1/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010 Apple Inc. All rights reserved.
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose without fee is hereby granted, provided that this entire notice
10 * is included in all copies of any software which is or includes a copy
11 * or modification of this software and in all copies of the supporting
12 * documentation for such software.
13 *
14 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
15 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
16 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
17 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
18 *
19 ***************************************************************/
20
21/* Please send bug reports to David M. Gay (dmg at acm dot org,
22 * with " at " changed at "@" and " dot " changed to ".").    */
23
24/* On a machine with IEEE extended-precision registers, it is
25 * necessary to specify double-precision (53-bit) rounding precision
26 * before invoking strtod or dtoa.  If the machine uses (the equivalent
27 * of) Intel 80x87 arithmetic, the call
28 *    _control87(PC_53, MCW_PC);
29 * does this with many compilers.  Whether this or another call is
30 * appropriate depends on the compiler; for this to work, it may be
31 * necessary to #include "float.h" or another system-dependent header
32 * file.
33 */
34
35/* strtod for IEEE-arithmetic machines.
36 *
37 * This strtod returns a nearest machine number to the input decimal
38 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39 * broken by the IEEE round-even rule.  Otherwise ties are broken by
40 * biased rounding (add half and chop).
41 *
42 * Inspired loosely by William D. Clinger's paper "How to Read Floating
43 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44 *
45 * Modifications:
46 *
47 *    1. We only require IEEE double-precision arithmetic (not IEEE double-extended).
48 *    2. We get by with floating-point arithmetic in a case that
49 *        Clinger missed -- when we're computing d * 10^n
50 *        for a small integer d and the integer n is not too
51 *        much larger than 22 (the maximum integer k for which
52 *        we can represent 10^k exactly), we may be able to
53 *        compute (d*10^k) * 10^(e-k) with just one roundoff.
54 *    3. Rather than a bit-at-a-time adjustment of the binary
55 *        result in the hard case, we use floating-point
56 *        arithmetic to determine the adjustment to within
57 *        one bit; only in really hard cases do we need to
58 *        compute a second residual.
59 *    4. Because of 3., we don't need a large table of powers of 10
60 *        for ten-to-e (just some small tables, e.g. of 10^k
61 *        for 0 <= k <= 22).
62 */
63
64#include "config.h"
65#include "dtoa.h"
66
67#if HAVE(ERRNO_H)
68#include <errno.h>
69#endif
70#include <float.h>
71#include <math.h>
72#include <stdint.h>
73#include <stdio.h>
74#include <stdlib.h>
75#include <string.h>
76#include <wtf/AlwaysInline.h>
77#include <wtf/Assertions.h>
78#include <wtf/DecimalNumber.h>
79#include <wtf/FastMalloc.h>
80#include <wtf/MathExtras.h>
81#include <wtf/Threading.h>
82#include <wtf/UnusedParam.h>
83#include <wtf/Vector.h>
84
85#if COMPILER(MSVC)
86#pragma warning(disable: 4244)
87#pragma warning(disable: 4245)
88#pragma warning(disable: 4554)
89#endif
90
91namespace WTF {
92
93#if ENABLE(JSC_MULTIPLE_THREADS)
94Mutex* s_dtoaP5Mutex;
95#endif
96
97typedef union {
98    double d;
99    uint32_t L[2];
100} U;
101
102#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
103#define word0(x) (x)->L[0]
104#define word1(x) (x)->L[1]
105#else
106#define word0(x) (x)->L[1]
107#define word1(x) (x)->L[0]
108#endif
109#define dval(x) (x)->d
110
111/* The following definition of Storeinc is appropriate for MIPS processors.
112 * An alternative that might be better on some machines is
113 *  *p++ = high << 16 | low & 0xffff;
114 */
115static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low)
116{
117    uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
118#if CPU(BIG_ENDIAN)
119    p16[0] = high;
120    p16[1] = low;
121#else
122    p16[1] = high;
123    p16[0] = low;
124#endif
125    return p + 1;
126}
127
128#define Exp_shift  20
129#define Exp_shift1 20
130#define Exp_msk1    0x100000
131#define Exp_msk11   0x100000
132#define Exp_mask  0x7ff00000
133#define P 53
134#define Bias 1023
135#define Emin (-1022)
136#define Exp_1  0x3ff00000
137#define Exp_11 0x3ff00000
138#define Ebits 11
139#define Frac_mask  0xfffff
140#define Frac_mask1 0xfffff
141#define Ten_pmax 22
142#define Bletch 0x10
143#define Bndry_mask  0xfffff
144#define Bndry_mask1 0xfffff
145#define LSB 1
146#define Sign_bit 0x80000000
147#define Log2P 1
148#define Tiny0 0
149#define Tiny1 1
150#define Quick_max 14
151#define Int_max 14
152
153#define rounded_product(a, b) a *= b
154#define rounded_quotient(a, b) a /= b
155
156#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
157#define Big1 0xffffffff
158
159#if CPU(PPC64) || CPU(X86_64)
160// FIXME: should we enable this on all 64-bit CPUs?
161// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.
162#define USE_LONG_LONG
163#endif
164
165struct BigInt {
166    BigInt() : sign(0) { }
167    int sign;
168
169    void clear()
170    {
171        sign = 0;
172        m_words.clear();
173    }
174
175    size_t size() const
176    {
177        return m_words.size();
178    }
179
180    void resize(size_t s)
181    {
182        m_words.resize(s);
183    }
184
185    uint32_t* words()
186    {
187        return m_words.data();
188    }
189
190    const uint32_t* words() const
191    {
192        return m_words.data();
193    }
194
195    void append(uint32_t w)
196    {
197        m_words.append(w);
198    }
199
200    Vector<uint32_t, 16> m_words;
201};
202
203static void multadd(BigInt& b, int m, int a)    /* multiply by m and add a */
204{
205#ifdef USE_LONG_LONG
206    unsigned long long carry;
207#else
208    uint32_t carry;
209#endif
210
211    int wds = b.size();
212    uint32_t* x = b.words();
213    int i = 0;
214    carry = a;
215    do {
216#ifdef USE_LONG_LONG
217        unsigned long long y = *x * (unsigned long long)m + carry;
218        carry = y >> 32;
219        *x++ = (uint32_t)y & 0xffffffffUL;
220#else
221        uint32_t xi = *x;
222        uint32_t y = (xi & 0xffff) * m + carry;
223        uint32_t z = (xi >> 16) * m + (y >> 16);
224        carry = z >> 16;
225        *x++ = (z << 16) + (y & 0xffff);
226#endif
227    } while (++i < wds);
228
229    if (carry)
230        b.append((uint32_t)carry);
231}
232
233static void s2b(BigInt& b, const char* s, int nd0, int nd, uint32_t y9)
234{
235    b.sign = 0;
236    b.resize(1);
237    b.words()[0] = y9;
238
239    int i = 9;
240    if (9 < nd0) {
241        s += 9;
242        do {
243            multadd(b, 10, *s++ - '0');
244        } while (++i < nd0);
245        s++;
246    } else
247        s += 10;
248    for (; i < nd; i++)
249        multadd(b, 10, *s++ - '0');
250}
251
252static int hi0bits(uint32_t x)
253{
254    int k = 0;
255
256    if (!(x & 0xffff0000)) {
257        k = 16;
258        x <<= 16;
259    }
260    if (!(x & 0xff000000)) {
261        k += 8;
262        x <<= 8;
263    }
264    if (!(x & 0xf0000000)) {
265        k += 4;
266        x <<= 4;
267    }
268    if (!(x & 0xc0000000)) {
269        k += 2;
270        x <<= 2;
271    }
272    if (!(x & 0x80000000)) {
273        k++;
274        if (!(x & 0x40000000))
275            return 32;
276    }
277    return k;
278}
279
280static int lo0bits(uint32_t* y)
281{
282    int k;
283    uint32_t x = *y;
284
285    if (x & 7) {
286        if (x & 1)
287            return 0;
288        if (x & 2) {
289            *y = x >> 1;
290            return 1;
291        }
292        *y = x >> 2;
293        return 2;
294    }
295    k = 0;
296    if (!(x & 0xffff)) {
297        k = 16;
298        x >>= 16;
299    }
300    if (!(x & 0xff)) {
301        k += 8;
302        x >>= 8;
303    }
304    if (!(x & 0xf)) {
305        k += 4;
306        x >>= 4;
307    }
308    if (!(x & 0x3)) {
309        k += 2;
310        x >>= 2;
311    }
312    if (!(x & 1)) {
313        k++;
314        x >>= 1;
315        if (!x)
316            return 32;
317    }
318    *y = x;
319    return k;
320}
321
322static void i2b(BigInt& b, int i)
323{
324    b.sign = 0;
325    b.resize(1);
326    b.words()[0] = i;
327}
328
329static void mult(BigInt& aRef, const BigInt& bRef)
330{
331    const BigInt* a = &aRef;
332    const BigInt* b = &bRef;
333    BigInt c;
334    int wa, wb, wc;
335    const uint32_t* x = 0;
336    const uint32_t* xa;
337    const uint32_t* xb;
338    const uint32_t* xae;
339    const uint32_t* xbe;
340    uint32_t* xc;
341    uint32_t* xc0;
342    uint32_t y;
343#ifdef USE_LONG_LONG
344    unsigned long long carry, z;
345#else
346    uint32_t carry, z;
347#endif
348
349    if (a->size() < b->size()) {
350        const BigInt* tmp = a;
351        a = b;
352        b = tmp;
353    }
354
355    wa = a->size();
356    wb = b->size();
357    wc = wa + wb;
358    c.resize(wc);
359
360    for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
361        *xc = 0;
362    xa = a->words();
363    xae = xa + wa;
364    xb = b->words();
365    xbe = xb + wb;
366    xc0 = c.words();
367#ifdef USE_LONG_LONG
368    for (; xb < xbe; xc0++) {
369        if ((y = *xb++)) {
370            x = xa;
371            xc = xc0;
372            carry = 0;
373            do {
374                z = *x++ * (unsigned long long)y + *xc + carry;
375                carry = z >> 32;
376                *xc++ = (uint32_t)z & 0xffffffffUL;
377            } while (x < xae);
378            *xc = (uint32_t)carry;
379        }
380    }
381#else
382    for (; xb < xbe; xb++, xc0++) {
383        if ((y = *xb & 0xffff)) {
384            x = xa;
385            xc = xc0;
386            carry = 0;
387            do {
388                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
389                carry = z >> 16;
390                uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
391                carry = z2 >> 16;
392                xc = storeInc(xc, z2, z);
393            } while (x < xae);
394            *xc = carry;
395        }
396        if ((y = *xb >> 16)) {
397            x = xa;
398            xc = xc0;
399            carry = 0;
400            uint32_t z2 = *xc;
401            do {
402                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
403                carry = z >> 16;
404                xc = storeInc(xc, z, z2);
405                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
406                carry = z2 >> 16;
407            } while (x < xae);
408            *xc = z2;
409        }
410    }
411#endif
412    for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
413    c.resize(wc);
414    aRef = c;
415}
416
417struct P5Node {
418    WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
419public:
420    P5Node() { }
421    BigInt val;
422    P5Node* next;
423};
424
425static P5Node* p5s;
426static int p5sCount;
427
428static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
429{
430    static int p05[3] = { 5, 25, 125 };
431
432    if (int i = k & 3)
433        multadd(b, p05[i - 1], 0);
434
435    if (!(k >>= 2))
436        return;
437
438#if ENABLE(JSC_MULTIPLE_THREADS)
439    s_dtoaP5Mutex->lock();
440#endif
441    P5Node* p5 = p5s;
442
443    if (!p5) {
444        /* first time */
445        p5 = new P5Node;
446        i2b(p5->val, 625);
447        p5->next = 0;
448        p5s = p5;
449        p5sCount = 1;
450    }
451
452    int p5sCountLocal = p5sCount;
453#if ENABLE(JSC_MULTIPLE_THREADS)
454    s_dtoaP5Mutex->unlock();
455#endif
456    int p5sUsed = 0;
457
458    for (;;) {
459        if (k & 1)
460            mult(b, p5->val);
461
462        if (!(k >>= 1))
463            break;
464
465        if (++p5sUsed == p5sCountLocal) {
466#if ENABLE(JSC_MULTIPLE_THREADS)
467            s_dtoaP5Mutex->lock();
468#endif
469            if (p5sUsed == p5sCount) {
470                ASSERT(!p5->next);
471                p5->next = new P5Node;
472                p5->next->next = 0;
473                p5->next->val = p5->val;
474                mult(p5->next->val, p5->next->val);
475                ++p5sCount;
476            }
477
478            p5sCountLocal = p5sCount;
479#if ENABLE(JSC_MULTIPLE_THREADS)
480            s_dtoaP5Mutex->unlock();
481#endif
482        }
483        p5 = p5->next;
484    }
485}
486
487static ALWAYS_INLINE void lshift(BigInt& b, int k)
488{
489    int n = k >> 5;
490
491    int origSize = b.size();
492    int n1 = n + origSize + 1;
493
494    if (k &= 0x1f)
495        b.resize(b.size() + n + 1);
496    else
497        b.resize(b.size() + n);
498
499    const uint32_t* srcStart = b.words();
500    uint32_t* dstStart = b.words();
501    const uint32_t* src = srcStart + origSize - 1;
502    uint32_t* dst = dstStart + n1 - 1;
503    if (k) {
504        uint32_t hiSubword = 0;
505        int s = 32 - k;
506        for (; src >= srcStart; --src) {
507            *dst-- = hiSubword | *src >> s;
508            hiSubword = *src << k;
509        }
510        *dst = hiSubword;
511        ASSERT(dst == dstStart + n);
512
513        b.resize(origSize + n + !!b.words()[n1 - 1]);
514    }
515    else {
516        do {
517            *--dst = *src--;
518        } while (src >= srcStart);
519    }
520    for (dst = dstStart + n; dst != dstStart; )
521        *--dst = 0;
522
523    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
524}
525
526static int cmp(const BigInt& a, const BigInt& b)
527{
528    const uint32_t *xa, *xa0, *xb, *xb0;
529    int i, j;
530
531    i = a.size();
532    j = b.size();
533    ASSERT(i <= 1 || a.words()[i - 1]);
534    ASSERT(j <= 1 || b.words()[j - 1]);
535    if (i -= j)
536        return i;
537    xa0 = a.words();
538    xa = xa0 + j;
539    xb0 = b.words();
540    xb = xb0 + j;
541    for (;;) {
542        if (*--xa != *--xb)
543            return *xa < *xb ? -1 : 1;
544        if (xa <= xa0)
545            break;
546    }
547    return 0;
548}
549
550static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef)
551{
552    const BigInt* a = &aRef;
553    const BigInt* b = &bRef;
554    int i, wa, wb;
555    uint32_t* xc;
556
557    i = cmp(*a, *b);
558    if (!i) {
559        c.sign = 0;
560        c.resize(1);
561        c.words()[0] = 0;
562        return;
563    }
564    if (i < 0) {
565        const BigInt* tmp = a;
566        a = b;
567        b = tmp;
568        i = 1;
569    } else
570        i = 0;
571
572    wa = a->size();
573    const uint32_t* xa = a->words();
574    const uint32_t* xae = xa + wa;
575    wb = b->size();
576    const uint32_t* xb = b->words();
577    const uint32_t* xbe = xb + wb;
578
579    c.resize(wa);
580    c.sign = i;
581    xc = c.words();
582#ifdef USE_LONG_LONG
583    unsigned long long borrow = 0;
584    do {
585        unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
586        borrow = y >> 32 & (uint32_t)1;
587        *xc++ = (uint32_t)y & 0xffffffffUL;
588    } while (xb < xbe);
589    while (xa < xae) {
590        unsigned long long y = *xa++ - borrow;
591        borrow = y >> 32 & (uint32_t)1;
592        *xc++ = (uint32_t)y & 0xffffffffUL;
593    }
594#else
595    uint32_t borrow = 0;
596    do {
597        uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
598        borrow = (y & 0x10000) >> 16;
599        uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
600        borrow = (z & 0x10000) >> 16;
601        xc = storeInc(xc, z, y);
602    } while (xb < xbe);
603    while (xa < xae) {
604        uint32_t y = (*xa & 0xffff) - borrow;
605        borrow = (y & 0x10000) >> 16;
606        uint32_t z = (*xa++ >> 16) - borrow;
607        borrow = (z & 0x10000) >> 16;
608        xc = storeInc(xc, z, y);
609    }
610#endif
611    while (!*--xc)
612        wa--;
613    c.resize(wa);
614}
615
616static double ulp(U *x)
617{
618    register int32_t L;
619    U u;
620
621    L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1;
622        word0(&u) = L;
623        word1(&u) = 0;
624    return dval(&u);
625}
626
627static double b2d(const BigInt& a, int* e)
628{
629    const uint32_t* xa;
630    const uint32_t* xa0;
631    uint32_t w;
632    uint32_t y;
633    uint32_t z;
634    int k;
635    U d;
636
637#define d0 word0(&d)
638#define d1 word1(&d)
639
640    xa0 = a.words();
641    xa = xa0 + a.size();
642    y = *--xa;
643    ASSERT(y);
644    k = hi0bits(y);
645    *e = 32 - k;
646    if (k < Ebits) {
647        d0 = Exp_1 | (y >> (Ebits - k));
648        w = xa > xa0 ? *--xa : 0;
649        d1 = (y << (32 - Ebits + k)) | (w >> (Ebits - k));
650        goto returnD;
651    }
652    z = xa > xa0 ? *--xa : 0;
653    if (k -= Ebits) {
654        d0 = Exp_1 | (y << k) | (z >> (32 - k));
655        y = xa > xa0 ? *--xa : 0;
656        d1 = (z << k) | (y >> (32 - k));
657    } else {
658        d0 = Exp_1 | y;
659        d1 = z;
660    }
661returnD:
662#undef d0
663#undef d1
664    return dval(&d);
665}
666
667static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
668{
669    int de, k;
670    uint32_t* x;
671    uint32_t y, z;
672    int i;
673#define d0 word0(d)
674#define d1 word1(d)
675
676    b.sign = 0;
677    b.resize(1);
678    x = b.words();
679
680    z = d0 & Frac_mask;
681    d0 &= 0x7fffffff;    /* clear sign bit, which we ignore */
682    if ((de = (int)(d0 >> Exp_shift)))
683        z |= Exp_msk1;
684    if ((y = d1)) {
685        if ((k = lo0bits(&y))) {
686            x[0] = y | (z << (32 - k));
687            z >>= k;
688        } else
689            x[0] = y;
690        if (z) {
691            b.resize(2);
692            x[1] = z;
693        }
694
695        i = b.size();
696    } else {
697        k = lo0bits(&z);
698        x[0] = z;
699        i = 1;
700        b.resize(1);
701        k += 32;
702    }
703    if (de) {
704        *e = de - Bias - (P - 1) + k;
705        *bits = P - k;
706    } else {
707        *e = de - Bias - (P - 1) + 1 + k;
708        *bits = (32 * i) - hi0bits(x[i - 1]);
709    }
710}
711#undef d0
712#undef d1
713
714static double ratio(const BigInt& a, const BigInt& b)
715{
716    U da, db;
717    int k, ka, kb;
718
719    dval(&da) = b2d(a, &ka);
720    dval(&db) = b2d(b, &kb);
721    k = ka - kb + 32 * (a.size() - b.size());
722    if (k > 0)
723        word0(&da) += k * Exp_msk1;
724    else {
725        k = -k;
726        word0(&db) += k * Exp_msk1;
727    }
728    return dval(&da) / dval(&db);
729}
730
731static const double tens[] = {
732    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
733    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
734    1e20, 1e21, 1e22
735};
736
737static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
738static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
739    9007199254740992. * 9007199254740992.e-256
740    /* = 2^106 * 1e-256 */
741};
742
743/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
744/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
745#define Scale_Bit 0x10
746#define n_bigtens 5
747
748double strtod(const char* s00, char** se)
749{
750    int scale;
751    int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
752        e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
753    const char *s, *s0, *s1;
754    double aadj, aadj1;
755    U aadj2, adj, rv, rv0;
756    int32_t L;
757    uint32_t y, z;
758    BigInt bb, bb1, bd, bd0, bs, delta;
759
760    sign = nz0 = nz = 0;
761    dval(&rv) = 0;
762    for (s = s00; ; s++) {
763        switch (*s) {
764        case '-':
765            sign = 1;
766            /* no break */
767        case '+':
768            if (*++s)
769                goto break2;
770            /* no break */
771        case 0:
772            goto ret0;
773        case '\t':
774        case '\n':
775        case '\v':
776        case '\f':
777        case '\r':
778        case ' ':
779            continue;
780        default:
781            goto break2;
782        }
783    }
784break2:
785    if (*s == '0') {
786        nz0 = 1;
787        while (*++s == '0') { }
788        if (!*s)
789            goto ret;
790    }
791    s0 = s;
792    y = z = 0;
793    for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
794        if (nd < 9)
795            y = (10 * y) + c - '0';
796        else if (nd < 16)
797            z = (10 * z) + c - '0';
798    nd0 = nd;
799    if (c == '.') {
800        c = *++s;
801        if (!nd) {
802            for (; c == '0'; c = *++s)
803                nz++;
804            if (c > '0' && c <= '9') {
805                s0 = s;
806                nf += nz;
807                nz = 0;
808                goto haveDig;
809            }
810            goto digDone;
811        }
812        for (; c >= '0' && c <= '9'; c = *++s) {
813haveDig:
814            nz++;
815            if (c -= '0') {
816                nf += nz;
817                for (i = 1; i < nz; i++)
818                    if (nd++ < 9)
819                        y *= 10;
820                    else if (nd <= DBL_DIG + 1)
821                        z *= 10;
822                if (nd++ < 9)
823                    y = (10 * y) + c;
824                else if (nd <= DBL_DIG + 1)
825                    z = (10 * z) + c;
826                nz = 0;
827            }
828        }
829    }
830digDone:
831    e = 0;
832    if (c == 'e' || c == 'E') {
833        if (!nd && !nz && !nz0)
834            goto ret0;
835        s00 = s;
836        esign = 0;
837        switch (c = *++s) {
838        case '-':
839            esign = 1;
840        case '+':
841            c = *++s;
842        }
843        if (c >= '0' && c <= '9') {
844            while (c == '0')
845                c = *++s;
846            if (c > '0' && c <= '9') {
847                L = c - '0';
848                s1 = s;
849                while ((c = *++s) >= '0' && c <= '9')
850                    L = (10 * L) + c - '0';
851                if (s - s1 > 8 || L > 19999)
852                    /* Avoid confusion from exponents
853                     * so large that e might overflow.
854                     */
855                    e = 19999; /* safe for 16 bit ints */
856                else
857                    e = (int)L;
858                if (esign)
859                    e = -e;
860            } else
861                e = 0;
862        } else
863            s = s00;
864    }
865    if (!nd) {
866        if (!nz && !nz0) {
867ret0:
868            s = s00;
869            sign = 0;
870        }
871        goto ret;
872    }
873    e1 = e -= nf;
874
875    /* Now we have nd0 digits, starting at s0, followed by a
876     * decimal point, followed by nd-nd0 digits.  The number we're
877     * after is the integer represented by those digits times
878     * 10**e */
879
880    if (!nd0)
881        nd0 = nd;
882    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
883    dval(&rv) = y;
884    if (k > 9)
885        dval(&rv) = tens[k - 9] * dval(&rv) + z;
886    if (nd <= DBL_DIG) {
887        if (!e)
888            goto ret;
889        if (e > 0) {
890            if (e <= Ten_pmax) {
891                /* rv = */ rounded_product(dval(&rv), tens[e]);
892                goto ret;
893            }
894            i = DBL_DIG - nd;
895            if (e <= Ten_pmax + i) {
896                /* A fancier test would sometimes let us do
897                 * this for larger i values.
898                 */
899                e -= i;
900                dval(&rv) *= tens[i];
901                /* rv = */ rounded_product(dval(&rv), tens[e]);
902                goto ret;
903            }
904        } else if (e >= -Ten_pmax) {
905            /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
906            goto ret;
907        }
908    }
909    e1 += nd - k;
910
911    scale = 0;
912
913    /* Get starting approximation = rv * 10**e1 */
914
915    if (e1 > 0) {
916        if ((i = e1 & 15))
917            dval(&rv) *= tens[i];
918        if (e1 &= ~15) {
919            if (e1 > DBL_MAX_10_EXP) {
920ovfl:
921#if HAVE(ERRNO_H)
922                errno = ERANGE;
923#endif
924                /* Can't trust HUGE_VAL */
925                word0(&rv) = Exp_mask;
926                word1(&rv) = 0;
927                goto ret;
928            }
929            e1 >>= 4;
930            for (j = 0; e1 > 1; j++, e1 >>= 1)
931                if (e1 & 1)
932                    dval(&rv) *= bigtens[j];
933        /* The last multiplication could overflow. */
934            word0(&rv) -= P * Exp_msk1;
935            dval(&rv) *= bigtens[j];
936            if ((z = word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P))
937                goto ovfl;
938            if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) {
939                /* set to largest number */
940                /* (Can't trust DBL_MAX) */
941                word0(&rv) = Big0;
942                word1(&rv) = Big1;
943            } else
944                word0(&rv) += P * Exp_msk1;
945        }
946    } else if (e1 < 0) {
947        e1 = -e1;
948        if ((i = e1 & 15))
949            dval(&rv) /= tens[i];
950        if (e1 >>= 4) {
951            if (e1 >= 1 << n_bigtens)
952                goto undfl;
953            if (e1 & Scale_Bit)
954                scale = 2 * P;
955            for (j = 0; e1 > 0; j++, e1 >>= 1)
956                if (e1 & 1)
957                    dval(&rv) *= tinytens[j];
958            if (scale && (j = (2 * P) + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) {
959                /* scaled rv is denormal; clear j low bits */
960                if (j >= 32) {
961                    word1(&rv) = 0;
962                    if (j >= 53)
963                        word0(&rv) = (P + 2) * Exp_msk1;
964                    else
965                        word0(&rv) &= 0xffffffff << (j - 32);
966                } else
967                    word1(&rv) &= 0xffffffff << j;
968            }
969                if (!dval(&rv)) {
970undfl:
971                    dval(&rv) = 0.;
972#if HAVE(ERRNO_H)
973                    errno = ERANGE;
974#endif
975                    goto ret;
976                }
977        }
978    }
979
980    /* Now the hard part -- adjusting rv to the correct value.*/
981
982    /* Put digits into bd: true value = bd * 10^e */
983
984    s2b(bd0, s0, nd0, nd, y);
985
986    for (;;) {
987        bd = bd0;
988        d2b(bb, &rv, &bbe, &bbbits);    /* rv = bb * 2^bbe */
989        i2b(bs, 1);
990
991        if (e >= 0) {
992            bb2 = bb5 = 0;
993            bd2 = bd5 = e;
994        } else {
995            bb2 = bb5 = -e;
996            bd2 = bd5 = 0;
997        }
998        if (bbe >= 0)
999            bb2 += bbe;
1000        else
1001            bd2 -= bbe;
1002        bs2 = bb2;
1003        j = bbe - scale;
1004        i = j + bbbits - 1;    /* logb(rv) */
1005        if (i < Emin)    /* denormal */
1006            j += P - Emin;
1007        else
1008            j = P + 1 - bbbits;
1009        bb2 += j;
1010        bd2 += j;
1011        bd2 += scale;
1012        i = bb2 < bd2 ? bb2 : bd2;
1013        if (i > bs2)
1014            i = bs2;
1015        if (i > 0) {
1016            bb2 -= i;
1017            bd2 -= i;
1018            bs2 -= i;
1019        }
1020        if (bb5 > 0) {
1021            pow5mult(bs, bb5);
1022            mult(bb, bs);
1023        }
1024        if (bb2 > 0)
1025            lshift(bb, bb2);
1026        if (bd5 > 0)
1027            pow5mult(bd, bd5);
1028        if (bd2 > 0)
1029            lshift(bd, bd2);
1030        if (bs2 > 0)
1031            lshift(bs, bs2);
1032        diff(delta, bb, bd);
1033        dsign = delta.sign;
1034        delta.sign = 0;
1035        i = cmp(delta, bs);
1036
1037        if (i < 0) {
1038            /* Error is less than half an ulp -- check for
1039             * special case of mantissa a power of two.
1040             */
1041            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1042             || (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1
1043                ) {
1044                break;
1045            }
1046            if (!delta.words()[0] && delta.size() <= 1) {
1047                /* exact result */
1048                break;
1049            }
1050            lshift(delta, Log2P);
1051            if (cmp(delta, bs) > 0)
1052                goto dropDown;
1053            break;
1054        }
1055        if (!i) {
1056            /* exactly half-way between */
1057            if (dsign) {
1058                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1059                 &&  word1(&rv) == (
1060            (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1)
1061        ? (0xffffffff & (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) :
1062                           0xffffffff)) {
1063                    /*boundary case -- increment exponent*/
1064                    word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1;
1065                    word1(&rv) = 0;
1066                    dsign = 0;
1067                    break;
1068                }
1069            } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1070dropDown:
1071                /* boundary case -- decrement exponent */
1072                if (scale) {
1073                    L = word0(&rv) & Exp_mask;
1074                    if (L <= (2 * P + 1) * Exp_msk1) {
1075                        if (L > (P + 2) * Exp_msk1)
1076                            /* round even ==> */
1077                            /* accept rv */
1078                            break;
1079                        /* rv = smallest denormal */
1080                        goto undfl;
1081                    }
1082                }
1083                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1084                word0(&rv) = L | Bndry_mask1;
1085                word1(&rv) = 0xffffffff;
1086                break;
1087            }
1088            if (!(word1(&rv) & LSB))
1089                break;
1090            if (dsign)
1091                dval(&rv) += ulp(&rv);
1092            else {
1093                dval(&rv) -= ulp(&rv);
1094                if (!dval(&rv))
1095                    goto undfl;
1096            }
1097            dsign = 1 - dsign;
1098            break;
1099        }
1100        if ((aadj = ratio(delta, bs)) <= 2.) {
1101            if (dsign)
1102                aadj = aadj1 = 1.;
1103            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1104                if (word1(&rv) == Tiny1 && !word0(&rv))
1105                    goto undfl;
1106                aadj = 1.;
1107                aadj1 = -1.;
1108            } else {
1109                /* special case -- power of FLT_RADIX to be */
1110                /* rounded down... */
1111
1112                if (aadj < 2. / FLT_RADIX)
1113                    aadj = 1. / FLT_RADIX;
1114                else
1115                    aadj *= 0.5;
1116                aadj1 = -aadj;
1117            }
1118        } else {
1119            aadj *= 0.5;
1120            aadj1 = dsign ? aadj : -aadj;
1121        }
1122        y = word0(&rv) & Exp_mask;
1123
1124        /* Check for overflow */
1125
1126        if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) {
1127            dval(&rv0) = dval(&rv);
1128            word0(&rv) -= P * Exp_msk1;
1129            adj.d = aadj1 * ulp(&rv);
1130            dval(&rv) += adj.d;
1131            if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) {
1132                if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
1133                    goto ovfl;
1134                word0(&rv) = Big0;
1135                word1(&rv) = Big1;
1136                goto cont;
1137            }
1138            word0(&rv) += P * Exp_msk1;
1139        } else {
1140            if (scale && y <= 2 * P * Exp_msk1) {
1141                if (aadj <= 0x7fffffff) {
1142                    if ((z = (uint32_t)aadj) <= 0)
1143                        z = 1;
1144                    aadj = z;
1145                    aadj1 = dsign ? aadj : -aadj;
1146                }
1147                dval(&aadj2) = aadj1;
1148                word0(&aadj2) += (2 * P + 1) * Exp_msk1 - y;
1149                aadj1 = dval(&aadj2);
1150            }
1151            adj.d = aadj1 * ulp(&rv);
1152            dval(&rv) += adj.d;
1153        }
1154        z = word0(&rv) & Exp_mask;
1155        if (!scale && y == z) {
1156            /* Can we stop now? */
1157            L = (int32_t)aadj;
1158            aadj -= L;
1159            /* The tolerances below are conservative. */
1160            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
1161                if (aadj < .4999999 || aadj > .5000001)
1162                    break;
1163            } else if (aadj < .4999999 / FLT_RADIX)
1164                break;
1165        }
1166cont:
1167        {}
1168    }
1169    if (scale) {
1170        word0(&rv0) = Exp_1 - 2 * P * Exp_msk1;
1171        word1(&rv0) = 0;
1172        dval(&rv) *= dval(&rv0);
1173#if HAVE(ERRNO_H)
1174        /* try to avoid the bug of testing an 8087 register value */
1175        if (!word0(&rv) && !word1(&rv))
1176            errno = ERANGE;
1177#endif
1178    }
1179ret:
1180    if (se)
1181        *se = const_cast<char*>(s);
1182    return sign ? -dval(&rv) : dval(&rv);
1183}
1184
1185static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
1186{
1187    size_t n;
1188    uint32_t* bx;
1189    uint32_t* bxe;
1190    uint32_t q;
1191    uint32_t* sx;
1192    uint32_t* sxe;
1193#ifdef USE_LONG_LONG
1194    unsigned long long borrow, carry, y, ys;
1195#else
1196    uint32_t borrow, carry, y, ys;
1197    uint32_t si, z, zs;
1198#endif
1199    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
1200    ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);
1201
1202    n = S.size();
1203    ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
1204    if (b.size() < n)
1205        return 0;
1206    sx = S.words();
1207    sxe = sx + --n;
1208    bx = b.words();
1209    bxe = bx + n;
1210    q = *bxe / (*sxe + 1);    /* ensure q <= true quotient */
1211    ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
1212    if (q) {
1213        borrow = 0;
1214        carry = 0;
1215        do {
1216#ifdef USE_LONG_LONG
1217            ys = *sx++ * (unsigned long long)q + carry;
1218            carry = ys >> 32;
1219            y = *bx - (ys & 0xffffffffUL) - borrow;
1220            borrow = y >> 32 & (uint32_t)1;
1221            *bx++ = (uint32_t)y & 0xffffffffUL;
1222#else
1223            si = *sx++;
1224            ys = (si & 0xffff) * q + carry;
1225            zs = (si >> 16) * q + (ys >> 16);
1226            carry = zs >> 16;
1227            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1228            borrow = (y & 0x10000) >> 16;
1229            z = (*bx >> 16) - (zs & 0xffff) - borrow;
1230            borrow = (z & 0x10000) >> 16;
1231            bx = storeInc(bx, z, y);
1232#endif
1233        } while (sx <= sxe);
1234        if (!*bxe) {
1235            bx = b.words();
1236            while (--bxe > bx && !*bxe)
1237                --n;
1238            b.resize(n);
1239        }
1240    }
1241    if (cmp(b, S) >= 0) {
1242        q++;
1243        borrow = 0;
1244        carry = 0;
1245        bx = b.words();
1246        sx = S.words();
1247        do {
1248#ifdef USE_LONG_LONG
1249            ys = *sx++ + carry;
1250            carry = ys >> 32;
1251            y = *bx - (ys & 0xffffffffUL) - borrow;
1252            borrow = y >> 32 & (uint32_t)1;
1253            *bx++ = (uint32_t)y & 0xffffffffUL;
1254#else
1255            si = *sx++;
1256            ys = (si & 0xffff) + carry;
1257            zs = (si >> 16) + (ys >> 16);
1258            carry = zs >> 16;
1259            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1260            borrow = (y & 0x10000) >> 16;
1261            z = (*bx >> 16) - (zs & 0xffff) - borrow;
1262            borrow = (z & 0x10000) >> 16;
1263            bx = storeInc(bx, z, y);
1264#endif
1265        } while (sx <= sxe);
1266        bx = b.words();
1267        bxe = bx + n;
1268        if (!*bxe) {
1269            while (--bxe > bx && !*bxe)
1270                --n;
1271            b.resize(n);
1272        }
1273    }
1274    return q;
1275}
1276
1277/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1278 *
1279 * Inspired by "How to Print Floating-Point Numbers Accurately" by
1280 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
1281 *
1282 * Modifications:
1283 *    1. Rather than iterating, we use a simple numeric overestimate
1284 *       to determine k = floor(log10(d)).  We scale relevant
1285 *       quantities using O(log2(k)) rather than O(k) multiplications.
1286 *    2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1287 *       try to generate digits strictly left to right.  Instead, we
1288 *       compute with fewer bits and propagate the carry if necessary
1289 *       when rounding the final digit up.  This is often faster.
1290 *    3. Under the assumption that input will be rounded nearest,
1291 *       mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1292 *       That is, we allow equality in stopping tests when the
1293 *       round-nearest rule will give the same floating-point value
1294 *       as would satisfaction of the stopping test with strict
1295 *       inequality.
1296 *    4. We remove common factors of powers of 2 from relevant
1297 *       quantities.
1298 *    5. When converting floating-point integers less than 1e16,
1299 *       we use floating-point arithmetic rather than resorting
1300 *       to multiple-precision integers.
1301 *    6. When asked to produce fewer than 15 digits, we first try
1302 *       to get by with floating-point arithmetic; we resort to
1303 *       multiple-precision integer arithmetic only if we cannot
1304 *       guarantee that the floating-point calculation has given
1305 *       the correctly rounded result.  For k requested digits and
1306 *       "uniformly" distributed input, the probability is
1307 *       something like 10^(k-15) that we must resort to the int32_t
1308 *       calculation.
1309 *
1310 * Note: 'leftright' translates to 'generate shortest possible string'.
1311 */
1312template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright>
1313void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut)
1314{
1315    // Exactly one rounding mode must be specified.
1316    ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
1317    // roundingNone only allowed (only sensible?) with leftright set.
1318    ASSERT(!roundingNone || leftright);
1319
1320    ASSERT(!isnan(dd) && !isinf(dd));
1321
1322    int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
1323        j, j1, k, k0, k_check, m2, m5, s2, s5,
1324        spec_case;
1325    int32_t L;
1326    int denorm;
1327    uint32_t x;
1328    BigInt b, delta, mlo, mhi, S;
1329    U d2, eps, u;
1330    double ds;
1331    char* s;
1332    char* s0;
1333
1334    u.d = dd;
1335
1336    /* Infinity or NaN */
1337    ASSERT((word0(&u) & Exp_mask) != Exp_mask);
1338
1339    // JavaScript toString conversion treats -0 as 0.
1340    if (!dval(&u)) {
1341        signOut = false;
1342        exponentOut = 0;
1343        precisionOut = 1;
1344        result[0] = '0';
1345        result[1] = '\0';
1346        return;
1347    }
1348
1349    if (word0(&u) & Sign_bit) {
1350        signOut = true;
1351        word0(&u) &= ~Sign_bit; // clear sign bit
1352    } else
1353        signOut = false;
1354
1355    d2b(b, &u, &be, &bbits);
1356    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
1357        dval(&d2) = dval(&u);
1358        word0(&d2) &= Frac_mask1;
1359        word0(&d2) |= Exp_11;
1360
1361        /* log(x)    ~=~ log(1.5) + (x-1.5)/1.5
1362         * log10(x)     =  log(x) / log(10)
1363         *        ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
1364         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
1365         *
1366         * This suggests computing an approximation k to log10(d) by
1367         *
1368         * k = (i - Bias)*0.301029995663981
1369         *    + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
1370         *
1371         * We want k to be too large rather than too small.
1372         * The error in the first-order Taylor series approximation
1373         * is in our favor, so we just round up the constant enough
1374         * to compensate for any error in the multiplication of
1375         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
1376         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
1377         * adding 1e-13 to the constant term more than suffices.
1378         * Hence we adjust the constant term to 0.1760912590558.
1379         * (We could get a more accurate k by invoking log10,
1380         *  but this is probably not worthwhile.)
1381         */
1382
1383        i -= Bias;
1384        denorm = 0;
1385    } else {
1386        /* d is denormalized */
1387
1388        i = bbits + be + (Bias + (P - 1) - 1);
1389        x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
1390                : word1(&u) << (32 - i);
1391        dval(&d2) = x;
1392        word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
1393        i -= (Bias + (P - 1) - 1) + 1;
1394        denorm = 1;
1395    }
1396    ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981);
1397    k = (int)ds;
1398    if (ds < 0. && ds != k)
1399        k--;    /* want k = floor(ds) */
1400    k_check = 1;
1401    if (k >= 0 && k <= Ten_pmax) {
1402        if (dval(&u) < tens[k])
1403            k--;
1404        k_check = 0;
1405    }
1406    j = bbits - i - 1;
1407    if (j >= 0) {
1408        b2 = 0;
1409        s2 = j;
1410    } else {
1411        b2 = -j;
1412        s2 = 0;
1413    }
1414    if (k >= 0) {
1415        b5 = 0;
1416        s5 = k;
1417        s2 += k;
1418    } else {
1419        b2 -= k;
1420        b5 = -k;
1421        s5 = 0;
1422    }
1423
1424    if (roundingNone) {
1425        ilim = ilim1 = -1;
1426        i = 18;
1427        ndigits = 0;
1428    }
1429    if (roundingSignificantFigures) {
1430        if (ndigits <= 0)
1431            ndigits = 1;
1432        ilim = ilim1 = i = ndigits;
1433    }
1434    if (roundingDecimalPlaces) {
1435        i = ndigits + k + 1;
1436        ilim = i;
1437        ilim1 = i - 1;
1438        if (i <= 0)
1439            i = 1;
1440    }
1441
1442    s = s0 = result;
1443
1444    if (ilim >= 0 && ilim <= Quick_max) {
1445        /* Try to get by with floating-point arithmetic. */
1446
1447        i = 0;
1448        dval(&d2) = dval(&u);
1449        k0 = k;
1450        ilim0 = ilim;
1451        ieps = 2; /* conservative */
1452        if (k > 0) {
1453            ds = tens[k & 0xf];
1454            j = k >> 4;
1455            if (j & Bletch) {
1456                /* prevent overflows */
1457                j &= Bletch - 1;
1458                dval(&u) /= bigtens[n_bigtens - 1];
1459                ieps++;
1460            }
1461            for (; j; j >>= 1, i++) {
1462                if (j & 1) {
1463                    ieps++;
1464                    ds *= bigtens[i];
1465                }
1466            }
1467            dval(&u) /= ds;
1468        } else if ((j1 = -k)) {
1469            dval(&u) *= tens[j1 & 0xf];
1470            for (j = j1 >> 4; j; j >>= 1, i++) {
1471                if (j & 1) {
1472                    ieps++;
1473                    dval(&u) *= bigtens[i];
1474                }
1475            }
1476        }
1477        if (k_check && dval(&u) < 1. && ilim > 0) {
1478            if (ilim1 <= 0)
1479                goto fastFailed;
1480            ilim = ilim1;
1481            k--;
1482            dval(&u) *= 10.;
1483            ieps++;
1484        }
1485        dval(&eps) = (ieps * dval(&u)) + 7.;
1486        word0(&eps) -= (P - 1) * Exp_msk1;
1487        if (!ilim) {
1488            S.clear();
1489            mhi.clear();
1490            dval(&u) -= 5.;
1491            if (dval(&u) > dval(&eps))
1492                goto oneDigit;
1493            if (dval(&u) < -dval(&eps))
1494                goto noDigits;
1495            goto fastFailed;
1496        }
1497        if (leftright) {
1498            /* Use Steele & White method of only
1499             * generating digits needed.
1500             */
1501            dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
1502            for (i = 0;;) {
1503                L = (long int)dval(&u);
1504                dval(&u) -= L;
1505                *s++ = '0' + (int)L;
1506                if (dval(&u) < dval(&eps))
1507                    goto ret;
1508                if (1. - dval(&u) < dval(&eps))
1509                    goto bumpUp;
1510                if (++i >= ilim)
1511                    break;
1512                dval(&eps) *= 10.;
1513                dval(&u) *= 10.;
1514            }
1515        } else {
1516            /* Generate ilim digits, then fix them up. */
1517            dval(&eps) *= tens[ilim - 1];
1518            for (i = 1;; i++, dval(&u) *= 10.) {
1519                L = (int32_t)(dval(&u));
1520                if (!(dval(&u) -= L))
1521                    ilim = i;
1522                *s++ = '0' + (int)L;
1523                if (i == ilim) {
1524                    if (dval(&u) > 0.5 + dval(&eps))
1525                        goto bumpUp;
1526                    if (dval(&u) < 0.5 - dval(&eps)) {
1527                        while (*--s == '0') { }
1528                        s++;
1529                        goto ret;
1530                    }
1531                    break;
1532                }
1533            }
1534        }
1535fastFailed:
1536        s = s0;
1537        dval(&u) = dval(&d2);
1538        k = k0;
1539        ilim = ilim0;
1540    }
1541
1542    /* Do we have a "small" integer? */
1543
1544    if (be >= 0 && k <= Int_max) {
1545        /* Yes. */
1546        ds = tens[k];
1547        if (ndigits < 0 && ilim <= 0) {
1548            S.clear();
1549            mhi.clear();
1550            if (ilim < 0 || dval(&u) <= 5 * ds)
1551                goto noDigits;
1552            goto oneDigit;
1553        }
1554        for (i = 1;; i++, dval(&u) *= 10.) {
1555            L = (int32_t)(dval(&u) / ds);
1556            dval(&u) -= L * ds;
1557            *s++ = '0' + (int)L;
1558            if (!dval(&u)) {
1559                break;
1560            }
1561            if (i == ilim) {
1562                dval(&u) += dval(&u);
1563                if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
1564bumpUp:
1565                    while (*--s == '9')
1566                        if (s == s0) {
1567                            k++;
1568                            *s = '0';
1569                            break;
1570                        }
1571                    ++*s++;
1572                }
1573                break;
1574            }
1575        }
1576        goto ret;
1577    }
1578
1579    m2 = b2;
1580    m5 = b5;
1581    mhi.clear();
1582    mlo.clear();
1583    if (leftright) {
1584        i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
1585        b2 += i;
1586        s2 += i;
1587        i2b(mhi, 1);
1588    }
1589    if (m2 > 0 && s2 > 0) {
1590        i = m2 < s2 ? m2 : s2;
1591        b2 -= i;
1592        m2 -= i;
1593        s2 -= i;
1594    }
1595    if (b5 > 0) {
1596        if (leftright) {
1597            if (m5 > 0) {
1598                pow5mult(mhi, m5);
1599                mult(b, mhi);
1600            }
1601            if ((j = b5 - m5))
1602                pow5mult(b, j);
1603        } else
1604            pow5mult(b, b5);
1605    }
1606    i2b(S, 1);
1607    if (s5 > 0)
1608        pow5mult(S, s5);
1609
1610    /* Check for special case that d is a normalized power of 2. */
1611
1612    spec_case = 0;
1613    if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
1614        /* The special case */
1615        b2 += Log2P;
1616        s2 += Log2P;
1617        spec_case = 1;
1618    }
1619
1620    /* Arrange for convenient computation of quotients:
1621     * shift left if necessary so divisor has 4 leading 0 bits.
1622     *
1623     * Perhaps we should just compute leading 28 bits of S once
1624     * and for all and pass them and a shift to quorem, so it
1625     * can do shifts and ors to compute the numerator for q.
1626     */
1627    if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
1628        i = 32 - i;
1629    if (i > 4) {
1630        i -= 4;
1631        b2 += i;
1632        m2 += i;
1633        s2 += i;
1634    } else if (i < 4) {
1635        i += 28;
1636        b2 += i;
1637        m2 += i;
1638        s2 += i;
1639    }
1640    if (b2 > 0)
1641        lshift(b, b2);
1642    if (s2 > 0)
1643        lshift(S, s2);
1644    if (k_check) {
1645        if (cmp(b, S) < 0) {
1646            k--;
1647            multadd(b, 10, 0);    /* we botched the k estimate */
1648            if (leftright)
1649                multadd(mhi, 10, 0);
1650            ilim = ilim1;
1651        }
1652    }
1653    if (ilim <= 0 && roundingDecimalPlaces) {
1654        if (ilim < 0)
1655            goto noDigits;
1656        multadd(S, 5, 0);
1657        // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
1658        if (cmp(b, S) < 0)
1659            goto noDigits;
1660        goto oneDigit;
1661    }
1662    if (leftright) {
1663        if (m2 > 0)
1664            lshift(mhi, m2);
1665
1666        /* Compute mlo -- check for special case
1667         * that d is a normalized power of 2.
1668         */
1669
1670        mlo = mhi;
1671        if (spec_case)
1672            lshift(mhi, Log2P);
1673
1674        for (i = 1;;i++) {
1675            dig = quorem(b, S) + '0';
1676            /* Do we yet have the shortest decimal string
1677             * that will round to d?
1678             */
1679            j = cmp(b, mlo);
1680            diff(delta, S, mhi);
1681            j1 = delta.sign ? 1 : cmp(b, delta);
1682#ifdef DTOA_ROUND_BIASED
1683            if (j < 0 || !j) {
1684#else
1685            // FIXME: ECMA-262 specifies that equidistant results round away from
1686            // zero, which probably means we shouldn't be on the unbiased code path
1687            // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't
1688            // yet understood this code well enough to make the call, but we should
1689            // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner
1690            // case to understand is probably "Math.pow(0.5, 24).toString()".
1691            // I believe this value is interesting because I think it is precisely
1692            // representable in binary floating point, and its decimal representation
1693            // has a single digit that Steele & White reduction can remove, with the
1694            // value 5 (thus equidistant from the next numbers above and below).
1695            // We produce the correct answer using either codepath, and I don't as
1696            // yet understand why. :-)
1697            if (!j1 && !(word1(&u) & 1)) {
1698                if (dig == '9')
1699                    goto round9up;
1700                if (j > 0)
1701                    dig++;
1702                *s++ = dig;
1703                goto ret;
1704            }
1705            if (j < 0 || (!j && !(word1(&u) & 1))) {
1706#endif
1707                if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
1708                    lshift(b, 1);
1709                    j1 = cmp(b, S);
1710                    // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
1711                    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
1712                    // be rounded away from zero.
1713                    if (j1 >= 0) {
1714                        if (dig == '9')
1715                            goto round9up;
1716                        dig++;
1717                    }
1718                }
1719                *s++ = dig;
1720                goto ret;
1721            }
1722            if (j1 > 0) {
1723                if (dig == '9') { /* possible if i == 1 */
1724round9up:
1725                    *s++ = '9';
1726                    goto roundoff;
1727                }
1728                *s++ = dig + 1;
1729                goto ret;
1730            }
1731            *s++ = dig;
1732            if (i == ilim)
1733                break;
1734            multadd(b, 10, 0);
1735            multadd(mlo, 10, 0);
1736            multadd(mhi, 10, 0);
1737        }
1738    } else {
1739        for (i = 1;; i++) {
1740            *s++ = dig = quorem(b, S) + '0';
1741            if (!b.words()[0] && b.size() <= 1)
1742                goto ret;
1743            if (i >= ilim)
1744                break;
1745            multadd(b, 10, 0);
1746        }
1747    }
1748
1749    /* Round off last digit */
1750
1751    lshift(b, 1);
1752    j = cmp(b, S);
1753    // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
1754    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
1755    // be rounded away from zero.
1756    if (j >= 0) {
1757roundoff:
1758        while (*--s == '9')
1759            if (s == s0) {
1760                k++;
1761                *s++ = '1';
1762                goto ret;
1763            }
1764        ++*s++;
1765    } else {
1766        while (*--s == '0') { }
1767        s++;
1768    }
1769    goto ret;
1770noDigits:
1771    exponentOut = 0;
1772    precisionOut = 1;
1773    result[0] = '0';
1774    result[1] = '\0';
1775    return;
1776oneDigit:
1777    *s++ = '1';
1778    k++;
1779    goto ret;
1780ret:
1781    ASSERT(s > result);
1782    *s = 0;
1783    exponentOut = k;
1784    precisionOut = s - result;
1785}
1786
1787void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision)
1788{
1789    // flags are roundingNone, leftright.
1790    dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
1791}
1792
1793void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
1794{
1795    // flag is roundingSignificantFigures.
1796    dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision);
1797}
1798
1799void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
1800{
1801    // flag is roundingDecimalPlaces.
1802    dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision);
1803}
1804
1805static ALWAYS_INLINE void copyAsciiToUTF16(UChar* next, const char* src, unsigned size)
1806{
1807    for (unsigned i = 0; i < size; ++i)
1808        *next++ = *src++;
1809}
1810
1811unsigned numberToString(double d, NumberToStringBuffer buffer)
1812{
1813    // Handle NaN and Infinity.
1814    if (isnan(d) || isinf(d)) {
1815        if (isnan(d)) {
1816            copyAsciiToUTF16(buffer, "NaN", 3);
1817            return 3;
1818        }
1819        if (d > 0) {
1820            copyAsciiToUTF16(buffer, "Infinity", 8);
1821            return 8;
1822        }
1823        copyAsciiToUTF16(buffer, "-Infinity", 9);
1824        return 9;
1825    }
1826
1827    // Convert to decimal with rounding.
1828    DecimalNumber number(d);
1829    return number.exponent() >= -6 && number.exponent() < 21
1830        ? number.toStringDecimal(buffer, NumberToStringBufferLength)
1831        : number.toStringExponential(buffer, NumberToStringBufferLength);
1832}
1833
1834} // namespace WTF
1835