1//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This class wraps target description classes used by the various code 11// generation TableGen backends. This makes it easier to access the data and 12// provides a single place that needs to check it for validity. All of these 13// classes throw exceptions on error conditions. 14// 15//===----------------------------------------------------------------------===// 16 17#include "CodeGenTarget.h" 18#include "CodeGenIntrinsics.h" 19#include "llvm/TableGen/Record.h" 20#include "llvm/ADT/StringExtras.h" 21#include "llvm/ADT/STLExtras.h" 22#include "llvm/Support/CommandLine.h" 23#include <algorithm> 24using namespace llvm; 25 26static cl::opt<unsigned> 27AsmParserNum("asmparsernum", cl::init(0), 28 cl::desc("Make -gen-asm-parser emit assembly parser #N")); 29 30static cl::opt<unsigned> 31AsmWriterNum("asmwriternum", cl::init(0), 32 cl::desc("Make -gen-asm-writer emit assembly writer #N")); 33 34/// getValueType - Return the MVT::SimpleValueType that the specified TableGen 35/// record corresponds to. 36MVT::SimpleValueType llvm::getValueType(Record *Rec) { 37 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 38} 39 40std::string llvm::getName(MVT::SimpleValueType T) { 41 switch (T) { 42 case MVT::Other: return "UNKNOWN"; 43 case MVT::iPTR: return "TLI.getPointerTy()"; 44 case MVT::iPTRAny: return "TLI.getPointerTy()"; 45 default: return getEnumName(T); 46 } 47} 48 49std::string llvm::getEnumName(MVT::SimpleValueType T) { 50 switch (T) { 51 case MVT::Other: return "MVT::Other"; 52 case MVT::i1: return "MVT::i1"; 53 case MVT::i8: return "MVT::i8"; 54 case MVT::i16: return "MVT::i16"; 55 case MVT::i32: return "MVT::i32"; 56 case MVT::i64: return "MVT::i64"; 57 case MVT::i128: return "MVT::i128"; 58 case MVT::iAny: return "MVT::iAny"; 59 case MVT::fAny: return "MVT::fAny"; 60 case MVT::vAny: return "MVT::vAny"; 61 case MVT::f16: return "MVT::f16"; 62 case MVT::f32: return "MVT::f32"; 63 case MVT::f64: return "MVT::f64"; 64 case MVT::f80: return "MVT::f80"; 65 case MVT::f128: return "MVT::f128"; 66 case MVT::ppcf128: return "MVT::ppcf128"; 67 case MVT::x86mmx: return "MVT::x86mmx"; 68 case MVT::Glue: return "MVT::Glue"; 69 case MVT::isVoid: return "MVT::isVoid"; 70 case MVT::v2i8: return "MVT::v2i8"; 71 case MVT::v4i8: return "MVT::v4i8"; 72 case MVT::v8i8: return "MVT::v8i8"; 73 case MVT::v16i8: return "MVT::v16i8"; 74 case MVT::v32i8: return "MVT::v32i8"; 75 case MVT::v2i16: return "MVT::v2i16"; 76 case MVT::v4i16: return "MVT::v4i16"; 77 case MVT::v8i16: return "MVT::v8i16"; 78 case MVT::v16i16: return "MVT::v16i16"; 79 case MVT::v2i32: return "MVT::v2i32"; 80 case MVT::v4i32: return "MVT::v4i32"; 81 case MVT::v8i32: return "MVT::v8i32"; 82 case MVT::v1i64: return "MVT::v1i64"; 83 case MVT::v2i64: return "MVT::v2i64"; 84 case MVT::v4i64: return "MVT::v4i64"; 85 case MVT::v8i64: return "MVT::v8i64"; 86 case MVT::v2f16: return "MVT::v2f16"; 87 case MVT::v2f32: return "MVT::v2f32"; 88 case MVT::v4f32: return "MVT::v4f32"; 89 case MVT::v8f32: return "MVT::v8f32"; 90 case MVT::v2f64: return "MVT::v2f64"; 91 case MVT::v4f64: return "MVT::v4f64"; 92 case MVT::Metadata: return "MVT::Metadata"; 93 case MVT::iPTR: return "MVT::iPTR"; 94 case MVT::iPTRAny: return "MVT::iPTRAny"; 95 case MVT::Untyped: return "MVT::Untyped"; 96 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 97 } 98} 99 100/// getQualifiedName - Return the name of the specified record, with a 101/// namespace qualifier if the record contains one. 102/// 103std::string llvm::getQualifiedName(const Record *R) { 104 std::string Namespace; 105 if (R->getValue("Namespace")) 106 Namespace = R->getValueAsString("Namespace"); 107 if (Namespace.empty()) return R->getName(); 108 return Namespace + "::" + R->getName(); 109} 110 111 112/// getTarget - Return the current instance of the Target class. 113/// 114CodeGenTarget::CodeGenTarget(RecordKeeper &records) 115 : Records(records), RegBank(0) { 116 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 117 if (Targets.size() == 0) 118 throw std::string("ERROR: No 'Target' subclasses defined!"); 119 if (Targets.size() != 1) 120 throw std::string("ERROR: Multiple subclasses of Target defined!"); 121 TargetRec = Targets[0]; 122} 123 124 125const std::string &CodeGenTarget::getName() const { 126 return TargetRec->getName(); 127} 128 129std::string CodeGenTarget::getInstNamespace() const { 130 for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { 131 // Make sure not to pick up "TargetOpcode" by accidentally getting 132 // the namespace off the PHI instruction or something. 133 if ((*i)->Namespace != "TargetOpcode") 134 return (*i)->Namespace; 135 } 136 137 return ""; 138} 139 140Record *CodeGenTarget::getInstructionSet() const { 141 return TargetRec->getValueAsDef("InstructionSet"); 142} 143 144 145/// getAsmParser - Return the AssemblyParser definition for this target. 146/// 147Record *CodeGenTarget::getAsmParser() const { 148 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 149 if (AsmParserNum >= LI.size()) 150 throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!"; 151 return LI[AsmParserNum]; 152} 153 154/// getAsmParserVariant - Return the AssmblyParserVariant definition for 155/// this target. 156/// 157Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 158 std::vector<Record*> LI = 159 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 160 if (i >= LI.size()) 161 throw "Target does not have an AsmParserVariant #" + utostr(i) + "!"; 162 return LI[i]; 163} 164 165/// getAsmParserVariantCount - Return the AssmblyParserVariant definition 166/// available for this target. 167/// 168unsigned CodeGenTarget::getAsmParserVariantCount() const { 169 std::vector<Record*> LI = 170 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 171 return LI.size(); 172} 173 174/// getAsmWriter - Return the AssemblyWriter definition for this target. 175/// 176Record *CodeGenTarget::getAsmWriter() const { 177 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 178 if (AsmWriterNum >= LI.size()) 179 throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; 180 return LI[AsmWriterNum]; 181} 182 183CodeGenRegBank &CodeGenTarget::getRegBank() const { 184 if (!RegBank) 185 RegBank = new CodeGenRegBank(Records); 186 return *RegBank; 187} 188 189void CodeGenTarget::ReadRegAltNameIndices() const { 190 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 191 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 192} 193 194/// getRegisterByName - If there is a register with the specific AsmName, 195/// return it. 196const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 197 const std::vector<CodeGenRegister*> &Regs = getRegBank().getRegisters(); 198 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 199 if (Regs[i]->TheDef->getValueAsString("AsmName") == Name) 200 return Regs[i]; 201 202 return 0; 203} 204 205std::vector<MVT::SimpleValueType> CodeGenTarget:: 206getRegisterVTs(Record *R) const { 207 const CodeGenRegister *Reg = getRegBank().getReg(R); 208 std::vector<MVT::SimpleValueType> Result; 209 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 210 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 211 const CodeGenRegisterClass &RC = *RCs[i]; 212 if (RC.contains(Reg)) { 213 const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes(); 214 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 215 } 216 } 217 218 // Remove duplicates. 219 array_pod_sort(Result.begin(), Result.end()); 220 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 221 return Result; 222} 223 224 225void CodeGenTarget::ReadLegalValueTypes() const { 226 ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses(); 227 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 228 for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri) 229 LegalValueTypes.push_back(RCs[i]->VTs[ri]); 230 231 // Remove duplicates. 232 std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); 233 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 234 LegalValueTypes.end()), 235 LegalValueTypes.end()); 236} 237 238 239void CodeGenTarget::ReadInstructions() const { 240 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 241 if (Insts.size() <= 2) 242 throw std::string("No 'Instruction' subclasses defined!"); 243 244 // Parse the instructions defined in the .td file. 245 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 246 Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]); 247} 248 249static const CodeGenInstruction * 250GetInstByName(const char *Name, 251 const DenseMap<const Record*, CodeGenInstruction*> &Insts, 252 RecordKeeper &Records) { 253 const Record *Rec = Records.getDef(Name); 254 255 DenseMap<const Record*, CodeGenInstruction*>::const_iterator 256 I = Insts.find(Rec); 257 if (Rec == 0 || I == Insts.end()) 258 throw std::string("Could not find '") + Name + "' instruction!"; 259 return I->second; 260} 261 262namespace { 263/// SortInstByName - Sorting predicate to sort instructions by name. 264/// 265struct SortInstByName { 266 bool operator()(const CodeGenInstruction *Rec1, 267 const CodeGenInstruction *Rec2) const { 268 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 269 } 270}; 271} 272 273/// getInstructionsByEnumValue - Return all of the instructions defined by the 274/// target, ordered by their enum value. 275void CodeGenTarget::ComputeInstrsByEnum() const { 276 // The ordering here must match the ordering in TargetOpcodes.h. 277 const char *const FixedInstrs[] = { 278 "PHI", 279 "INLINEASM", 280 "PROLOG_LABEL", 281 "EH_LABEL", 282 "GC_LABEL", 283 "KILL", 284 "EXTRACT_SUBREG", 285 "INSERT_SUBREG", 286 "IMPLICIT_DEF", 287 "SUBREG_TO_REG", 288 "COPY_TO_REGCLASS", 289 "DBG_VALUE", 290 "REG_SEQUENCE", 291 "COPY", 292 "BUNDLE", 293 0 294 }; 295 const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions(); 296 for (const char *const *p = FixedInstrs; *p; ++p) { 297 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 298 assert(Instr && "Missing target independent instruction"); 299 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 300 InstrsByEnum.push_back(Instr); 301 } 302 unsigned EndOfPredefines = InstrsByEnum.size(); 303 304 for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator 305 I = Insts.begin(), E = Insts.end(); I != E; ++I) { 306 const CodeGenInstruction *CGI = I->second; 307 if (CGI->Namespace != "TargetOpcode") 308 InstrsByEnum.push_back(CGI); 309 } 310 311 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 312 313 // All of the instructions are now in random order based on the map iteration. 314 // Sort them by name. 315 std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(), 316 SortInstByName()); 317} 318 319 320/// isLittleEndianEncoding - Return whether this target encodes its instruction 321/// in little-endian format, i.e. bits laid out in the order [0..n] 322/// 323bool CodeGenTarget::isLittleEndianEncoding() const { 324 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 325} 326 327//===----------------------------------------------------------------------===// 328// ComplexPattern implementation 329// 330ComplexPattern::ComplexPattern(Record *R) { 331 Ty = ::getValueType(R->getValueAsDef("Ty")); 332 NumOperands = R->getValueAsInt("NumOperands"); 333 SelectFunc = R->getValueAsString("SelectFunc"); 334 RootNodes = R->getValueAsListOfDefs("RootNodes"); 335 336 // Parse the properties. 337 Properties = 0; 338 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 339 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 340 if (PropList[i]->getName() == "SDNPHasChain") { 341 Properties |= 1 << SDNPHasChain; 342 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 343 Properties |= 1 << SDNPOptInGlue; 344 } else if (PropList[i]->getName() == "SDNPMayStore") { 345 Properties |= 1 << SDNPMayStore; 346 } else if (PropList[i]->getName() == "SDNPMayLoad") { 347 Properties |= 1 << SDNPMayLoad; 348 } else if (PropList[i]->getName() == "SDNPSideEffect") { 349 Properties |= 1 << SDNPSideEffect; 350 } else if (PropList[i]->getName() == "SDNPMemOperand") { 351 Properties |= 1 << SDNPMemOperand; 352 } else if (PropList[i]->getName() == "SDNPVariadic") { 353 Properties |= 1 << SDNPVariadic; 354 } else if (PropList[i]->getName() == "SDNPWantRoot") { 355 Properties |= 1 << SDNPWantRoot; 356 } else if (PropList[i]->getName() == "SDNPWantParent") { 357 Properties |= 1 << SDNPWantParent; 358 } else { 359 errs() << "Unsupported SD Node property '" << PropList[i]->getName() 360 << "' on ComplexPattern '" << R->getName() << "'!\n"; 361 exit(1); 362 } 363} 364 365//===----------------------------------------------------------------------===// 366// CodeGenIntrinsic Implementation 367//===----------------------------------------------------------------------===// 368 369std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, 370 bool TargetOnly) { 371 std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); 372 373 std::vector<CodeGenIntrinsic> Result; 374 375 for (unsigned i = 0, e = I.size(); i != e; ++i) { 376 bool isTarget = I[i]->getValueAsBit("isTarget"); 377 if (isTarget == TargetOnly) 378 Result.push_back(CodeGenIntrinsic(I[i])); 379 } 380 return Result; 381} 382 383CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 384 TheDef = R; 385 std::string DefName = R->getName(); 386 ModRef = ReadWriteMem; 387 isOverloaded = false; 388 isCommutative = false; 389 canThrow = false; 390 391 if (DefName.size() <= 4 || 392 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 393 throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; 394 395 EnumName = std::string(DefName.begin()+4, DefName.end()); 396 397 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 398 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 399 400 TargetPrefix = R->getValueAsString("TargetPrefix"); 401 Name = R->getValueAsString("LLVMName"); 402 403 if (Name == "") { 404 // If an explicit name isn't specified, derive one from the DefName. 405 Name = "llvm."; 406 407 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 408 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 409 } else { 410 // Verify it starts with "llvm.". 411 if (Name.size() <= 5 || 412 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 413 throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; 414 } 415 416 // If TargetPrefix is specified, make sure that Name starts with 417 // "llvm.<targetprefix>.". 418 if (!TargetPrefix.empty()) { 419 if (Name.size() < 6+TargetPrefix.size() || 420 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 421 != (TargetPrefix + ".")) 422 throw "Intrinsic '" + DefName + "' does not start with 'llvm." + 423 TargetPrefix + ".'!"; 424 } 425 426 // Parse the list of return types. 427 std::vector<MVT::SimpleValueType> OverloadedVTs; 428 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 429 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 430 Record *TyEl = TypeList->getElementAsRecord(i); 431 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 432 MVT::SimpleValueType VT; 433 if (TyEl->isSubClassOf("LLVMMatchType")) { 434 unsigned MatchTy = TyEl->getValueAsInt("Number"); 435 assert(MatchTy < OverloadedVTs.size() && 436 "Invalid matching number!"); 437 VT = OverloadedVTs[MatchTy]; 438 // It only makes sense to use the extended and truncated vector element 439 // variants with iAny types; otherwise, if the intrinsic is not 440 // overloaded, all the types can be specified directly. 441 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 442 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 443 VT == MVT::iAny || VT == MVT::vAny) && 444 "Expected iAny or vAny type"); 445 } else { 446 VT = getValueType(TyEl->getValueAsDef("VT")); 447 } 448 if (EVT(VT).isOverloaded()) { 449 OverloadedVTs.push_back(VT); 450 isOverloaded = true; 451 } 452 453 // Reject invalid types. 454 if (VT == MVT::isVoid) 455 throw "Intrinsic '" + DefName + " has void in result type list!"; 456 457 IS.RetVTs.push_back(VT); 458 IS.RetTypeDefs.push_back(TyEl); 459 } 460 461 // Parse the list of parameter types. 462 TypeList = R->getValueAsListInit("ParamTypes"); 463 for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { 464 Record *TyEl = TypeList->getElementAsRecord(i); 465 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 466 MVT::SimpleValueType VT; 467 if (TyEl->isSubClassOf("LLVMMatchType")) { 468 unsigned MatchTy = TyEl->getValueAsInt("Number"); 469 assert(MatchTy < OverloadedVTs.size() && 470 "Invalid matching number!"); 471 VT = OverloadedVTs[MatchTy]; 472 // It only makes sense to use the extended and truncated vector element 473 // variants with iAny types; otherwise, if the intrinsic is not 474 // overloaded, all the types can be specified directly. 475 assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") && 476 !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) || 477 VT == MVT::iAny || VT == MVT::vAny) && 478 "Expected iAny or vAny type"); 479 } else 480 VT = getValueType(TyEl->getValueAsDef("VT")); 481 482 if (EVT(VT).isOverloaded()) { 483 OverloadedVTs.push_back(VT); 484 isOverloaded = true; 485 } 486 487 // Reject invalid types. 488 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 489 throw "Intrinsic '" + DefName + " has void in result type list!"; 490 491 IS.ParamVTs.push_back(VT); 492 IS.ParamTypeDefs.push_back(TyEl); 493 } 494 495 // Parse the intrinsic properties. 496 ListInit *PropList = R->getValueAsListInit("Properties"); 497 for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { 498 Record *Property = PropList->getElementAsRecord(i); 499 assert(Property->isSubClassOf("IntrinsicProperty") && 500 "Expected a property!"); 501 502 if (Property->getName() == "IntrNoMem") 503 ModRef = NoMem; 504 else if (Property->getName() == "IntrReadArgMem") 505 ModRef = ReadArgMem; 506 else if (Property->getName() == "IntrReadMem") 507 ModRef = ReadMem; 508 else if (Property->getName() == "IntrReadWriteArgMem") 509 ModRef = ReadWriteArgMem; 510 else if (Property->getName() == "Commutative") 511 isCommutative = true; 512 else if (Property->getName() == "Throws") 513 canThrow = true; 514 else if (Property->isSubClassOf("NoCapture")) { 515 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 516 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 517 } else 518 llvm_unreachable("Unknown property!"); 519 } 520 521 // Sort the argument attributes for later benefit. 522 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 523} 524