stack-overflow exception.
945    __ testq(rax, rax);
946    __ j(equal, &exit_with_exception);
947    // Otherwise use return value as new stack pointer.
948    __ movq(backtrack_stackpointer(), rax);
949    // Restore saved registers and continue.
950    __ Move(code_object_pointer(), masm_.CodeObject());
951#ifndef _WIN64
952    __ pop(rdi);
953    __ pop(rsi);
954#endif
955    SafeReturn();
956  }
957
958  if (exit_with_exception.is_linked()) {
959    // If any of the code above needed to exit with an exception.
960    __ bind(&exit_with_exception);
961    // Exit with Result EXCEPTION(-1) to signal thrown exception.
962    __ Set(rax, EXCEPTION);
963    __ jmp(&exit_label_);
964  }
965
966  FixupCodeRelativePositions();
967
968  CodeDesc code_desc;
969  masm_.GetCode(&code_desc);
970  Isolate* isolate = ISOLATE;
971  Handle<Code> code = isolate->factory()->NewCode(
972      code_desc, Code::ComputeFlags(Code::REGEXP),
973      masm_.CodeObject());
974  PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
975  return Handle<HeapObject>::cast(code);
976}
977
978
979void RegExpMacroAssemblerX64::GoTo(Label* to) {
980  BranchOrBacktrack(no_condition, to);
981}
982
983
984void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
985                                           int comparand,
986                                           Label* if_ge) {
987  __ cmpq(register_location(reg), Immediate(comparand));
988  BranchOrBacktrack(greater_equal, if_ge);
989}
990
991
992void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
993                                           int comparand,
994                                           Label* if_lt) {
995  __ cmpq(register_location(reg), Immediate(comparand));
996  BranchOrBacktrack(less, if_lt);
997}
998
999
1000void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
1001                                              Label* if_eq) {
1002  __ cmpq(rdi, register_location(reg));
1003  BranchOrBacktrack(equal, if_eq);
1004}
1005
1006
1007RegExpMacroAssembler::IrregexpImplementation
1008    RegExpMacroAssemblerX64::Implementation() {
1009  return kX64Implementation;
1010}
1011
1012
1013void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
1014                                                   Label* on_end_of_input,
1015                                                   bool check_bounds,
1016                                                   int characters) {
1017  ASSERT(cp_offset >= -1);      // ^ and \b can look behind one character.
1018  ASSERT(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
1019  if (check_bounds) {
1020    CheckPosition(cp_offset + characters - 1, on_end_of_input);
1021  }
1022  LoadCurrentCharacterUnchecked(cp_offset, characters);
1023}
1024
1025
1026void RegExpMacroAssemblerX64::PopCurrentPosition() {
1027  Pop(rdi);
1028}
1029
1030
1031void RegExpMacroAssemblerX64::PopRegister(int register_index) {
1032  Pop(rax);
1033  __ movq(register_location(register_index), rax);
1034}
1035
1036
1037void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
1038  Push(label);
1039  CheckStackLimit();
1040}
1041
1042
1043void RegExpMacroAssemblerX64::PushCurrentPosition() {
1044  Push(rdi);
1045}
1046
1047
1048void RegExpMacroAssemblerX64::PushRegister(int register_index,
1049                                           StackCheckFlag check_stack_limit) {
1050  __ movq(rax, register_location(register_index));
1051  Push(rax);
1052  if (check_stack_limit) CheckStackLimit();
1053}
1054
1055
1056void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
1057  __ movq(rdi, register_location(reg));
1058}
1059
1060
1061void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
1062  __ movq(backtrack_stackpointer(), register_location(reg));
1063  __ addq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
1064}
1065
1066
1067void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
1068  NearLabel after_position;
1069  __ cmpq(rdi, Immediate(-by * char_size()));
1070  __ j(greater_equal, &after_position);
1071  __ movq(rdi, Immediate(-by * char_size()));
1072  // On RegExp code entry (where this operation is used), the character before
1073  // the current position is expected to be already loaded.
1074  // We have advanced the position, so it's safe to read backwards.
1075  LoadCurrentCharacterUnchecked(-1, 1);
1076  __ bind(&after_position);
1077}
1078
1079
1080void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
1081  ASSERT(register_index >= num_saved_registers_);  // Reserved for positions!
1082  __ movq(register_location(register_index), Immediate(to));
1083}
1084
1085
1086void RegExpMacroAssemblerX64::Succeed() {
1087  __ jmp(&success_label_);
1088}
1089
1090
1091void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
1092                                                             int cp_offset) {
1093  if (cp_offset == 0) {
1094    __ movq(register_location(reg), rdi);
1095  } else {
1096    __ lea(rax, Operand(rdi, cp_offset * char_size()));
1097    __ movq(register_location(reg), rax);
1098  }
1099}
1100
1101
1102void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
1103  ASSERT(reg_from <= reg_to);
1104  __ movq(rax, Operand(rbp, kInputStartMinusOne));
1105  for (int reg = reg_from; reg <= reg_to; reg++) {
1106    __ movq(register_location(reg), rax);
1107  }
1108}
1109
1110
1111void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
1112  __ movq(rax, backtrack_stackpointer());
1113  __ subq(rax, Operand(rbp, kStackHighEnd));
1114  __ movq(register_location(reg), rax);
1115}
1116
1117
1118// Private methods:
1119
1120void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
1121  // This function call preserves no register values. Caller should
1122  // store anything volatile in a C call or overwritten by this function.
1123  static const int num_arguments = 3;
1124  __ PrepareCallCFunction(num_arguments);
1125#ifdef _WIN64
1126  // Second argument: Code* of self. (Do this before overwriting r8).
1127  __ movq(rdx, code_object_pointer());
1128  // Third argument: RegExp code frame pointer.
1129  __ movq(r8, rbp);
1130  // First argument: Next address on the stack (will be address of
1131  // return address).
1132  __ lea(rcx, Operand(rsp, -kPointerSize));
1133#else
1134  // Third argument: RegExp code frame pointer.
1135  __ movq(rdx, rbp);
1136  // Second argument: Code* of self.
1137  __ movq(rsi, code_object_pointer());
1138  // First argument: Next address on the stack (will be address of
1139  // return address).
1140  __ lea(rdi, Operand(rsp, -kPointerSize));
1141#endif
1142  ExternalReference stack_check =
1143      ExternalReference::re_check_stack_guard_state(masm_.isolate());
1144  __ CallCFunction(stack_check, num_arguments);
1145}
1146
1147
1148// Helper function for reading a value out of a stack frame.
1149template <typename T>
1150static T& frame_entry(Address re_frame, int frame_offset) {
1151  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1152}
1153
1154
1155int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
1156                                                  Code* re_code,
1157                                                  Address re_frame) {
1158  Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1159  ASSERT(isolate == Isolate::Current());
1160  if (isolate->stack_guard()->IsStackOverflow()) {
1161    isolate->StackOverflow();
1162    return EXCEPTION;
1163  }
1164
1165  // If not real stack overflow the stack guard was used to interrupt
1166  // execution for another purpose.
1167
1168  // If this is a direct call from JavaScript retry the RegExp forcing the call
1169  // through the runtime system. Currently the direct call cannot handle a GC.
1170  if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1171    return RETRY;
1172  }
1173
1174  // Prepare for possible GC.
1175  HandleScope handles;
1176  Handle<Code> code_handle(re_code);
1177
1178  Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1179  // Current string.
1180  bool is_ascii = subject->IsAsciiRepresentation();
1181
1182  ASSERT(re_code->instruction_start() <= *return_address);
1183  ASSERT(*return_address <=
1184      re_code->instruction_start() + re_code->instruction_size());
1185
1186  MaybeObject* result = Execution::HandleStackGuardInterrupt();
1187
1188  if (*code_handle != re_code) {  // Return address no longer valid
1189    intptr_t delta = *code_handle - re_code;
1190    // Overwrite the return address on the stack.
1191    *return_address += delta;
1192  }
1193
1194  if (result->IsException()) {
1195    return EXCEPTION;
1196  }
1197
1198  // String might have changed.
1199  if (subject->IsAsciiRepresentation() != is_ascii) {
1200    // If we changed between an ASCII and an UC16 string, the specialized
1201    // code cannot be used, and we need to restart regexp matching from
1202    // scratch (including, potentially, compiling a new version of the code).
1203    return RETRY;
1204  }
1205
1206  // Otherwise, the content of the string might have moved. It must still
1207  // be a sequential or external string with the same content.
1208  // Update the start and end pointers in the stack frame to the current
1209  // location (whether it has actually moved or not).
1210  ASSERT(StringShape(*subject).IsSequential() ||
1211      StringShape(*subject).IsExternal());
1212
1213  // The original start address of the characters to match.
1214  const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1215
1216  // Find the current start address of the same character at the current string
1217  // position.
1218  int start_index = frame_entry<int>(re_frame, kStartIndex);
1219  const byte* new_address = StringCharacterPosition(*subject, start_index);
1220
1221  if (start_address != new_address) {
1222    // If there is a difference, update the object pointer and start and end
1223    // addresses in the RegExp stack frame to match the new value.
1224    const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1225    int byte_length = static_cast<int>(end_address - start_address);
1226    frame_entry<const String*>(re_frame, kInputString) = *subject;
1227    frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1228    frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1229  }
1230
1231  return 0;
1232}
1233
1234
1235Operand RegExpMacroAssemblerX64::register_location(int register_index) {
1236  ASSERT(register_index < (1<<30));
1237  if (num_registers_ <= register_index) {
1238    num_registers_ = register_index + 1;
1239  }
1240  return Operand(rbp, kRegisterZero - register_index * kPointerSize);
1241}
1242
1243
1244void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
1245                                            Label* on_outside_input) {
1246  __ cmpl(rdi, Immediate(-cp_offset * char_size()));
1247  BranchOrBacktrack(greater_equal, on_outside_input);
1248}
1249
1250
1251void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
1252                                                Label* to) {
1253  if (condition < 0) {  // No condition
1254    if (to == NULL) {
1255      Backtrack();
1256      return;
1257    }
1258    __ jmp(to);
1259    return;
1260  }
1261  if (to == NULL) {
1262    __ j(condition, &backtrack_label_);
1263    return;
1264  }
1265  __ j(condition, to);
1266}
1267
1268
1269void RegExpMacroAssemblerX64::SafeCall(Label* to) {
1270  __ call(to);
1271}
1272
1273
1274void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
1275  __ bind(label);
1276  __ subq(Operand(rsp, 0), code_object_pointer());
1277}
1278
1279
1280void RegExpMacroAssemblerX64::SafeReturn() {
1281  __ addq(Operand(rsp, 0), code_object_pointer());
1282  __ ret(0);
1283}
1284
1285
1286void RegExpMacroAssemblerX64::Push(Register source) {
1287  ASSERT(!source.is(backtrack_stackpointer()));
1288  // Notice: This updates flags, unlike normal Push.
1289  __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1290  __ movl(Operand(backtrack_stackpointer(), 0), source);
1291}
1292
1293
1294void RegExpMacroAssemblerX64::Push(Immediate value) {
1295  // Notice: This updates flags, unlike normal Push.
1296  __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1297  __ movl(Operand(backtrack_stackpointer(), 0), value);
1298}
1299
1300
1301void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
1302  for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
1303    int position = code_relative_fixup_positions_[i];
1304    // The position succeeds a relative label offset from position.
1305    // Patch the relative offset to be relative to the Code object pointer
1306    // instead.
1307    int patch_position = position - kIntSize;
1308    int offset = masm_.long_at(patch_position);
1309    masm_.long_at_put(patch_position,
1310                       offset
1311                       + position
1312                       + Code::kHeaderSize
1313                       - kHeapObjectTag);
1314  }
1315  code_relative_fixup_positions_.Clear();
1316}
1317
1318
1319void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
1320  __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1321  __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
1322  MarkPositionForCodeRelativeFixup();
1323}
1324
1325
1326void RegExpMacroAssemblerX64::Pop(Register target) {
1327  ASSERT(!target.is(backtrack_stackpointer()));
1328  __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
1329  // Notice: This updates flags, unlike normal Pop.
1330  __ addq(backtrack_stackpointer(), Immediate(kIntSize));
1331}
1332
1333
1334void RegExpMacroAssemblerX64::Drop() {
1335  __ addq(backtrack_stackpointer(), Immediate(kIntSize));
1336}
1337
1338
1339void RegExpMacroAssemblerX64::CheckPreemption() {
1340  // Check for preemption.
1341  Label no_preempt;
1342  ExternalReference stack_limit =
1343      ExternalReference::address_of_stack_limit(masm_.isolate());
1344  __ load_rax(stack_limit);
1345  __ cmpq(rsp, rax);
1346  __ j(above, &no_preempt);
1347
1348  SafeCall(&check_preempt_label_);
1349
1350  __ bind(&no_preempt);
1351}
1352
1353
1354void RegExpMacroAssemblerX64::CheckStackLimit() {
1355  Label no_stack_overflow;
1356  ExternalReference stack_limit =
1357      ExternalReference::address_of_regexp_stack_limit(masm_.isolate());
1358  __ load_rax(stack_limit);
1359  __ cmpq(backtrack_stackpointer(), rax);
1360  __ j(above, &no_stack_overflow);
1361
1362  SafeCall(&stack_overflow_label_);
1363
1364  __ bind(&no_stack_overflow);
1365}
1366
1367
1368void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
1369                                                            int characters) {
1370  if (mode_ == ASCII) {
1371    if (characters == 4) {
1372      __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1373    } else if (characters == 2) {
1374      __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1375    } else {
1376      ASSERT(characters == 1);
1377      __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1378    }
1379  } else {
1380    ASSERT(mode_ == UC16);
1381    if (characters == 2) {
1382      __ movl(current_character(),
1383              Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1384    } else {
1385      ASSERT(characters == 1);
1386      __ movzxwl(current_character(),
1387                 Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1388    }
1389  }
1390}
1391
1392#undef __
1393
1394#endif  // V8_INTERPRETED_REGEXP
1395
1396}}  // namespace v8::internal
1397
1398#endif  // V8_TARGET_ARCH_X64
1399