1//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the spill code placement analysis.
11//
12// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13// basic blocks are weighted by the block frequency and added to become the node
14// bias.
15//
16// Transparent basic blocks have the variable live through, but don't care if it
17// is spilled or in a register. These blocks become connections in the Hopfield
18// network, again weighted by block frequency.
19//
20// The Hopfield network minimizes (possibly locally) its energy function:
21//
22//   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
23//
24// The energy function represents the expected spill code execution frequency,
25// or the cost of spilling. This is a Lyapunov function which never increases
26// when a node is updated. It is guaranteed to converge to a local minimum.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "spillplacement"
31#include "SpillPlacement.h"
32#include "llvm/CodeGen/EdgeBundles.h"
33#include "llvm/CodeGen/LiveIntervalAnalysis.h"
34#include "llvm/CodeGen/MachineBasicBlock.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/Format.h"
40
41using namespace llvm;
42
43char SpillPlacement::ID = 0;
44INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
45                      "Spill Code Placement Analysis", true, true)
46INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
47INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
48INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
49                    "Spill Code Placement Analysis", true, true)
50
51char &llvm::SpillPlacementID = SpillPlacement::ID;
52
53void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
54  AU.setPreservesAll();
55  AU.addRequiredTransitive<EdgeBundles>();
56  AU.addRequiredTransitive<MachineLoopInfo>();
57  MachineFunctionPass::getAnalysisUsage(AU);
58}
59
60/// Node - Each edge bundle corresponds to a Hopfield node.
61///
62/// The node contains precomputed frequency data that only depends on the CFG,
63/// but Bias and Links are computed each time placeSpills is called.
64///
65/// The node Value is positive when the variable should be in a register. The
66/// value can change when linked nodes change, but convergence is very fast
67/// because all weights are positive.
68///
69struct SpillPlacement::Node {
70  /// Scale - Inverse block frequency feeding into[0] or out of[1] the bundle.
71  /// Ideally, these two numbers should be identical, but inaccuracies in the
72  /// block frequency estimates means that we need to normalize ingoing and
73  /// outgoing frequencies separately so they are commensurate.
74  float Scale[2];
75
76  /// Bias - Normalized contributions from non-transparent blocks.
77  /// A bundle connected to a MustSpill block has a huge negative bias,
78  /// otherwise it is a number in the range [-2;2].
79  float Bias;
80
81  /// Value - Output value of this node computed from the Bias and links.
82  /// This is always in the range [-1;1]. A positive number means the variable
83  /// should go in a register through this bundle.
84  float Value;
85
86  typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
87
88  /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
89  /// bundles. The weights are all positive and add up to at most 2, weights
90  /// from ingoing and outgoing nodes separately add up to a most 1. The weight
91  /// sum can be less than 2 when the variable is not live into / out of some
92  /// connected basic blocks.
93  LinkVector Links;
94
95  /// preferReg - Return true when this node prefers to be in a register.
96  bool preferReg() const {
97    // Undecided nodes (Value==0) go on the stack.
98    return Value > 0;
99  }
100
101  /// mustSpill - Return True if this node is so biased that it must spill.
102  bool mustSpill() const {
103    // Actually, we must spill if Bias < sum(weights).
104    // It may be worth it to compute the weight sum here?
105    return Bias < -2.0f;
106  }
107
108  /// Node - Create a blank Node.
109  Node() {
110    Scale[0] = Scale[1] = 0;
111  }
112
113  /// clear - Reset per-query data, but preserve frequencies that only depend on
114  // the CFG.
115  void clear() {
116    Bias = Value = 0;
117    Links.clear();
118  }
119
120  /// addLink - Add a link to bundle b with weight w.
121  /// out=0 for an ingoing link, and 1 for an outgoing link.
122  void addLink(unsigned b, float w, bool out) {
123    // Normalize w relative to all connected blocks from that direction.
124    w *= Scale[out];
125
126    // There can be multiple links to the same bundle, add them up.
127    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
128      if (I->second == b) {
129        I->first += w;
130        return;
131      }
132    // This must be the first link to b.
133    Links.push_back(std::make_pair(w, b));
134  }
135
136  /// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
137  /// Return the change to the total number of positive biases.
138  void addBias(float w, bool out) {
139    // Normalize w relative to all connected blocks from that direction.
140    w *= Scale[out];
141    Bias += w;
142  }
143
144  /// update - Recompute Value from Bias and Links. Return true when node
145  /// preference changes.
146  bool update(const Node nodes[]) {
147    // Compute the weighted sum of inputs.
148    float Sum = Bias;
149    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
150      Sum += I->first * nodes[I->second].Value;
151
152    // The weighted sum is going to be in the range [-2;2]. Ideally, we should
153    // simply set Value = sign(Sum), but we will add a dead zone around 0 for
154    // two reasons:
155    //  1. It avoids arbitrary bias when all links are 0 as is possible during
156    //     initial iterations.
157    //  2. It helps tame rounding errors when the links nominally sum to 0.
158    const float Thres = 1e-4f;
159    bool Before = preferReg();
160    if (Sum < -Thres)
161      Value = -1;
162    else if (Sum > Thres)
163      Value = 1;
164    else
165      Value = 0;
166    return Before != preferReg();
167  }
168};
169
170bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
171  MF = &mf;
172  bundles = &getAnalysis<EdgeBundles>();
173  loops = &getAnalysis<MachineLoopInfo>();
174
175  assert(!nodes && "Leaking node array");
176  nodes = new Node[bundles->getNumBundles()];
177
178  // Compute total ingoing and outgoing block frequencies for all bundles.
179  BlockFrequency.resize(mf.getNumBlockIDs());
180  for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
181    float Freq = LiveIntervals::getSpillWeight(true, false,
182                                               loops->getLoopDepth(I));
183    unsigned Num = I->getNumber();
184    BlockFrequency[Num] = Freq;
185    nodes[bundles->getBundle(Num, 1)].Scale[0] += Freq;
186    nodes[bundles->getBundle(Num, 0)].Scale[1] += Freq;
187  }
188
189  // Scales are reciprocal frequencies.
190  for (unsigned i = 0, e = bundles->getNumBundles(); i != e; ++i)
191    for (unsigned d = 0; d != 2; ++d)
192      if (nodes[i].Scale[d] > 0)
193        nodes[i].Scale[d] = 1 / nodes[i].Scale[d];
194
195  // We never change the function.
196  return false;
197}
198
199void SpillPlacement::releaseMemory() {
200  delete[] nodes;
201  nodes = 0;
202}
203
204/// activate - mark node n as active if it wasn't already.
205void SpillPlacement::activate(unsigned n) {
206  if (ActiveNodes->test(n))
207    return;
208  ActiveNodes->set(n);
209  nodes[n].clear();
210}
211
212
213/// addConstraints - Compute node biases and weights from a set of constraints.
214/// Set a bit in NodeMask for each active node.
215void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
216  for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
217       E = LiveBlocks.end(); I != E; ++I) {
218    float Freq = getBlockFrequency(I->Number);
219    const float Bias[] = {
220      0,           // DontCare,
221      1,           // PrefReg,
222      -1,          // PrefSpill
223      0,           // PrefBoth
224      -HUGE_VALF   // MustSpill
225    };
226
227    // Live-in to block?
228    if (I->Entry != DontCare) {
229      unsigned ib = bundles->getBundle(I->Number, 0);
230      activate(ib);
231      nodes[ib].addBias(Freq * Bias[I->Entry], 1);
232    }
233
234    // Live-out from block?
235    if (I->Exit != DontCare) {
236      unsigned ob = bundles->getBundle(I->Number, 1);
237      activate(ob);
238      nodes[ob].addBias(Freq * Bias[I->Exit], 0);
239    }
240  }
241}
242
243/// addPrefSpill - Same as addConstraints(PrefSpill)
244void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
245  for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
246       I != E; ++I) {
247    float Freq = getBlockFrequency(*I);
248    if (Strong)
249      Freq += Freq;
250    unsigned ib = bundles->getBundle(*I, 0);
251    unsigned ob = bundles->getBundle(*I, 1);
252    activate(ib);
253    activate(ob);
254    nodes[ib].addBias(-Freq, 1);
255    nodes[ob].addBias(-Freq, 0);
256  }
257}
258
259void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
260  for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
261       ++I) {
262    unsigned Number = *I;
263    unsigned ib = bundles->getBundle(Number, 0);
264    unsigned ob = bundles->getBundle(Number, 1);
265
266    // Ignore self-loops.
267    if (ib == ob)
268      continue;
269    activate(ib);
270    activate(ob);
271    if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
272      Linked.push_back(ib);
273    if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
274      Linked.push_back(ob);
275    float Freq = getBlockFrequency(Number);
276    nodes[ib].addLink(ob, Freq, 1);
277    nodes[ob].addLink(ib, Freq, 0);
278  }
279}
280
281bool SpillPlacement::scanActiveBundles() {
282  Linked.clear();
283  RecentPositive.clear();
284  for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
285    nodes[n].update(nodes);
286    // A node that must spill, or a node without any links is not going to
287    // change its value ever again, so exclude it from iterations.
288    if (nodes[n].mustSpill())
289      continue;
290    if (!nodes[n].Links.empty())
291      Linked.push_back(n);
292    if (nodes[n].preferReg())
293      RecentPositive.push_back(n);
294  }
295  return !RecentPositive.empty();
296}
297
298/// iterate - Repeatedly update the Hopfield nodes until stability or the
299/// maximum number of iterations is reached.
300/// @param Linked - Numbers of linked nodes that need updating.
301void SpillPlacement::iterate() {
302  // First update the recently positive nodes. They have likely received new
303  // negative bias that will turn them off.
304  while (!RecentPositive.empty())
305    nodes[RecentPositive.pop_back_val()].update(nodes);
306
307  if (Linked.empty())
308    return;
309
310  // Run up to 10 iterations. The edge bundle numbering is closely related to
311  // basic block numbering, so there is a strong tendency towards chains of
312  // linked nodes with sequential numbers. By scanning the linked nodes
313  // backwards and forwards, we make it very likely that a single node can
314  // affect the entire network in a single iteration. That means very fast
315  // convergence, usually in a single iteration.
316  for (unsigned iteration = 0; iteration != 10; ++iteration) {
317    // Scan backwards, skipping the last node which was just updated.
318    bool Changed = false;
319    for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
320           llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
321      unsigned n = *I;
322      if (nodes[n].update(nodes)) {
323        Changed = true;
324        if (nodes[n].preferReg())
325          RecentPositive.push_back(n);
326      }
327    }
328    if (!Changed || !RecentPositive.empty())
329      return;
330
331    // Scan forwards, skipping the first node which was just updated.
332    Changed = false;
333    for (SmallVectorImpl<unsigned>::const_iterator I =
334           llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
335      unsigned n = *I;
336      if (nodes[n].update(nodes)) {
337        Changed = true;
338        if (nodes[n].preferReg())
339          RecentPositive.push_back(n);
340      }
341    }
342    if (!Changed || !RecentPositive.empty())
343      return;
344  }
345}
346
347void SpillPlacement::prepare(BitVector &RegBundles) {
348  Linked.clear();
349  RecentPositive.clear();
350  // Reuse RegBundles as our ActiveNodes vector.
351  ActiveNodes = &RegBundles;
352  ActiveNodes->clear();
353  ActiveNodes->resize(bundles->getNumBundles());
354}
355
356bool
357SpillPlacement::finish() {
358  assert(ActiveNodes && "Call prepare() first");
359
360  // Write preferences back to ActiveNodes.
361  bool Perfect = true;
362  for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
363    if (!nodes[n].preferReg()) {
364      ActiveNodes->reset(n);
365      Perfect = false;
366    }
367  ActiveNodes = 0;
368  return Perfect;
369}
370