ValueTracking.cpp revision b9a4ddbbcd668a94fe945f0648010c281e272889
1173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
3173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//                     The LLVM Compiler Infrastructure
4173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
5173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file is distributed under the University of Illinois Open Source
6173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// License. See LICENSE.TXT for details.
7173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
8173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
9173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
10173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file contains routines that help analyze properties that chains of
11173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// computations have.
12173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
13173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
14173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
15173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Analysis/ValueTracking.h"
16173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Constants.h"
17173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Instructions.h"
180ff39b3feb10477c224138156941234f5fa46f58Evan Cheng#include "llvm/GlobalVariable.h"
19173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/IntrinsicInst.h"
2076f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson#include "llvm/LLVMContext.h"
21ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman#include "llvm/Operator.h"
220582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling#include "llvm/Target/TargetData.h"
23173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h"
24173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/MathExtras.h"
2532a9e7a2654c4aab2e617fbe53140492b3d38066Chris Lattner#include <cstring>
26173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerusing namespace llvm;
27173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
28173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeMaskedBits - Determine which of the bits specified in Mask are
29173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// known to be either zero or one and return them in the KnownZero/KnownOne
30173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
31173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// processing.
32173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
33173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// we cannot optimize based on the assumption that it is zero without changing
34173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// it to be an explicit zero.  If we don't change it to zero, other code could
35173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// optimized based on the contradictory assumption that it is non-zero.
36173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// Because instcombine aggressively folds operations with undef args anyway,
37173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this won't lose us code quality.
38cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
39cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
40cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
41cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
42cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
43cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
44173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnervoid llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
45173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             APInt &KnownZero, APInt &KnownOne,
46846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
479004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  const unsigned MaxDepth = 6;
48173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(V && "No Value?");
499004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  assert(Depth <= MaxDepth && "Limit Search Depth");
5079abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner  unsigned BitWidth = Mask.getBitWidth();
516de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
52173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "Not integer or pointer type!");
536de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((!TD ||
546de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
556de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman         (!V->getType()->isIntOrIntVector() ||
566de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          V->getType()->getScalarSizeInBits() == BitWidth) &&
57173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownZero.getBitWidth() == BitWidth &&
58173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownOne.getBitWidth() == BitWidth &&
59173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "V, Mask, KnownOne and KnownZero should have same BitWidth");
60173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
61173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
62173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We know all of the bits for a constant!
63173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = CI->getValue() & Mask;
64173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = ~KnownOne & Mask;
65173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
66173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
676de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Null and aggregate-zero are all-zeros.
686de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (isa<ConstantPointerNull>(V) ||
696de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      isa<ConstantAggregateZero>(V)) {
70173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
71173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = Mask;
72173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
73173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
746de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Handle a constant vector by taking the intersection of the known bits of
756de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // each element.
766de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
776de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    KnownZero.set(); KnownOne.set();
786de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
796de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
806de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
816de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman                        TD, Depth);
826de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownZero &= KnownZero2;
836de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownOne &= KnownOne2;
846de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    }
856de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    return;
866de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  }
87173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // The address of an aligned GlobalValue has trailing zeros.
88173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
89173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = GV->getAlignment();
90004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
91004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      const Type *ObjectType = GV->getType()->getElementType();
92004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // If the object is defined in the current Module, we'll be giving
93004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // it the preferred alignment. Otherwise, we have to assume that it
94004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // may only have the minimum ABI alignment.
95004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      if (!GV->isDeclaration() && !GV->mayBeOverridden())
96004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getPrefTypeAlignment(ObjectType);
97004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      else
98004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getABITypeAlignment(ObjectType);
99004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    }
100173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
101173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
102173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
103173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else
104173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero.clear();
105173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
106173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
107173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
108173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
109173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  KnownZero.clear(); KnownOne.clear();   // Start out not knowing anything.
110173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1119004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  if (Depth == MaxDepth || Mask == 0)
112173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;  // Limit search depth.
113173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
114ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *I = dyn_cast<Operator>(V);
115173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (!I) return;
116173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
117173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
118ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (I->getOpcode()) {
119173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
120173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And: {
121173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
122173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
123173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownZero);
124173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
125173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
126173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
127173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
128173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
129173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
130173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
131173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
132173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= KnownZero2;
133173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
134173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
135173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or: {
136173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
137173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownOne);
138173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
139173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
140173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
141173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
142173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
143173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
144173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
145173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
146173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne |= KnownOne2;
147173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
148173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
149173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor: {
150173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
151173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
152173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
153173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
154173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
155173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
156173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the LHS & RHS.
157173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
158173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in only one of the LHS, RHS.
159173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
160173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = KnownZeroOut;
161173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
162173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
163173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Mul: {
164173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
165173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
166173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
167173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
168173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
169173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
170173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
171173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If low bits are zero in either operand, output low known-0 bits.
172173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Also compute a conserative estimate for high known-0 bits.
173173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // More trickiness is possible, but this is sufficient for the
174173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // interesting case of alignment computation.
175173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
176173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = KnownZero.countTrailingOnes() +
177173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      KnownZero2.countTrailingOnes();
178173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
179173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               KnownZero2.countLeadingOnes(),
180173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               BitWidth) - BitWidth;
181173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
182173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    TrailZ = std::min(TrailZ, BitWidth);
183173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    LeadZ = std::min(LeadZ, BitWidth);
184173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
185173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                APInt::getHighBitsSet(BitWidth, LeadZ);
186173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= Mask;
187173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
188173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
189173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UDiv: {
190173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // For the purposes of computing leading zeros we can conservatively
191173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // treat a udiv as a logical right shift by the power of 2 known to
192173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // be less than the denominator.
193173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
194173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0),
195173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
196173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ = KnownZero2.countLeadingOnes();
197173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
198173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne2.clear();
199173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero2.clear();
200173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1),
201173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
202173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
203173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (RHSUnknownLeadingOnes != BitWidth)
204173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      LeadZ = std::min(BitWidth,
205173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
206173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
207173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
208173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
209173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
210173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
211173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
212173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
213173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
214173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
215173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
216173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
217173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Only known if known in both the LHS and RHS.
218173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
219173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
220173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
221173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPTrunc:
222173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPExt:
223173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToUI:
224173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToSI:
225173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SIToFP:
226173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UIToFP:
227173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return; // Can't work with floating point.
228173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PtrToInt:
229173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::IntToPtr:
230173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We can't handle these if we don't know the pointer size.
231173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (!TD) return;
232173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FALL THROUGH and handle them the same as zext/trunc.
233173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::ZExt:
234173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc: {
235b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
236b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
237b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth;
238173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Note that we handle pointer operands here because of inttoptr/ptrtoint
239173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // which fall through here.
240b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    if (isa<PointerType>(SrcTy))
241b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
242b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    else
243b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = SrcTy->getScalarSizeInBits();
244b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
245173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.zextOrTrunc(SrcBitWidth);
247173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(SrcBitWidth);
248173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(SrcBitWidth);
249173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
250173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
251173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(BitWidth);
252173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(BitWidth);
253173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Any top bits are known to be zero.
254173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (BitWidth > SrcBitWidth)
255173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
256173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
257173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
258173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::BitCast: {
259173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
2600dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner    if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2610dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // TODO: For now, not handling conversions like:
2620dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // (bitcast i64 %x to <2 x i32>)
2630dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        !isa<VectorType>(I->getType())) {
264173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
265173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
266173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
267173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
268173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
269173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
270173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt: {
271173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Compute the bits in the result that are not present in the input.
272b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
273173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
274173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
275173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.trunc(SrcBitWidth);
276173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.trunc(SrcBitWidth);
277173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.trunc(SrcBitWidth);
278173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
279173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
280173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
281173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zext(BitWidth);
282173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zext(BitWidth);
283173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
284173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If the sign bit of the input is known set or clear, then we know the
285173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // top bits of the result.
286173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
287173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
288173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
289173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
290173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
291173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
292173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
293173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
294173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
295173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
296173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.lshr(ShiftAmt));
297173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
298173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
299173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
300173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero <<= ShiftAmt;
301173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  <<= ShiftAmt;
302173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
303173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
304173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
305173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
306173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::LShr:
307173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
308173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
309173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
310173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
311173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
312173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Unsigned shift right.
313173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
314173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
315173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
316173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
317173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
318173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
319173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // high bits known zero.
320173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
321173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
322173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
323173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
324173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
325173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
326173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
327173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
328173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
329173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
330173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Signed shift right.
331173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
332173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
333173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
334173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
335173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
336173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
337173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
338173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
339173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
340173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= HighBits;
341173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
342173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= HighBits;
343173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
344173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
345173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
346173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub: {
347173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
348173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We know that the top bits of C-X are clear if X contains less bits
349173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // than C (i.e. no wrap-around can happen).  For example, 20-X is
350173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // positive if we can prove that X is >= 0 and < 16.
351173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (!CLHS->getValue().isNegative()) {
352173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
353173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // NLZ can't be BitWidth with no sign bit
354173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
355173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
356173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
357173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
358173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If all of the MaskV bits are known to be zero, then we know the
359173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // output top bits are zero, because we now know that the output is
360173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // from [0-C].
361173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero2 & MaskV) == MaskV) {
362173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
363173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Top bits known zero.
364173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
365173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
366173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
367173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
368173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
369173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // fall through
370173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add: {
3713925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // If one of the operands has trailing zeros, than the bits that the
3723925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // other operand has in those bit positions will be preserved in the
3733925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // result. For an add, this works with either operand. For a subtract,
3743925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // this only works if the known zeros are in the right operand.
3753925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
3763925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
3773925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                       BitWidth - Mask.countLeadingZeros());
3783925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
379173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
3803925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    assert((LHSKnownZero & LHSKnownOne) == 0 &&
3813925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman           "Bits known to be one AND zero?");
3823925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
383173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
384173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
385173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
386173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
3873925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
388173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
3893925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // Determine which operand has more trailing zeros, and use that
3903925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // many bits from the other operand.
3913925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    if (LHSKnownZeroOut > RHSKnownZeroOut) {
392ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman      if (I->getOpcode() == Instruction::Add) {
3933925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
3943925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= KnownZero2 & Mask;
3953925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownOne  |= KnownOne2 & Mask;
3963925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      } else {
3973925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // If the known zeros are in the left operand for a subtract,
3983925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // fall back to the minimum known zeros in both operands.
3993925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= APInt::getLowBitsSet(BitWidth,
4003925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                          std::min(LHSKnownZeroOut,
4013925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                                   RHSKnownZeroOut));
4023925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      }
4033925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
4043925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
4053925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownZero |= LHSKnownZero & Mask;
4063925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownOne  |= LHSKnownOne & Mask;
4073925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    }
408173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
409173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
410173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SRem:
411173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
412173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
413173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
414173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
415173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
416173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
417173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
418173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
419a60832b0187642d01fd726dc766cd62587f6add0Dan Gohman        // If the sign bit of the first operand is zero, the sign bit of
420a60832b0187642d01fd726dc766cd62587f6add0Dan Gohman        // the result is zero. If the first operand has no one bits below
421a60832b0187642d01fd726dc766cd62587f6add0Dan Gohman        // the second operand's single 1 bit, its sign will be zero.
422173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
423173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero2 |= ~LowBits;
424173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
425173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= KnownZero2 & Mask;
426173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
427173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
428173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
429173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
430173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
431173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::URem: {
432173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
433173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
434173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2()) {
435173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = (RA - 1);
436173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits & Mask;
437173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= ~LowBits & Mask;
438173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
439173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
440173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
441173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
442173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
443173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
444173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
445173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Since the result is less than or equal to either operand, any leading
446173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // zero bits in either operand must also exist in the result.
447173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
448173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
449173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
450173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
451173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
452173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
45379abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
454173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                KnownZero2.countLeadingOnes());
455173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
456173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
457173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
458173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
459173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
460173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Alloca:
461173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Malloc: {
462173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    AllocationInst *AI = cast<AllocationInst>(V);
463173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = AI->getAlignment();
464173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align == 0 && TD) {
465173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (isa<AllocaInst>(AI))
4660f2831c820151aa6f2cd6a8bd7b6b633b1035524Chris Lattner        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
467173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (isa<MallocInst>(AI)) {
468173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Malloc returns maximally aligned memory.
469173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
470173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align =
471173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          std::max(Align,
4721d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson                   (unsigned)TD->getABITypeAlignment(
4731d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson                     Type::getDoubleTy(V->getContext())));
474173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align =
475173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          std::max(Align,
4761d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson                   (unsigned)TD->getABITypeAlignment(
4771d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson                      Type::getInt64Ty(V->getContext())));
478173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
479173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
480173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
481173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
482173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
483173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
484173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
485173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
486173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::GetElementPtr: {
487173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Analyze all of the subscripts of this getelementptr instruction
488173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // to determine if we can prove known low zero bits.
489173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalMask = APInt::getAllOnesValue(BitWidth);
490173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
491173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), LocalMask,
492173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      LocalKnownZero, LocalKnownOne, TD, Depth+1);
493173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
494173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
495173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    gep_type_iterator GTI = gep_type_begin(I);
496173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
497173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Value *Index = I->getOperand(i);
498173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
499173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle struct member offset arithmetic.
500173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!TD) return;
501173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const StructLayout *SL = TD->getStructLayout(STy);
502173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
503173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t Offset = SL->getElementOffset(Idx);
504173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
505173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(Offset));
506173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      } else {
507173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle array index arithmetic.
508173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const Type *IndexedTy = GTI.getIndexedType();
509173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!IndexedTy->isSized()) return;
5106de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
511777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
512173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalMask = APInt::getAllOnesValue(GEPOpiBits);
513173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
514173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(Index, LocalMask,
515173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          LocalKnownZero, LocalKnownOne, TD, Depth+1);
516173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
51779abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                          unsigned(CountTrailingZeros_64(TypeSize) +
51879abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                                   LocalKnownZero.countTrailingOnes()));
519173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
520173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
521173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
522173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
523173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
524173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
525173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PHI: {
526173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    PHINode *P = cast<PHINode>(I);
527173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle the case of a simple two-predecessor recurrence PHI.
528173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // There's a lot more that could theoretically be done here, but
529173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // this is sufficient to catch some interesting cases.
530173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (P->getNumIncomingValues() == 2) {
531173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      for (unsigned i = 0; i != 2; ++i) {
532173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *L = P->getIncomingValue(i);
533173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *R = P->getIncomingValue(!i);
534ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        Operator *LU = dyn_cast<Operator>(L);
535173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!LU)
536173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          continue;
537ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        unsigned Opcode = LU->getOpcode();
538173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Check for operations that have the property that if
539173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // both their operands have low zero bits, the result
540173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // will have low zero bits.
541173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (Opcode == Instruction::Add ||
542173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Sub ||
543173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::And ||
544173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Or ||
545173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Mul) {
546173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LL = LU->getOperand(0);
547173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LR = LU->getOperand(1);
548173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Find a recurrence.
549173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          if (LL == I)
550173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LR;
551173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else if (LR == I)
552173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LL;
553173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else
554173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            break;
555173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Ok, we have a PHI of the form L op= R. Check for low
556173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // zero bits.
557173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          APInt Mask2 = APInt::getAllOnesValue(BitWidth);
558173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
559173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Mask2 = APInt::getLowBitsSet(BitWidth,
560173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                       KnownZero2.countTrailingOnes());
561c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
562c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          // We need to take the minimum number of known bits
563c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
564c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
565c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
566173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = Mask &
567173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      APInt::getLowBitsSet(BitWidth,
568c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                           std::min(KnownZero2.countTrailingOnes(),
569c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                                    KnownZero3.countTrailingOnes()));
570173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          break;
571173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
572173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
573173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
5749004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5759004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // Otherwise take the unions of the known bit sets of the operands,
5769004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // taking conservative care to avoid excessive recursion.
5779004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
5789004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownZero = APInt::getAllOnesValue(BitWidth);
5799004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownOne = APInt::getAllOnesValue(BitWidth);
5809004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
5819004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Skip direct self references.
5829004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (P->getIncomingValue(i) == P) continue;
5839004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5849004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero2 = APInt(BitWidth, 0);
5859004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne2 = APInt(BitWidth, 0);
5869004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Recurse, but cap the recursion to one level, because we don't
5879004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // want to waste time spinning around in loops.
5889004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
5899004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman                          KnownZero2, KnownOne2, TD, MaxDepth-1);
5909004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero &= KnownZero2;
5919004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne &= KnownOne2;
5929004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // If all bits have been ruled out, there's no need to check
5939004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // more operands.
5949004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (!KnownZero && !KnownOne)
5959004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman          break;
5969004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      }
5979004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    }
598173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
599173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
600173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Call:
601173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
602173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      switch (II->getIntrinsicID()) {
603173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      default: break;
604173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctpop:
605173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctlz:
606173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::cttz: {
607173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned LowBits = Log2_32(BitWidth)+1;
608173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
609173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
610173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
611173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
612173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
613173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
614173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
615173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
616173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
617173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
618173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this predicate to simplify operations downstream.  Mask is known to be zero
619173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// for bits that V cannot have.
620cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
621cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
622cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
623cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
624cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
625cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
626173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
627846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
628173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
629173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
630173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
631173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return (KnownZero & Mask) == Mask;
632173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
633173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
634173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
635173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
636173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeNumSignBits - Return the number of times the sign bit of the
637173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// register is replicated into the other bits.  We know that at least 1 bit
638173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// is always equal to the sign bit (itself), but other cases can give us
639173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// information.  For example, immediately after an "ashr X, 2", we know that
640173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// the top 3 bits are all equal to each other, so we return 3.
641173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
642173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// 'Op' must have a scalar integer type.
643173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
644846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohmanunsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
645846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                                  unsigned Depth) {
646bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman  assert((TD || V->getType()->isIntOrIntVector()) &&
647bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "ComputeNumSignBits requires a TargetData object to operate "
648bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "on non-integer values!");
6496de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  const Type *Ty = V->getType();
650bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
651bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman                         Ty->getScalarSizeInBits();
652173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned Tmp, Tmp2;
653173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned FirstAnswer = 1;
654173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
655d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // Note that ConstantInt is handled by the general ComputeMaskedBits case
656d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // below.
657d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner
658173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6)
659173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return 1;  // Limit search depth.
660173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
661ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *U = dyn_cast<Operator>(V);
662ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (Operator::getOpcode(V)) {
663173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
664173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt:
665173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
666173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
667173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
668173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
669173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
670173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // ashr X, C   -> adds C sign bits.
671173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
672173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp += C->getZExtValue();
673173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (Tmp > TyBits) Tmp = TyBits;
674173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
675173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return Tmp;
676173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
677173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
678173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // shl destroys sign bits.
679173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
680173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (C->getZExtValue() >= TyBits ||      // Bad shift.
681173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
682173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return Tmp - C->getZExtValue();
683173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
684173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
685173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And:
686173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or:
687173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor:    // NOT is handled here.
688173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Logical binary ops preserve the number of sign bits at the worst.
689173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
690173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp != 1) {
691173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
692173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      FirstAnswer = std::min(Tmp, Tmp2);
693173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We computed what we know about the sign bits as our first
694173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // answer. Now proceed to the generic code that uses
695173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // ComputeMaskedBits, and pick whichever answer is better.
696173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
697173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
698173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
699173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
700173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
701173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
702173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
703173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return std::min(Tmp, Tmp2);
704173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
705173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add:
706173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Add can have at most one carry bit.  Thus we know that the output
707173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
708173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
709173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
710173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
711173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Special case decrementing a value (ADD X, -1):
7120001e56f15215ae4bc5fffb82eec5c4828b888f0Dan Gohman    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
713173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CRHS->isAllOnesValue()) {
714173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
715173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
716173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
717173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
718173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
719173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
720173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
721173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
722173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
723173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
724173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If we are subtracting one from a positive number, there is no carry
725173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // out of the result.
726173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
727173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp;
728173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
729173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
730173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
731173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
732173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return std::min(Tmp, Tmp2)-1;
733173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
734173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
735173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub:
736173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
737173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
738173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
739173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle NEG.
740173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
741173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CLHS->isNullValue()) {
742173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
743173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
744173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
745173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
746173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
747173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
748173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
749173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
750173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
751173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be positive (the sign bit is known clear),
752173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // the output of the NEG has the same number of sign bits as the input.
753173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
754173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp2;
755173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
756173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Otherwise, we treat this like a SUB.
757173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
758173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
759173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Sub can have at most one carry bit.  Thus we know that the output
760173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
761173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
762173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
763173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return std::min(Tmp, Tmp2)-1;
764173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
765173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc:
766173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FIXME: it's tricky to do anything useful for this, but it is an important
767173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // case for targets like X86.
768173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
769173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
770173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
771173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Finally, if we can prove that the top bits of the result are 0's or 1's,
772173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // use this information.
773173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
774173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt Mask = APInt::getAllOnesValue(TyBits);
775173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
776173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
777173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (KnownZero.isNegative()) {        // sign bit is 0
778173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownZero;
779173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else if (KnownOne.isNegative()) {  // sign bit is 1;
780173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownOne;
781173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else {
782173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Nothing known.
783173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return FirstAnswer;
784173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
785173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
786173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
787173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // the number of identical bits in the top of the input value.
788173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask = ~Mask;
789173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask <<= Mask.getBitWidth()-TyBits;
790173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Return # leading zeros.  We use 'min' here in case Val was zero before
791173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // shifting.  We don't want to return '64' as for an i32 "0".
792173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
793173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
794833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
795833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// CannotBeNegativeZero - Return true if we can prove that the specified FP
796833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// value is never equal to -0.0.
797833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
798833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// NOTE: this function will need to be revisited when we support non-default
799833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// rounding modes!
800833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
801833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattnerbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
802833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
803833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return !CFP->getValueAPF().isNegZero();
804833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
805833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (Depth == 6)
806833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return 1;  // Limit search depth.
807833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
808ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  const Operator *I = dyn_cast<Operator>(V);
809833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I == 0) return false;
810833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
811833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
812ae3a0be92e33bc716722aa600983fc1535acb122Dan Gohman  if (I->getOpcode() == Instruction::FAdd &&
813833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      isa<ConstantFP>(I->getOperand(1)) &&
814833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      cast<ConstantFP>(I->getOperand(1))->isNullValue())
815833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
816833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
817833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // sitofp and uitofp turn into +0.0 for zero.
818833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
819833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
820833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
821833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
822833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    // sqrt(-0.0) = -0.0, no other negative results are possible.
823833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (II->getIntrinsicID() == Intrinsic::sqrt)
824833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      return CannotBeNegativeZero(II->getOperand(1), Depth+1);
825833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
826833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const CallInst *CI = dyn_cast<CallInst>(I))
827833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (const Function *F = CI->getCalledFunction()) {
828833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      if (F->isDeclaration()) {
829f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        // abs(x) != -0.0
830f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "abs") return true;
831f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        // abs[lf](x) != -0.0
832f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "absf") return true;
833f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "absl") return true;
834833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      }
835833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    }
836833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
837833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  return false;
838833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner}
839833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
840b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This is the recursive version of BuildSubAggregate. It takes a few different
841b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// arguments. Idxs is the index within the nested struct From that we are
842b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// looking at now (which is of type IndexedType). IdxSkip is the number of
843b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// indices from Idxs that should be left out when inserting into the resulting
844b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct. To is the result struct built so far, new insertvalue instructions
845b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// build on that.
8467db949df789383acce98ef072f08794fdd5bd04eDan Gohmanstatic Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
8477db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                SmallVector<unsigned, 10> &Idxs,
8487db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                unsigned IdxSkip,
8497db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                LLVMContext &Context,
8507db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
851b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
852b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (STy) {
8530a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // Save the original To argument so we can modify it
8540a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    Value *OrigTo = To;
855b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // General case, the type indexed by Idxs is a struct
856b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
857b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Process each struct element recursively
858b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.push_back(i);
8590a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      Value *PrevTo = To;
860710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
86176f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                             Context, InsertBefore);
862b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.pop_back();
8630a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      if (!To) {
8640a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Couldn't find any inserted value for this index? Cleanup
8650a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        while (PrevTo != OrigTo) {
8660a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
8670a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          PrevTo = Del->getAggregateOperand();
8680a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          Del->eraseFromParent();
8690a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        }
8700a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Stop processing elements
8710a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        break;
8720a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      }
873b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
8740a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // If we succesfully found a value for each of our subaggregates
8750a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    if (To)
8760a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      return To;
877b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
8780a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
8790a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // the struct's elements had a value that was inserted directly. In the latter
8800a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // case, perhaps we can't determine each of the subelements individually, but
8810a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // we might be able to find the complete struct somewhere.
8820a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
8830a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Find the value that is at that particular spot
88476f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson  Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end(), Context);
8850a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
8860a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  if (!V)
8870a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    return NULL;
8880a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
8890a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Insert the value in the new (sub) aggregrate
8900a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
8910a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman                                       Idxs.end(), "tmp", InsertBefore);
892b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
893b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
894b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This helper takes a nested struct and extracts a part of it (which is again a
895b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct) into a new value. For example, given the struct:
896b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { a, { b, { c, d }, e } }
897b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// and the indices "1, 1" this returns
898b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { c, d }.
899b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
9000a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// It does this by inserting an insertvalue for each element in the resulting
9010a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// struct, as opposed to just inserting a single struct. This will only work if
9020a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// each of the elements of the substruct are known (ie, inserted into From by an
9030a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// insertvalue instruction somewhere).
904b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
9050a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// All inserted insertvalue instructions are inserted before InsertBefore
9067db949df789383acce98ef072f08794fdd5bd04eDan Gohmanstatic Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
9077db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                const unsigned *idx_end, LLVMContext &Context,
9087db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
909977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman  assert(InsertBefore && "Must have someplace to insert!");
910710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman  const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
911710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_begin,
912710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_end);
9139e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson  Value *To = UndefValue::get(IndexedType);
914b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
915b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  unsigned IdxSkip = Idxs.size();
916b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
91776f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip,
91876f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                           Context, InsertBefore);
919b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
920b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
921710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
922710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// the scalar value indexed is already around as a register, for example if it
923710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// were inserted directly into the aggregrate.
9240a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman///
9250a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// If InsertBefore is not null, this function will duplicate (modified)
9260a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// insertvalues when a part of a nested struct is extracted.
927b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
928e922c0201916e0b980ab3cfe91e1413e68d55647Owen Anderson                         const unsigned *idx_end, LLVMContext &Context,
92976f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                         Instruction *InsertBefore) {
930b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Nothing to index? Just return V then (this is useful at the end of our
931b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // recursion)
932b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (idx_begin == idx_end)
933b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return V;
934b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // We have indices, so V should have an indexable type
935b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
936b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Not looking at a struct or array?");
937b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
938b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Invalid indices for type?");
939b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const CompositeType *PTy = cast<CompositeType>(V->getType());
94076f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson
941b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (isa<UndefValue>(V))
9429e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson    return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
943b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_begin,
944b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_end));
945b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (isa<ConstantAggregateZero>(V))
946a7235ea7245028a0723e8ab7fd011386b3900777Owen Anderson    return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
94776f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_begin,
94876f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_end));
949b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (Constant *C = dyn_cast<Constant>(V)) {
950b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
951b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Recursively process this constant
95276f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson      return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
95376f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                               idx_end, Context, InsertBefore);
954b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
955b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Loop the indices for the insertvalue instruction in parallel with the
956b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested indices
957b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    const unsigned *req_idx = idx_begin;
958710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
959710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++req_idx) {
9609954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      if (req_idx == idx_end) {
961977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        if (InsertBefore)
9620a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // The requested index identifies a part of a nested aggregate. Handle
9630a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // this specially. For example,
9640a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
9650a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
9660a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = extractvalue {i32, { i32, i32 } } %B, 1
9670a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // This can be changed into
9680a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue {i32, i32 } undef, i32 10, 0
9690a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = insertvalue {i32, i32 } %A, i32 11, 1
9700a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // which allows the unused 0,0 element from the nested struct to be
9710a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // removed.
97276f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson          return BuildSubAggregate(V, idx_begin, req_idx,
97376f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                   Context, InsertBefore);
974977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        else
975977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          // We can't handle this without inserting insertvalues
976977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          return 0;
9779954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      }
978b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
979b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // This insert value inserts something else than what we are looking for.
980b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // See if the (aggregrate) value inserted into has the value we are
981b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // looking for, then.
982b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (*req_idx != *i)
983710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman        return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
98476f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                 Context, InsertBefore);
985b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
986b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we end up here, the indices of the insertvalue match with those
987b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested (though possibly only partially). Now we recursively look at
988b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // the inserted value, passing any remaining indices.
989710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
99076f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                             Context, InsertBefore);
991b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
992b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we're extracting a value from an aggregrate that was extracted from
993b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // something else, we can extract from that something else directly instead.
994b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // However, we will need to chain I's indices with the requested indices.
995b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
996b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Calculate the number of indices required
997b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    unsigned size = I->getNumIndices() + (idx_end - idx_begin);
998b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Allocate some space to put the new indices in
9993faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    SmallVector<unsigned, 5> Idxs;
10003faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    Idxs.reserve(size);
1001b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add indices from the extract value instruction
1002710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
10033faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman         i != e; ++i)
10043faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
1005b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1006b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add requested indices
10073faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
10083faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
1009b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
10103faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    assert(Idxs.size() == size
1011710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman           && "Number of indices added not correct?");
1012b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
10133faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
101476f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                             Context, InsertBefore);
1015b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
1016b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Otherwise, we don't know (such as, extracting from a function return value
1017b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // or load instruction)
1018b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return 0;
1019b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
10200ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10210ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// GetConstantStringInfo - This function computes the length of a
10220ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// null-terminated C string pointed to by V.  If successful, it returns true
10230ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// and returns the string in Str.  If unsuccessful, it returns false.
10240582ae99ba75a556d6ff63b254da327d32ba036fBill Wendlingbool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
10250582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling                                 bool StopAtNul) {
10260582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  // If V is NULL then return false;
10270582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (V == NULL) return false;
10280ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10290ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Look through bitcast instructions.
10300ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
10310582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
10320582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
10330ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // If the value is not a GEP instruction nor a constant expression with a
10340ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // GEP instruction, then return false because ConstantArray can't occur
10350ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // any other way
10360ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  User *GEP = 0;
10370ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
10380ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = GEPI;
10390ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
10400ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (CE->getOpcode() == Instruction::BitCast)
10410582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
10420582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (CE->getOpcode() != Instruction::GetElementPtr)
10430582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10440ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = CE;
10450ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
10460ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10470ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GEP) {
10480ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the GEP has exactly three arguments.
10490582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (GEP->getNumOperands() != 3)
10500582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10510582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
10520ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the index-ee is a pointer to array of i8.
10530ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
10540ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
10551d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson    if (AT == 0 || AT->getElementType() != Type::getInt8Ty(V->getContext()))
10560582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10570ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10580ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Check to make sure that the first operand of the GEP is an integer and
10590ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // has value 0 so that we are sure we're indexing into the initializer.
10600ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
10610582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (FirstIdx == 0 || !FirstIdx->isZero())
10620582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10630ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10640ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // If the second index isn't a ConstantInt, then this is a variable index
10650ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // into the array.  If this occurs, we can't say anything meaningful about
10660ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // the string.
10670ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    uint64_t StartIdx = 0;
10680582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
10690ff39b3feb10477c224138156941234f5fa46f58Evan Cheng      StartIdx = CI->getZExtValue();
10700582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    else
10710582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10720582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
10730ff39b3feb10477c224138156941234f5fa46f58Evan Cheng                                 StopAtNul);
10740ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
10750ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
1076148843b0ce6774866132821e866a5d2669300401Torok Edwin  if (MDString *MDStr = dyn_cast<MDString>(V)) {
1077148843b0ce6774866132821e866a5d2669300401Torok Edwin    Str = MDStr->getString();
1078148843b0ce6774866132821e866a5d2669300401Torok Edwin    return true;
1079148843b0ce6774866132821e866a5d2669300401Torok Edwin  }
1080148843b0ce6774866132821e866a5d2669300401Torok Edwin
10810ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The GEP instruction, constant or instruction, must reference a global
10820ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // variable that is a constant and is initialized. The referenced constant
10830ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // initializer is the array that we'll use for optimization.
10840ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
10858255573835970e7130ba93271972172fb335f2ecDan Gohman  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
10860582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
10870ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  Constant *GlobalInit = GV->getInitializer();
10880ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10890ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Handle the ConstantAggregateZero case
10900582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (isa<ConstantAggregateZero>(GlobalInit)) {
10910ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // This is a degenerate case. The initializer is constant zero so the
10920ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // length of the string must be zero.
10930582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str.clear();
10940582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return true;
10950582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  }
10960ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10970ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Must be a Constant Array
10980ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
10991d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson  if (Array == 0 ||
11001d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson      Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
11010582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
11020ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
11030ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Get the number of elements in the array
11040ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  uint64_t NumElts = Array->getType()->getNumElements();
11050ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
11060582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Offset > NumElts)
11070582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
11080ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
11090ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Traverse the constant array from 'Offset' which is the place the GEP refers
11100ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // to in the array.
11110582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  Str.reserve(NumElts-Offset);
11120ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  for (unsigned i = Offset; i != NumElts; ++i) {
11130ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    Constant *Elt = Array->getOperand(i);
11140ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
11150582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (!CI) // This array isn't suitable, non-int initializer.
11160582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
11170ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (StopAtNul && CI->isZero())
11180582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return true; // we found end of string, success!
11190582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str += (char)CI->getZExtValue();
11200ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
11210582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
11220ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
11230582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  return true;
11240ff39b3feb10477c224138156941234f5fa46f58Evan Cheng}
1125