1//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements Loop Rotation Pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "loop-rotate"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/Function.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Analysis/CodeMetrics.h"
19#include "llvm/Analysis/LoopPass.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/ScalarEvolution.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/BasicBlockUtils.h"
25#include "llvm/Transforms/Utils/SSAUpdater.h"
26#include "llvm/Transforms/Utils/ValueMapper.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/ADT/Statistic.h"
29using namespace llvm;
30
31#define MAX_HEADER_SIZE 16
32
33STATISTIC(NumRotated, "Number of loops rotated");
34namespace {
35
36  class LoopRotate : public LoopPass {
37  public:
38    static char ID; // Pass ID, replacement for typeid
39    LoopRotate() : LoopPass(ID) {
40      initializeLoopRotatePass(*PassRegistry::getPassRegistry());
41    }
42
43    // LCSSA form makes instruction renaming easier.
44    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45      AU.addPreserved<DominatorTree>();
46      AU.addRequired<LoopInfo>();
47      AU.addPreserved<LoopInfo>();
48      AU.addRequiredID(LoopSimplifyID);
49      AU.addPreservedID(LoopSimplifyID);
50      AU.addRequiredID(LCSSAID);
51      AU.addPreservedID(LCSSAID);
52      AU.addPreserved<ScalarEvolution>();
53    }
54
55    bool runOnLoop(Loop *L, LPPassManager &LPM);
56    void simplifyLoopLatch(Loop *L);
57    bool rotateLoop(Loop *L);
58
59  private:
60    LoopInfo *LI;
61  };
62}
63
64char LoopRotate::ID = 0;
65INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
66INITIALIZE_PASS_DEPENDENCY(LoopInfo)
67INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
68INITIALIZE_PASS_DEPENDENCY(LCSSA)
69INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
70
71Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
72
73/// Rotate Loop L as many times as possible. Return true if
74/// the loop is rotated at least once.
75bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
76  LI = &getAnalysis<LoopInfo>();
77
78  // Simplify the loop latch before attempting to rotate the header
79  // upward. Rotation may not be needed if the loop tail can be folded into the
80  // loop exit.
81  simplifyLoopLatch(L);
82
83  // One loop can be rotated multiple times.
84  bool MadeChange = false;
85  while (rotateLoop(L))
86    MadeChange = true;
87
88  return MadeChange;
89}
90
91/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
92/// old header into the preheader.  If there were uses of the values produced by
93/// these instruction that were outside of the loop, we have to insert PHI nodes
94/// to merge the two values.  Do this now.
95static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
96                                            BasicBlock *OrigPreheader,
97                                            ValueToValueMapTy &ValueMap) {
98  // Remove PHI node entries that are no longer live.
99  BasicBlock::iterator I, E = OrigHeader->end();
100  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
101    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
102
103  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
104  // as necessary.
105  SSAUpdater SSA;
106  for (I = OrigHeader->begin(); I != E; ++I) {
107    Value *OrigHeaderVal = I;
108
109    // If there are no uses of the value (e.g. because it returns void), there
110    // is nothing to rewrite.
111    if (OrigHeaderVal->use_empty())
112      continue;
113
114    Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
115
116    // The value now exits in two versions: the initial value in the preheader
117    // and the loop "next" value in the original header.
118    SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
119    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
120    SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
121
122    // Visit each use of the OrigHeader instruction.
123    for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
124         UE = OrigHeaderVal->use_end(); UI != UE; ) {
125      // Grab the use before incrementing the iterator.
126      Use &U = UI.getUse();
127
128      // Increment the iterator before removing the use from the list.
129      ++UI;
130
131      // SSAUpdater can't handle a non-PHI use in the same block as an
132      // earlier def. We can easily handle those cases manually.
133      Instruction *UserInst = cast<Instruction>(U.getUser());
134      if (!isa<PHINode>(UserInst)) {
135        BasicBlock *UserBB = UserInst->getParent();
136
137        // The original users in the OrigHeader are already using the
138        // original definitions.
139        if (UserBB == OrigHeader)
140          continue;
141
142        // Users in the OrigPreHeader need to use the value to which the
143        // original definitions are mapped.
144        if (UserBB == OrigPreheader) {
145          U = OrigPreHeaderVal;
146          continue;
147        }
148      }
149
150      // Anything else can be handled by SSAUpdater.
151      SSA.RewriteUse(U);
152    }
153  }
154}
155
156/// Determine whether the instructions in this range my be safely and cheaply
157/// speculated. This is not an important enough situation to develop complex
158/// heuristics. We handle a single arithmetic instruction along with any type
159/// conversions.
160static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
161                                  BasicBlock::iterator End) {
162  bool seenIncrement = false;
163  for (BasicBlock::iterator I = Begin; I != End; ++I) {
164
165    if (!isSafeToSpeculativelyExecute(I))
166      return false;
167
168    if (isa<DbgInfoIntrinsic>(I))
169      continue;
170
171    switch (I->getOpcode()) {
172    default:
173      return false;
174    case Instruction::GetElementPtr:
175      // GEPs are cheap if all indices are constant.
176      if (!cast<GEPOperator>(I)->hasAllConstantIndices())
177        return false;
178      // fall-thru to increment case
179    case Instruction::Add:
180    case Instruction::Sub:
181    case Instruction::And:
182    case Instruction::Or:
183    case Instruction::Xor:
184    case Instruction::Shl:
185    case Instruction::LShr:
186    case Instruction::AShr:
187      if (seenIncrement)
188        return false;
189      seenIncrement = true;
190      break;
191    case Instruction::Trunc:
192    case Instruction::ZExt:
193    case Instruction::SExt:
194      // ignore type conversions
195      break;
196    }
197  }
198  return true;
199}
200
201/// Fold the loop tail into the loop exit by speculating the loop tail
202/// instructions. Typically, this is a single post-increment. In the case of a
203/// simple 2-block loop, hoisting the increment can be much better than
204/// duplicating the entire loop header. In the cast of loops with early exits,
205/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
206/// canonical form so downstream passes can handle it.
207///
208/// I don't believe this invalidates SCEV.
209void LoopRotate::simplifyLoopLatch(Loop *L) {
210  BasicBlock *Latch = L->getLoopLatch();
211  if (!Latch || Latch->hasAddressTaken())
212    return;
213
214  BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
215  if (!Jmp || !Jmp->isUnconditional())
216    return;
217
218  BasicBlock *LastExit = Latch->getSinglePredecessor();
219  if (!LastExit || !L->isLoopExiting(LastExit))
220    return;
221
222  BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
223  if (!BI)
224    return;
225
226  if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
227    return;
228
229  DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
230        << LastExit->getName() << "\n");
231
232  // Hoist the instructions from Latch into LastExit.
233  LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
234
235  unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
236  BasicBlock *Header = Jmp->getSuccessor(0);
237  assert(Header == L->getHeader() && "expected a backward branch");
238
239  // Remove Latch from the CFG so that LastExit becomes the new Latch.
240  BI->setSuccessor(FallThruPath, Header);
241  Latch->replaceSuccessorsPhiUsesWith(LastExit);
242  Jmp->eraseFromParent();
243
244  // Nuke the Latch block.
245  assert(Latch->empty() && "unable to evacuate Latch");
246  LI->removeBlock(Latch);
247  if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
248    DT->eraseNode(Latch);
249  Latch->eraseFromParent();
250}
251
252/// Rotate loop LP. Return true if the loop is rotated.
253bool LoopRotate::rotateLoop(Loop *L) {
254  // If the loop has only one block then there is not much to rotate.
255  if (L->getBlocks().size() == 1)
256    return false;
257
258  BasicBlock *OrigHeader = L->getHeader();
259
260  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
261  if (BI == 0 || BI->isUnconditional())
262    return false;
263
264  // If the loop header is not one of the loop exiting blocks then
265  // either this loop is already rotated or it is not
266  // suitable for loop rotation transformations.
267  if (!L->isLoopExiting(OrigHeader))
268    return false;
269
270  // Updating PHInodes in loops with multiple exits adds complexity.
271  // Keep it simple, and restrict loop rotation to loops with one exit only.
272  // In future, lift this restriction and support for multiple exits if
273  // required.
274  SmallVector<BasicBlock*, 8> ExitBlocks;
275  L->getExitBlocks(ExitBlocks);
276  if (ExitBlocks.size() > 1)
277    return false;
278
279  // Check size of original header and reject loop if it is very big.
280  {
281    CodeMetrics Metrics;
282    Metrics.analyzeBasicBlock(OrigHeader);
283    if (Metrics.NumInsts > MAX_HEADER_SIZE)
284      return false;
285  }
286
287  // Now, this loop is suitable for rotation.
288  BasicBlock *OrigPreheader = L->getLoopPreheader();
289  BasicBlock *OrigLatch = L->getLoopLatch();
290
291  // If the loop could not be converted to canonical form, it must have an
292  // indirectbr in it, just give up.
293  if (OrigPreheader == 0 || OrigLatch == 0)
294    return false;
295
296  // Anything ScalarEvolution may know about this loop or the PHI nodes
297  // in its header will soon be invalidated.
298  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
299    SE->forgetLoop(L);
300
301  // Find new Loop header. NewHeader is a Header's one and only successor
302  // that is inside loop.  Header's other successor is outside the
303  // loop.  Otherwise loop is not suitable for rotation.
304  BasicBlock *Exit = BI->getSuccessor(0);
305  BasicBlock *NewHeader = BI->getSuccessor(1);
306  if (L->contains(Exit))
307    std::swap(Exit, NewHeader);
308  assert(NewHeader && "Unable to determine new loop header");
309  assert(L->contains(NewHeader) && !L->contains(Exit) &&
310         "Unable to determine loop header and exit blocks");
311
312  // This code assumes that the new header has exactly one predecessor.
313  // Remove any single-entry PHI nodes in it.
314  assert(NewHeader->getSinglePredecessor() &&
315         "New header doesn't have one pred!");
316  FoldSingleEntryPHINodes(NewHeader);
317
318  // Begin by walking OrigHeader and populating ValueMap with an entry for
319  // each Instruction.
320  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
321  ValueToValueMapTy ValueMap;
322
323  // For PHI nodes, the value available in OldPreHeader is just the
324  // incoming value from OldPreHeader.
325  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
326    ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
327
328  // For the rest of the instructions, either hoist to the OrigPreheader if
329  // possible or create a clone in the OldPreHeader if not.
330  TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
331  while (I != E) {
332    Instruction *Inst = I++;
333
334    // If the instruction's operands are invariant and it doesn't read or write
335    // memory, then it is safe to hoist.  Doing this doesn't change the order of
336    // execution in the preheader, but does prevent the instruction from
337    // executing in each iteration of the loop.  This means it is safe to hoist
338    // something that might trap, but isn't safe to hoist something that reads
339    // memory (without proving that the loop doesn't write).
340    if (L->hasLoopInvariantOperands(Inst) &&
341        !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
342        !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
343        !isa<AllocaInst>(Inst)) {
344      Inst->moveBefore(LoopEntryBranch);
345      continue;
346    }
347
348    // Otherwise, create a duplicate of the instruction.
349    Instruction *C = Inst->clone();
350
351    // Eagerly remap the operands of the instruction.
352    RemapInstruction(C, ValueMap,
353                     RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
354
355    // With the operands remapped, see if the instruction constant folds or is
356    // otherwise simplifyable.  This commonly occurs because the entry from PHI
357    // nodes allows icmps and other instructions to fold.
358    Value *V = SimplifyInstruction(C);
359    if (V && LI->replacementPreservesLCSSAForm(C, V)) {
360      // If so, then delete the temporary instruction and stick the folded value
361      // in the map.
362      delete C;
363      ValueMap[Inst] = V;
364    } else {
365      // Otherwise, stick the new instruction into the new block!
366      C->setName(Inst->getName());
367      C->insertBefore(LoopEntryBranch);
368      ValueMap[Inst] = C;
369    }
370  }
371
372  // Along with all the other instructions, we just cloned OrigHeader's
373  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
374  // successors by duplicating their incoming values for OrigHeader.
375  TerminatorInst *TI = OrigHeader->getTerminator();
376  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
377    for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
378         PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
379      PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
380
381  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
382  // OrigPreHeader's old terminator (the original branch into the loop), and
383  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
384  LoopEntryBranch->eraseFromParent();
385
386  // If there were any uses of instructions in the duplicated block outside the
387  // loop, update them, inserting PHI nodes as required
388  RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
389
390  // NewHeader is now the header of the loop.
391  L->moveToHeader(NewHeader);
392  assert(L->getHeader() == NewHeader && "Latch block is our new header");
393
394
395  // At this point, we've finished our major CFG changes.  As part of cloning
396  // the loop into the preheader we've simplified instructions and the
397  // duplicated conditional branch may now be branching on a constant.  If it is
398  // branching on a constant and if that constant means that we enter the loop,
399  // then we fold away the cond branch to an uncond branch.  This simplifies the
400  // loop in cases important for nested loops, and it also means we don't have
401  // to split as many edges.
402  BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
403  assert(PHBI->isConditional() && "Should be clone of BI condbr!");
404  if (!isa<ConstantInt>(PHBI->getCondition()) ||
405      PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
406          != NewHeader) {
407    // The conditional branch can't be folded, handle the general case.
408    // Update DominatorTree to reflect the CFG change we just made.  Then split
409    // edges as necessary to preserve LoopSimplify form.
410    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
411      // Since OrigPreheader now has the conditional branch to Exit block, it is
412      // the dominator of Exit.
413      DT->changeImmediateDominator(Exit, OrigPreheader);
414      DT->changeImmediateDominator(NewHeader, OrigPreheader);
415
416      // Update OrigHeader to be dominated by the new header block.
417      DT->changeImmediateDominator(OrigHeader, OrigLatch);
418    }
419
420    // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
421    // thus is not a preheader anymore.  Split the edge to form a real preheader.
422    BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
423    NewPH->setName(NewHeader->getName() + ".lr.ph");
424
425    // Preserve canonical loop form, which means that 'Exit' should have only one
426    // predecessor.
427    BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
428    ExitSplit->moveBefore(Exit);
429  } else {
430    // We can fold the conditional branch in the preheader, this makes things
431    // simpler. The first step is to remove the extra edge to the Exit block.
432    Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
433    BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
434    NewBI->setDebugLoc(PHBI->getDebugLoc());
435    PHBI->eraseFromParent();
436
437    // With our CFG finalized, update DomTree if it is available.
438    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
439      // Update OrigHeader to be dominated by the new header block.
440      DT->changeImmediateDominator(NewHeader, OrigPreheader);
441      DT->changeImmediateDominator(OrigHeader, OrigLatch);
442    }
443  }
444
445  assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
446  assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
447
448  // Now that the CFG and DomTree are in a consistent state again, try to merge
449  // the OrigHeader block into OrigLatch.  This will succeed if they are
450  // connected by an unconditional branch.  This is just a cleanup so the
451  // emitted code isn't too gross in this common case.
452  MergeBlockIntoPredecessor(OrigHeader, this);
453
454  ++NumRotated;
455  return true;
456}
457
458