1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
29#define V8_X64_MACRO_ASSEMBLER_X64_H_
30
31#include "assembler.h"
32#include "frames.h"
33#include "v8globals.h"
34
35namespace v8 {
36namespace internal {
37
38// Flags used for the AllocateInNewSpace functions.
39enum AllocationFlags {
40  // No special flags.
41  NO_ALLOCATION_FLAGS = 0,
42  // Return the pointer to the allocated already tagged as a heap object.
43  TAG_OBJECT = 1 << 0,
44  // The content of the result register already contains the allocation top in
45  // new space.
46  RESULT_CONTAINS_TOP = 1 << 1
47};
48
49
50// Default scratch register used by MacroAssembler (and other code that needs
51// a spare register). The register isn't callee save, and not used by the
52// function calling convention.
53const Register kScratchRegister = { 10 };      // r10.
54const Register kSmiConstantRegister = { 12 };  // r12 (callee save).
55const Register kRootRegister = { 13 };         // r13 (callee save).
56// Value of smi in kSmiConstantRegister.
57const int kSmiConstantRegisterValue = 1;
58// Actual value of root register is offset from the root array's start
59// to take advantage of negitive 8-bit displacement values.
60const int kRootRegisterBias = 128;
61
62// Convenience for platform-independent signatures.
63typedef Operand MemOperand;
64
65enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
66enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
67
68bool AreAliased(Register r1, Register r2, Register r3, Register r4);
69
70// Forward declaration.
71class JumpTarget;
72
73struct SmiIndex {
74  SmiIndex(Register index_register, ScaleFactor scale)
75      : reg(index_register),
76        scale(scale) {}
77  Register reg;
78  ScaleFactor scale;
79};
80
81
82// MacroAssembler implements a collection of frequently used macros.
83class MacroAssembler: public Assembler {
84 public:
85  // The isolate parameter can be NULL if the macro assembler should
86  // not use isolate-dependent functionality. In this case, it's the
87  // responsibility of the caller to never invoke such function on the
88  // macro assembler.
89  MacroAssembler(Isolate* isolate, void* buffer, int size);
90
91  // Prevent the use of the RootArray during the lifetime of this
92  // scope object.
93  class NoRootArrayScope BASE_EMBEDDED {
94   public:
95    explicit NoRootArrayScope(MacroAssembler* assembler)
96        : variable_(&assembler->root_array_available_),
97          old_value_(assembler->root_array_available_) {
98      assembler->root_array_available_ = false;
99    }
100    ~NoRootArrayScope() {
101      *variable_ = old_value_;
102    }
103   private:
104    bool* variable_;
105    bool old_value_;
106  };
107
108  // Operand pointing to an external reference.
109  // May emit code to set up the scratch register. The operand is
110  // only guaranteed to be correct as long as the scratch register
111  // isn't changed.
112  // If the operand is used more than once, use a scratch register
113  // that is guaranteed not to be clobbered.
114  Operand ExternalOperand(ExternalReference reference,
115                          Register scratch = kScratchRegister);
116  // Loads and stores the value of an external reference.
117  // Special case code for load and store to take advantage of
118  // load_rax/store_rax if possible/necessary.
119  // For other operations, just use:
120  //   Operand operand = ExternalOperand(extref);
121  //   operation(operand, ..);
122  void Load(Register destination, ExternalReference source);
123  void Store(ExternalReference destination, Register source);
124  // Loads the address of the external reference into the destination
125  // register.
126  void LoadAddress(Register destination, ExternalReference source);
127  // Returns the size of the code generated by LoadAddress.
128  // Used by CallSize(ExternalReference) to find the size of a call.
129  int LoadAddressSize(ExternalReference source);
130
131  // Operations on roots in the root-array.
132  void LoadRoot(Register destination, Heap::RootListIndex index);
133  void StoreRoot(Register source, Heap::RootListIndex index);
134  // Load a root value where the index (or part of it) is variable.
135  // The variable_offset register is added to the fixed_offset value
136  // to get the index into the root-array.
137  void LoadRootIndexed(Register destination,
138                       Register variable_offset,
139                       int fixed_offset);
140  void CompareRoot(Register with, Heap::RootListIndex index);
141  void CompareRoot(const Operand& with, Heap::RootListIndex index);
142  void PushRoot(Heap::RootListIndex index);
143
144  // These functions do not arrange the registers in any particular order so
145  // they are not useful for calls that can cause a GC.  The caller can
146  // exclude up to 3 registers that do not need to be saved and restored.
147  void PushCallerSaved(SaveFPRegsMode fp_mode,
148                       Register exclusion1 = no_reg,
149                       Register exclusion2 = no_reg,
150                       Register exclusion3 = no_reg);
151  void PopCallerSaved(SaveFPRegsMode fp_mode,
152                      Register exclusion1 = no_reg,
153                      Register exclusion2 = no_reg,
154                      Register exclusion3 = no_reg);
155
156// ---------------------------------------------------------------------------
157// GC Support
158
159
160  enum RememberedSetFinalAction {
161    kReturnAtEnd,
162    kFallThroughAtEnd
163  };
164
165  // Record in the remembered set the fact that we have a pointer to new space
166  // at the address pointed to by the addr register.  Only works if addr is not
167  // in new space.
168  void RememberedSetHelper(Register object,  // Used for debug code.
169                           Register addr,
170                           Register scratch,
171                           SaveFPRegsMode save_fp,
172                           RememberedSetFinalAction and_then);
173
174  void CheckPageFlag(Register object,
175                     Register scratch,
176                     int mask,
177                     Condition cc,
178                     Label* condition_met,
179                     Label::Distance condition_met_distance = Label::kFar);
180
181  // Check if object is in new space.  Jumps if the object is not in new space.
182  // The register scratch can be object itself, but scratch will be clobbered.
183  void JumpIfNotInNewSpace(Register object,
184                           Register scratch,
185                           Label* branch,
186                           Label::Distance distance = Label::kFar) {
187    InNewSpace(object, scratch, not_equal, branch, distance);
188  }
189
190  // Check if object is in new space.  Jumps if the object is in new space.
191  // The register scratch can be object itself, but it will be clobbered.
192  void JumpIfInNewSpace(Register object,
193                        Register scratch,
194                        Label* branch,
195                        Label::Distance distance = Label::kFar) {
196    InNewSpace(object, scratch, equal, branch, distance);
197  }
198
199  // Check if an object has the black incremental marking color.  Also uses rcx!
200  void JumpIfBlack(Register object,
201                   Register scratch0,
202                   Register scratch1,
203                   Label* on_black,
204                   Label::Distance on_black_distance = Label::kFar);
205
206  // Detects conservatively whether an object is data-only, i.e. it does need to
207  // be scanned by the garbage collector.
208  void JumpIfDataObject(Register value,
209                        Register scratch,
210                        Label* not_data_object,
211                        Label::Distance not_data_object_distance);
212
213  // Checks the color of an object.  If the object is already grey or black
214  // then we just fall through, since it is already live.  If it is white and
215  // we can determine that it doesn't need to be scanned, then we just mark it
216  // black and fall through.  For the rest we jump to the label so the
217  // incremental marker can fix its assumptions.
218  void EnsureNotWhite(Register object,
219                      Register scratch1,
220                      Register scratch2,
221                      Label* object_is_white_and_not_data,
222                      Label::Distance distance);
223
224  // Notify the garbage collector that we wrote a pointer into an object.
225  // |object| is the object being stored into, |value| is the object being
226  // stored.  value and scratch registers are clobbered by the operation.
227  // The offset is the offset from the start of the object, not the offset from
228  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
229  void RecordWriteField(
230      Register object,
231      int offset,
232      Register value,
233      Register scratch,
234      SaveFPRegsMode save_fp,
235      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
236      SmiCheck smi_check = INLINE_SMI_CHECK);
237
238  // As above, but the offset has the tag presubtracted.  For use with
239  // Operand(reg, off).
240  void RecordWriteContextSlot(
241      Register context,
242      int offset,
243      Register value,
244      Register scratch,
245      SaveFPRegsMode save_fp,
246      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
247      SmiCheck smi_check = INLINE_SMI_CHECK) {
248    RecordWriteField(context,
249                     offset + kHeapObjectTag,
250                     value,
251                     scratch,
252                     save_fp,
253                     remembered_set_action,
254                     smi_check);
255  }
256
257  // Notify the garbage collector that we wrote a pointer into a fixed array.
258  // |array| is the array being stored into, |value| is the
259  // object being stored.  |index| is the array index represented as a non-smi.
260  // All registers are clobbered by the operation RecordWriteArray
261  // filters out smis so it does not update the write barrier if the
262  // value is a smi.
263  void RecordWriteArray(
264      Register array,
265      Register value,
266      Register index,
267      SaveFPRegsMode save_fp,
268      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
269      SmiCheck smi_check = INLINE_SMI_CHECK);
270
271  // For page containing |object| mark region covering |address|
272  // dirty. |object| is the object being stored into, |value| is the
273  // object being stored. The address and value registers are clobbered by the
274  // operation.  RecordWrite filters out smis so it does not update
275  // the write barrier if the value is a smi.
276  void RecordWrite(
277      Register object,
278      Register address,
279      Register value,
280      SaveFPRegsMode save_fp,
281      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
282      SmiCheck smi_check = INLINE_SMI_CHECK);
283
284#ifdef ENABLE_DEBUGGER_SUPPORT
285  // ---------------------------------------------------------------------------
286  // Debugger Support
287
288  void DebugBreak();
289#endif
290
291  // Enter specific kind of exit frame; either in normal or
292  // debug mode. Expects the number of arguments in register rax and
293  // sets up the number of arguments in register rdi and the pointer
294  // to the first argument in register rsi.
295  //
296  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
297  // accessible via StackSpaceOperand.
298  void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
299
300  // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
301  // memory (not GCed) on the stack accessible via StackSpaceOperand.
302  void EnterApiExitFrame(int arg_stack_space);
303
304  // Leave the current exit frame. Expects/provides the return value in
305  // register rax:rdx (untouched) and the pointer to the first
306  // argument in register rsi.
307  void LeaveExitFrame(bool save_doubles = false);
308
309  // Leave the current exit frame. Expects/provides the return value in
310  // register rax (untouched).
311  void LeaveApiExitFrame();
312
313  // Push and pop the registers that can hold pointers.
314  void PushSafepointRegisters() { Pushad(); }
315  void PopSafepointRegisters() { Popad(); }
316  // Store the value in register src in the safepoint register stack
317  // slot for register dst.
318  void StoreToSafepointRegisterSlot(Register dst, Register src);
319  void LoadFromSafepointRegisterSlot(Register dst, Register src);
320
321  void InitializeRootRegister() {
322    ExternalReference roots_array_start =
323        ExternalReference::roots_array_start(isolate());
324    movq(kRootRegister, roots_array_start);
325    addq(kRootRegister, Immediate(kRootRegisterBias));
326  }
327
328  // ---------------------------------------------------------------------------
329  // JavaScript invokes
330
331  // Set up call kind marking in rcx. The method takes rcx as an
332  // explicit first parameter to make the code more readable at the
333  // call sites.
334  void SetCallKind(Register dst, CallKind kind);
335
336  // Invoke the JavaScript function code by either calling or jumping.
337  void InvokeCode(Register code,
338                  const ParameterCount& expected,
339                  const ParameterCount& actual,
340                  InvokeFlag flag,
341                  const CallWrapper& call_wrapper,
342                  CallKind call_kind);
343
344  void InvokeCode(Handle<Code> code,
345                  const ParameterCount& expected,
346                  const ParameterCount& actual,
347                  RelocInfo::Mode rmode,
348                  InvokeFlag flag,
349                  const CallWrapper& call_wrapper,
350                  CallKind call_kind);
351
352  // Invoke the JavaScript function in the given register. Changes the
353  // current context to the context in the function before invoking.
354  void InvokeFunction(Register function,
355                      const ParameterCount& actual,
356                      InvokeFlag flag,
357                      const CallWrapper& call_wrapper,
358                      CallKind call_kind);
359
360  void InvokeFunction(Handle<JSFunction> function,
361                      const ParameterCount& actual,
362                      InvokeFlag flag,
363                      const CallWrapper& call_wrapper,
364                      CallKind call_kind);
365
366  // Invoke specified builtin JavaScript function. Adds an entry to
367  // the unresolved list if the name does not resolve.
368  void InvokeBuiltin(Builtins::JavaScript id,
369                     InvokeFlag flag,
370                     const CallWrapper& call_wrapper = NullCallWrapper());
371
372  // Store the function for the given builtin in the target register.
373  void GetBuiltinFunction(Register target, Builtins::JavaScript id);
374
375  // Store the code object for the given builtin in the target register.
376  void GetBuiltinEntry(Register target, Builtins::JavaScript id);
377
378
379  // ---------------------------------------------------------------------------
380  // Smi tagging, untagging and operations on tagged smis.
381
382  void InitializeSmiConstantRegister() {
383    movq(kSmiConstantRegister,
384         reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
385         RelocInfo::NONE);
386  }
387
388  // Conversions between tagged smi values and non-tagged integer values.
389
390  // Tag an integer value. The result must be known to be a valid smi value.
391  // Only uses the low 32 bits of the src register. Sets the N and Z flags
392  // based on the value of the resulting smi.
393  void Integer32ToSmi(Register dst, Register src);
394
395  // Stores an integer32 value into a memory field that already holds a smi.
396  void Integer32ToSmiField(const Operand& dst, Register src);
397
398  // Adds constant to src and tags the result as a smi.
399  // Result must be a valid smi.
400  void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
401
402  // Convert smi to 32-bit integer. I.e., not sign extended into
403  // high 32 bits of destination.
404  void SmiToInteger32(Register dst, Register src);
405  void SmiToInteger32(Register dst, const Operand& src);
406
407  // Convert smi to 64-bit integer (sign extended if necessary).
408  void SmiToInteger64(Register dst, Register src);
409  void SmiToInteger64(Register dst, const Operand& src);
410
411  // Multiply a positive smi's integer value by a power of two.
412  // Provides result as 64-bit integer value.
413  void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
414                                             Register src,
415                                             int power);
416
417  // Divide a positive smi's integer value by a power of two.
418  // Provides result as 32-bit integer value.
419  void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
420                                           Register src,
421                                           int power);
422
423  // Perform the logical or of two smi values and return a smi value.
424  // If either argument is not a smi, jump to on_not_smis and retain
425  // the original values of source registers. The destination register
426  // may be changed if it's not one of the source registers.
427  void SmiOrIfSmis(Register dst,
428                   Register src1,
429                   Register src2,
430                   Label* on_not_smis,
431                   Label::Distance near_jump = Label::kFar);
432
433
434  // Simple comparison of smis.  Both sides must be known smis to use these,
435  // otherwise use Cmp.
436  void SmiCompare(Register smi1, Register smi2);
437  void SmiCompare(Register dst, Smi* src);
438  void SmiCompare(Register dst, const Operand& src);
439  void SmiCompare(const Operand& dst, Register src);
440  void SmiCompare(const Operand& dst, Smi* src);
441  // Compare the int32 in src register to the value of the smi stored at dst.
442  void SmiCompareInteger32(const Operand& dst, Register src);
443  // Sets sign and zero flags depending on value of smi in register.
444  void SmiTest(Register src);
445
446  // Functions performing a check on a known or potential smi. Returns
447  // a condition that is satisfied if the check is successful.
448
449  // Is the value a tagged smi.
450  Condition CheckSmi(Register src);
451  Condition CheckSmi(const Operand& src);
452
453  // Is the value a non-negative tagged smi.
454  Condition CheckNonNegativeSmi(Register src);
455
456  // Are both values tagged smis.
457  Condition CheckBothSmi(Register first, Register second);
458
459  // Are both values non-negative tagged smis.
460  Condition CheckBothNonNegativeSmi(Register first, Register second);
461
462  // Are either value a tagged smi.
463  Condition CheckEitherSmi(Register first,
464                           Register second,
465                           Register scratch = kScratchRegister);
466
467  // Is the value the minimum smi value (since we are using
468  // two's complement numbers, negating the value is known to yield
469  // a non-smi value).
470  Condition CheckIsMinSmi(Register src);
471
472  // Checks whether an 32-bit integer value is a valid for conversion
473  // to a smi.
474  Condition CheckInteger32ValidSmiValue(Register src);
475
476  // Checks whether an 32-bit unsigned integer value is a valid for
477  // conversion to a smi.
478  Condition CheckUInteger32ValidSmiValue(Register src);
479
480  // Check whether src is a Smi, and set dst to zero if it is a smi,
481  // and to one if it isn't.
482  void CheckSmiToIndicator(Register dst, Register src);
483  void CheckSmiToIndicator(Register dst, const Operand& src);
484
485  // Test-and-jump functions. Typically combines a check function
486  // above with a conditional jump.
487
488  // Jump if the value cannot be represented by a smi.
489  void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
490                              Label::Distance near_jump = Label::kFar);
491
492  // Jump if the unsigned integer value cannot be represented by a smi.
493  void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
494                                  Label::Distance near_jump = Label::kFar);
495
496  // Jump to label if the value is a tagged smi.
497  void JumpIfSmi(Register src,
498                 Label* on_smi,
499                 Label::Distance near_jump = Label::kFar);
500
501  // Jump to label if the value is not a tagged smi.
502  void JumpIfNotSmi(Register src,
503                    Label* on_not_smi,
504                    Label::Distance near_jump = Label::kFar);
505
506  // Jump to label if the value is not a non-negative tagged smi.
507  void JumpUnlessNonNegativeSmi(Register src,
508                                Label* on_not_smi,
509                                Label::Distance near_jump = Label::kFar);
510
511  // Jump to label if the value, which must be a tagged smi, has value equal
512  // to the constant.
513  void JumpIfSmiEqualsConstant(Register src,
514                               Smi* constant,
515                               Label* on_equals,
516                               Label::Distance near_jump = Label::kFar);
517
518  // Jump if either or both register are not smi values.
519  void JumpIfNotBothSmi(Register src1,
520                        Register src2,
521                        Label* on_not_both_smi,
522                        Label::Distance near_jump = Label::kFar);
523
524  // Jump if either or both register are not non-negative smi values.
525  void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
526                                    Label* on_not_both_smi,
527                                    Label::Distance near_jump = Label::kFar);
528
529  // Operations on tagged smi values.
530
531  // Smis represent a subset of integers. The subset is always equivalent to
532  // a two's complement interpretation of a fixed number of bits.
533
534  // Optimistically adds an integer constant to a supposed smi.
535  // If the src is not a smi, or the result is not a smi, jump to
536  // the label.
537  void SmiTryAddConstant(Register dst,
538                         Register src,
539                         Smi* constant,
540                         Label* on_not_smi_result,
541                         Label::Distance near_jump = Label::kFar);
542
543  // Add an integer constant to a tagged smi, giving a tagged smi as result.
544  // No overflow testing on the result is done.
545  void SmiAddConstant(Register dst, Register src, Smi* constant);
546
547  // Add an integer constant to a tagged smi, giving a tagged smi as result.
548  // No overflow testing on the result is done.
549  void SmiAddConstant(const Operand& dst, Smi* constant);
550
551  // Add an integer constant to a tagged smi, giving a tagged smi as result,
552  // or jumping to a label if the result cannot be represented by a smi.
553  void SmiAddConstant(Register dst,
554                      Register src,
555                      Smi* constant,
556                      Label* on_not_smi_result,
557                      Label::Distance near_jump = Label::kFar);
558
559  // Subtract an integer constant from a tagged smi, giving a tagged smi as
560  // result. No testing on the result is done. Sets the N and Z flags
561  // based on the value of the resulting integer.
562  void SmiSubConstant(Register dst, Register src, Smi* constant);
563
564  // Subtract an integer constant from a tagged smi, giving a tagged smi as
565  // result, or jumping to a label if the result cannot be represented by a smi.
566  void SmiSubConstant(Register dst,
567                      Register src,
568                      Smi* constant,
569                      Label* on_not_smi_result,
570                      Label::Distance near_jump = Label::kFar);
571
572  // Negating a smi can give a negative zero or too large positive value.
573  // NOTICE: This operation jumps on success, not failure!
574  void SmiNeg(Register dst,
575              Register src,
576              Label* on_smi_result,
577              Label::Distance near_jump = Label::kFar);
578
579  // Adds smi values and return the result as a smi.
580  // If dst is src1, then src1 will be destroyed, even if
581  // the operation is unsuccessful.
582  void SmiAdd(Register dst,
583              Register src1,
584              Register src2,
585              Label* on_not_smi_result,
586              Label::Distance near_jump = Label::kFar);
587  void SmiAdd(Register dst,
588              Register src1,
589              const Operand& src2,
590              Label* on_not_smi_result,
591              Label::Distance near_jump = Label::kFar);
592
593  void SmiAdd(Register dst,
594              Register src1,
595              Register src2);
596
597  // Subtracts smi values and return the result as a smi.
598  // If dst is src1, then src1 will be destroyed, even if
599  // the operation is unsuccessful.
600  void SmiSub(Register dst,
601              Register src1,
602              Register src2,
603              Label* on_not_smi_result,
604              Label::Distance near_jump = Label::kFar);
605
606  void SmiSub(Register dst,
607              Register src1,
608              Register src2);
609
610  void SmiSub(Register dst,
611              Register src1,
612              const Operand& src2,
613              Label* on_not_smi_result,
614              Label::Distance near_jump = Label::kFar);
615
616  void SmiSub(Register dst,
617              Register src1,
618              const Operand& src2);
619
620  // Multiplies smi values and return the result as a smi,
621  // if possible.
622  // If dst is src1, then src1 will be destroyed, even if
623  // the operation is unsuccessful.
624  void SmiMul(Register dst,
625              Register src1,
626              Register src2,
627              Label* on_not_smi_result,
628              Label::Distance near_jump = Label::kFar);
629
630  // Divides one smi by another and returns the quotient.
631  // Clobbers rax and rdx registers.
632  void SmiDiv(Register dst,
633              Register src1,
634              Register src2,
635              Label* on_not_smi_result,
636              Label::Distance near_jump = Label::kFar);
637
638  // Divides one smi by another and returns the remainder.
639  // Clobbers rax and rdx registers.
640  void SmiMod(Register dst,
641              Register src1,
642              Register src2,
643              Label* on_not_smi_result,
644              Label::Distance near_jump = Label::kFar);
645
646  // Bitwise operations.
647  void SmiNot(Register dst, Register src);
648  void SmiAnd(Register dst, Register src1, Register src2);
649  void SmiOr(Register dst, Register src1, Register src2);
650  void SmiXor(Register dst, Register src1, Register src2);
651  void SmiAndConstant(Register dst, Register src1, Smi* constant);
652  void SmiOrConstant(Register dst, Register src1, Smi* constant);
653  void SmiXorConstant(Register dst, Register src1, Smi* constant);
654
655  void SmiShiftLeftConstant(Register dst,
656                            Register src,
657                            int shift_value);
658  void SmiShiftLogicalRightConstant(Register dst,
659                                  Register src,
660                                  int shift_value,
661                                  Label* on_not_smi_result,
662                                  Label::Distance near_jump = Label::kFar);
663  void SmiShiftArithmeticRightConstant(Register dst,
664                                       Register src,
665                                       int shift_value);
666
667  // Shifts a smi value to the left, and returns the result if that is a smi.
668  // Uses and clobbers rcx, so dst may not be rcx.
669  void SmiShiftLeft(Register dst,
670                    Register src1,
671                    Register src2);
672  // Shifts a smi value to the right, shifting in zero bits at the top, and
673  // returns the unsigned intepretation of the result if that is a smi.
674  // Uses and clobbers rcx, so dst may not be rcx.
675  void SmiShiftLogicalRight(Register dst,
676                            Register src1,
677                            Register src2,
678                            Label* on_not_smi_result,
679                            Label::Distance near_jump = Label::kFar);
680  // Shifts a smi value to the right, sign extending the top, and
681  // returns the signed intepretation of the result. That will always
682  // be a valid smi value, since it's numerically smaller than the
683  // original.
684  // Uses and clobbers rcx, so dst may not be rcx.
685  void SmiShiftArithmeticRight(Register dst,
686                               Register src1,
687                               Register src2);
688
689  // Specialized operations
690
691  // Select the non-smi register of two registers where exactly one is a
692  // smi. If neither are smis, jump to the failure label.
693  void SelectNonSmi(Register dst,
694                    Register src1,
695                    Register src2,
696                    Label* on_not_smis,
697                    Label::Distance near_jump = Label::kFar);
698
699  // Converts, if necessary, a smi to a combination of number and
700  // multiplier to be used as a scaled index.
701  // The src register contains a *positive* smi value. The shift is the
702  // power of two to multiply the index value by (e.g.
703  // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
704  // The returned index register may be either src or dst, depending
705  // on what is most efficient. If src and dst are different registers,
706  // src is always unchanged.
707  SmiIndex SmiToIndex(Register dst, Register src, int shift);
708
709  // Converts a positive smi to a negative index.
710  SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
711
712  // Add the value of a smi in memory to an int32 register.
713  // Sets flags as a normal add.
714  void AddSmiField(Register dst, const Operand& src);
715
716  // Basic Smi operations.
717  void Move(Register dst, Smi* source) {
718    LoadSmiConstant(dst, source);
719  }
720
721  void Move(const Operand& dst, Smi* source) {
722    Register constant = GetSmiConstant(source);
723    movq(dst, constant);
724  }
725
726  void Push(Smi* smi);
727  void Test(const Operand& dst, Smi* source);
728
729
730  // ---------------------------------------------------------------------------
731  // String macros.
732
733  // If object is a string, its map is loaded into object_map.
734  void JumpIfNotString(Register object,
735                       Register object_map,
736                       Label* not_string,
737                       Label::Distance near_jump = Label::kFar);
738
739
740  void JumpIfNotBothSequentialAsciiStrings(
741      Register first_object,
742      Register second_object,
743      Register scratch1,
744      Register scratch2,
745      Label* on_not_both_flat_ascii,
746      Label::Distance near_jump = Label::kFar);
747
748  // Check whether the instance type represents a flat ASCII string. Jump to the
749  // label if not. If the instance type can be scratched specify same register
750  // for both instance type and scratch.
751  void JumpIfInstanceTypeIsNotSequentialAscii(
752      Register instance_type,
753      Register scratch,
754      Label*on_not_flat_ascii_string,
755      Label::Distance near_jump = Label::kFar);
756
757  void JumpIfBothInstanceTypesAreNotSequentialAscii(
758      Register first_object_instance_type,
759      Register second_object_instance_type,
760      Register scratch1,
761      Register scratch2,
762      Label* on_fail,
763      Label::Distance near_jump = Label::kFar);
764
765  // ---------------------------------------------------------------------------
766  // Macro instructions.
767
768  // Load a register with a long value as efficiently as possible.
769  void Set(Register dst, int64_t x);
770  void Set(const Operand& dst, int64_t x);
771
772  // Move if the registers are not identical.
773  void Move(Register target, Register source);
774
775  // Bit-field support.
776  void TestBit(const Operand& dst, int bit_index);
777
778  // Handle support
779  void Move(Register dst, Handle<Object> source);
780  void Move(const Operand& dst, Handle<Object> source);
781  void Cmp(Register dst, Handle<Object> source);
782  void Cmp(const Operand& dst, Handle<Object> source);
783  void Cmp(Register dst, Smi* src);
784  void Cmp(const Operand& dst, Smi* src);
785  void Push(Handle<Object> source);
786
787  // Load a heap object and handle the case of new-space objects by
788  // indirecting via a global cell.
789  void LoadHeapObject(Register result, Handle<HeapObject> object);
790  void PushHeapObject(Handle<HeapObject> object);
791
792  void LoadObject(Register result, Handle<Object> object) {
793    if (object->IsHeapObject()) {
794      LoadHeapObject(result, Handle<HeapObject>::cast(object));
795    } else {
796      Move(result, object);
797    }
798  }
799
800  // Load a global cell into a register.
801  void LoadGlobalCell(Register dst, Handle<JSGlobalPropertyCell> cell);
802
803  // Emit code to discard a non-negative number of pointer-sized elements
804  // from the stack, clobbering only the rsp register.
805  void Drop(int stack_elements);
806
807  void Call(Label* target) { call(target); }
808
809  // Control Flow
810  void Jump(Address destination, RelocInfo::Mode rmode);
811  void Jump(ExternalReference ext);
812  void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
813
814  void Call(Address destination, RelocInfo::Mode rmode);
815  void Call(ExternalReference ext);
816  void Call(Handle<Code> code_object,
817            RelocInfo::Mode rmode,
818            unsigned ast_id = kNoASTId);
819
820  // The size of the code generated for different call instructions.
821  int CallSize(Address destination, RelocInfo::Mode rmode) {
822    return kCallInstructionLength;
823  }
824  int CallSize(ExternalReference ext);
825  int CallSize(Handle<Code> code_object) {
826    // Code calls use 32-bit relative addressing.
827    return kShortCallInstructionLength;
828  }
829  int CallSize(Register target) {
830    // Opcode: REX_opt FF /2 m64
831    return (target.high_bit() != 0) ? 3 : 2;
832  }
833  int CallSize(const Operand& target) {
834    // Opcode: REX_opt FF /2 m64
835    return (target.requires_rex() ? 2 : 1) + target.operand_size();
836  }
837
838  // Emit call to the code we are currently generating.
839  void CallSelf() {
840    Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
841    Call(self, RelocInfo::CODE_TARGET);
842  }
843
844  // Non-x64 instructions.
845  // Push/pop all general purpose registers.
846  // Does not push rsp/rbp nor any of the assembler's special purpose registers
847  // (kScratchRegister, kSmiConstantRegister, kRootRegister).
848  void Pushad();
849  void Popad();
850  // Sets the stack as after performing Popad, without actually loading the
851  // registers.
852  void Dropad();
853
854  // Compare object type for heap object.
855  // Always use unsigned comparisons: above and below, not less and greater.
856  // Incoming register is heap_object and outgoing register is map.
857  // They may be the same register, and may be kScratchRegister.
858  void CmpObjectType(Register heap_object, InstanceType type, Register map);
859
860  // Compare instance type for map.
861  // Always use unsigned comparisons: above and below, not less and greater.
862  void CmpInstanceType(Register map, InstanceType type);
863
864  // Check if a map for a JSObject indicates that the object has fast elements.
865  // Jump to the specified label if it does not.
866  void CheckFastElements(Register map,
867                         Label* fail,
868                         Label::Distance distance = Label::kFar);
869
870  // Check if a map for a JSObject indicates that the object can have both smi
871  // and HeapObject elements.  Jump to the specified label if it does not.
872  void CheckFastObjectElements(Register map,
873                               Label* fail,
874                               Label::Distance distance = Label::kFar);
875
876  // Check if a map for a JSObject indicates that the object has fast smi only
877  // elements.  Jump to the specified label if it does not.
878  void CheckFastSmiOnlyElements(Register map,
879                                Label* fail,
880                                Label::Distance distance = Label::kFar);
881
882  // Check to see if maybe_number can be stored as a double in
883  // FastDoubleElements. If it can, store it at the index specified by index in
884  // the FastDoubleElements array elements, otherwise jump to fail.  Note that
885  // index must not be smi-tagged.
886  void StoreNumberToDoubleElements(Register maybe_number,
887                                   Register elements,
888                                   Register index,
889                                   XMMRegister xmm_scratch,
890                                   Label* fail);
891
892  // Compare an object's map with the specified map and its transitioned
893  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. FLAGS are set with
894  // result of map compare. If multiple map compares are required, the compare
895  // sequences branches to early_success.
896  void CompareMap(Register obj,
897                  Handle<Map> map,
898                  Label* early_success,
899                  CompareMapMode mode = REQUIRE_EXACT_MAP);
900
901  // Check if the map of an object is equal to a specified map and branch to
902  // label if not. Skip the smi check if not required (object is known to be a
903  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
904  // against maps that are ElementsKind transition maps of the specified map.
905  void CheckMap(Register obj,
906                Handle<Map> map,
907                Label* fail,
908                SmiCheckType smi_check_type,
909                CompareMapMode mode = REQUIRE_EXACT_MAP);
910
911  // Check if the map of an object is equal to a specified map and branch to a
912  // specified target if equal. Skip the smi check if not required (object is
913  // known to be a heap object)
914  void DispatchMap(Register obj,
915                   Handle<Map> map,
916                   Handle<Code> success,
917                   SmiCheckType smi_check_type);
918
919  // Check if the object in register heap_object is a string. Afterwards the
920  // register map contains the object map and the register instance_type
921  // contains the instance_type. The registers map and instance_type can be the
922  // same in which case it contains the instance type afterwards. Either of the
923  // registers map and instance_type can be the same as heap_object.
924  Condition IsObjectStringType(Register heap_object,
925                               Register map,
926                               Register instance_type);
927
928  // FCmp compares and pops the two values on top of the FPU stack.
929  // The flag results are similar to integer cmp, but requires unsigned
930  // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
931  void FCmp();
932
933  void ClampUint8(Register reg);
934
935  void ClampDoubleToUint8(XMMRegister input_reg,
936                          XMMRegister temp_xmm_reg,
937                          Register result_reg,
938                          Register temp_reg);
939
940  void LoadInstanceDescriptors(Register map, Register descriptors);
941
942  // Abort execution if argument is not a number. Used in debug code.
943  void AbortIfNotNumber(Register object);
944
945  // Abort execution if argument is a smi. Used in debug code.
946  void AbortIfSmi(Register object);
947
948  // Abort execution if argument is not a smi. Used in debug code.
949  void AbortIfNotSmi(Register object);
950  void AbortIfNotSmi(const Operand& object);
951
952  // Abort execution if a 64 bit register containing a 32 bit payload does not
953  // have zeros in the top 32 bits.
954  void AbortIfNotZeroExtended(Register reg);
955
956  // Abort execution if argument is a string. Used in debug code.
957  void AbortIfNotString(Register object);
958
959  // Abort execution if argument is not the root value with the given index.
960  void AbortIfNotRootValue(Register src,
961                           Heap::RootListIndex root_value_index,
962                           const char* message);
963
964  // ---------------------------------------------------------------------------
965  // Exception handling
966
967  // Push a new try handler and link it into try handler chain.
968  void PushTryHandler(StackHandler::Kind kind, int handler_index);
969
970  // Unlink the stack handler on top of the stack from the try handler chain.
971  void PopTryHandler();
972
973  // Activate the top handler in the try hander chain and pass the
974  // thrown value.
975  void Throw(Register value);
976
977  // Propagate an uncatchable exception out of the current JS stack.
978  void ThrowUncatchable(Register value);
979
980  // ---------------------------------------------------------------------------
981  // Inline caching support
982
983  // Generate code for checking access rights - used for security checks
984  // on access to global objects across environments. The holder register
985  // is left untouched, but the scratch register and kScratchRegister,
986  // which must be different, are clobbered.
987  void CheckAccessGlobalProxy(Register holder_reg,
988                              Register scratch,
989                              Label* miss);
990
991  void GetNumberHash(Register r0, Register scratch);
992
993  void LoadFromNumberDictionary(Label* miss,
994                                Register elements,
995                                Register key,
996                                Register r0,
997                                Register r1,
998                                Register r2,
999                                Register result);
1000
1001
1002  // ---------------------------------------------------------------------------
1003  // Allocation support
1004
1005  // Allocate an object in new space. If the new space is exhausted control
1006  // continues at the gc_required label. The allocated object is returned in
1007  // result and end of the new object is returned in result_end. The register
1008  // scratch can be passed as no_reg in which case an additional object
1009  // reference will be added to the reloc info. The returned pointers in result
1010  // and result_end have not yet been tagged as heap objects. If
1011  // result_contains_top_on_entry is true the content of result is known to be
1012  // the allocation top on entry (could be result_end from a previous call to
1013  // AllocateInNewSpace). If result_contains_top_on_entry is true scratch
1014  // should be no_reg as it is never used.
1015  void AllocateInNewSpace(int object_size,
1016                          Register result,
1017                          Register result_end,
1018                          Register scratch,
1019                          Label* gc_required,
1020                          AllocationFlags flags);
1021
1022  void AllocateInNewSpace(int header_size,
1023                          ScaleFactor element_size,
1024                          Register element_count,
1025                          Register result,
1026                          Register result_end,
1027                          Register scratch,
1028                          Label* gc_required,
1029                          AllocationFlags flags);
1030
1031  void AllocateInNewSpace(Register object_size,
1032                          Register result,
1033                          Register result_end,
1034                          Register scratch,
1035                          Label* gc_required,
1036                          AllocationFlags flags);
1037
1038  // Undo allocation in new space. The object passed and objects allocated after
1039  // it will no longer be allocated. Make sure that no pointers are left to the
1040  // object(s) no longer allocated as they would be invalid when allocation is
1041  // un-done.
1042  void UndoAllocationInNewSpace(Register object);
1043
1044  // Allocate a heap number in new space with undefined value. Returns
1045  // tagged pointer in result register, or jumps to gc_required if new
1046  // space is full.
1047  void AllocateHeapNumber(Register result,
1048                          Register scratch,
1049                          Label* gc_required);
1050
1051  // Allocate a sequential string. All the header fields of the string object
1052  // are initialized.
1053  void AllocateTwoByteString(Register result,
1054                             Register length,
1055                             Register scratch1,
1056                             Register scratch2,
1057                             Register scratch3,
1058                             Label* gc_required);
1059  void AllocateAsciiString(Register result,
1060                           Register length,
1061                           Register scratch1,
1062                           Register scratch2,
1063                           Register scratch3,
1064                           Label* gc_required);
1065
1066  // Allocate a raw cons string object. Only the map field of the result is
1067  // initialized.
1068  void AllocateTwoByteConsString(Register result,
1069                          Register scratch1,
1070                          Register scratch2,
1071                          Label* gc_required);
1072  void AllocateAsciiConsString(Register result,
1073                               Register scratch1,
1074                               Register scratch2,
1075                               Label* gc_required);
1076
1077  // Allocate a raw sliced string object. Only the map field of the result is
1078  // initialized.
1079  void AllocateTwoByteSlicedString(Register result,
1080                            Register scratch1,
1081                            Register scratch2,
1082                            Label* gc_required);
1083  void AllocateAsciiSlicedString(Register result,
1084                                 Register scratch1,
1085                                 Register scratch2,
1086                                 Label* gc_required);
1087
1088  // ---------------------------------------------------------------------------
1089  // Support functions.
1090
1091  // Check if result is zero and op is negative.
1092  void NegativeZeroTest(Register result, Register op, Label* then_label);
1093
1094  // Check if result is zero and op is negative in code using jump targets.
1095  void NegativeZeroTest(CodeGenerator* cgen,
1096                        Register result,
1097                        Register op,
1098                        JumpTarget* then_target);
1099
1100  // Check if result is zero and any of op1 and op2 are negative.
1101  // Register scratch is destroyed, and it must be different from op2.
1102  void NegativeZeroTest(Register result, Register op1, Register op2,
1103                        Register scratch, Label* then_label);
1104
1105  // Try to get function prototype of a function and puts the value in
1106  // the result register. Checks that the function really is a
1107  // function and jumps to the miss label if the fast checks fail. The
1108  // function register will be untouched; the other register may be
1109  // clobbered.
1110  void TryGetFunctionPrototype(Register function,
1111                               Register result,
1112                               Label* miss,
1113                               bool miss_on_bound_function = false);
1114
1115  // Generates code for reporting that an illegal operation has
1116  // occurred.
1117  void IllegalOperation(int num_arguments);
1118
1119  // Picks out an array index from the hash field.
1120  // Register use:
1121  //   hash - holds the index's hash. Clobbered.
1122  //   index - holds the overwritten index on exit.
1123  void IndexFromHash(Register hash, Register index);
1124
1125  // Find the function context up the context chain.
1126  void LoadContext(Register dst, int context_chain_length);
1127
1128  // Conditionally load the cached Array transitioned map of type
1129  // transitioned_kind from the global context if the map in register
1130  // map_in_out is the cached Array map in the global context of
1131  // expected_kind.
1132  void LoadTransitionedArrayMapConditional(
1133      ElementsKind expected_kind,
1134      ElementsKind transitioned_kind,
1135      Register map_in_out,
1136      Register scratch,
1137      Label* no_map_match);
1138
1139  // Load the initial map for new Arrays from a JSFunction.
1140  void LoadInitialArrayMap(Register function_in,
1141                           Register scratch,
1142                           Register map_out);
1143
1144  // Load the global function with the given index.
1145  void LoadGlobalFunction(int index, Register function);
1146
1147  // Load the initial map from the global function. The registers
1148  // function and map can be the same.
1149  void LoadGlobalFunctionInitialMap(Register function, Register map);
1150
1151  // ---------------------------------------------------------------------------
1152  // Runtime calls
1153
1154  // Call a code stub.
1155  void CallStub(CodeStub* stub, unsigned ast_id = kNoASTId);
1156
1157  // Tail call a code stub (jump).
1158  void TailCallStub(CodeStub* stub);
1159
1160  // Return from a code stub after popping its arguments.
1161  void StubReturn(int argc);
1162
1163  // Call a runtime routine.
1164  void CallRuntime(const Runtime::Function* f, int num_arguments);
1165
1166  // Call a runtime function and save the value of XMM registers.
1167  void CallRuntimeSaveDoubles(Runtime::FunctionId id);
1168
1169  // Convenience function: Same as above, but takes the fid instead.
1170  void CallRuntime(Runtime::FunctionId id, int num_arguments);
1171
1172  // Convenience function: call an external reference.
1173  void CallExternalReference(const ExternalReference& ext,
1174                             int num_arguments);
1175
1176  // Tail call of a runtime routine (jump).
1177  // Like JumpToExternalReference, but also takes care of passing the number
1178  // of parameters.
1179  void TailCallExternalReference(const ExternalReference& ext,
1180                                 int num_arguments,
1181                                 int result_size);
1182
1183  // Convenience function: tail call a runtime routine (jump).
1184  void TailCallRuntime(Runtime::FunctionId fid,
1185                       int num_arguments,
1186                       int result_size);
1187
1188  // Jump to a runtime routine.
1189  void JumpToExternalReference(const ExternalReference& ext, int result_size);
1190
1191  // Prepares stack to put arguments (aligns and so on).  WIN64 calling
1192  // convention requires to put the pointer to the return value slot into
1193  // rcx (rcx must be preserverd until CallApiFunctionAndReturn).  Saves
1194  // context (rsi).  Clobbers rax.  Allocates arg_stack_space * kPointerSize
1195  // inside the exit frame (not GCed) accessible via StackSpaceOperand.
1196  void PrepareCallApiFunction(int arg_stack_space);
1197
1198  // Calls an API function.  Allocates HandleScope, extracts returned value
1199  // from handle and propagates exceptions.  Clobbers r14, r15, rbx and
1200  // caller-save registers.  Restores context.  On return removes
1201  // stack_space * kPointerSize (GCed).
1202  void CallApiFunctionAndReturn(Address function_address, int stack_space);
1203
1204  // Before calling a C-function from generated code, align arguments on stack.
1205  // After aligning the frame, arguments must be stored in esp[0], esp[4],
1206  // etc., not pushed. The argument count assumes all arguments are word sized.
1207  // The number of slots reserved for arguments depends on platform. On Windows
1208  // stack slots are reserved for the arguments passed in registers. On other
1209  // platforms stack slots are only reserved for the arguments actually passed
1210  // on the stack.
1211  void PrepareCallCFunction(int num_arguments);
1212
1213  // Calls a C function and cleans up the space for arguments allocated
1214  // by PrepareCallCFunction. The called function is not allowed to trigger a
1215  // garbage collection, since that might move the code and invalidate the
1216  // return address (unless this is somehow accounted for by the called
1217  // function).
1218  void CallCFunction(ExternalReference function, int num_arguments);
1219  void CallCFunction(Register function, int num_arguments);
1220
1221  // Calculate the number of stack slots to reserve for arguments when calling a
1222  // C function.
1223  int ArgumentStackSlotsForCFunctionCall(int num_arguments);
1224
1225  // ---------------------------------------------------------------------------
1226  // Utilities
1227
1228  void Ret();
1229
1230  // Return and drop arguments from stack, where the number of arguments
1231  // may be bigger than 2^16 - 1.  Requires a scratch register.
1232  void Ret(int bytes_dropped, Register scratch);
1233
1234  Handle<Object> CodeObject() {
1235    ASSERT(!code_object_.is_null());
1236    return code_object_;
1237  }
1238
1239  // Copy length bytes from source to destination.
1240  // Uses scratch register internally (if you have a low-eight register
1241  // free, do use it, otherwise kScratchRegister will be used).
1242  // The min_length is a minimum limit on the value that length will have.
1243  // The algorithm has some special cases that might be omitted if the string
1244  // is known to always be long.
1245  void CopyBytes(Register destination,
1246                 Register source,
1247                 Register length,
1248                 int min_length = 0,
1249                 Register scratch = kScratchRegister);
1250
1251  // Initialize fields with filler values.  Fields starting at |start_offset|
1252  // not including end_offset are overwritten with the value in |filler|.  At
1253  // the end the loop, |start_offset| takes the value of |end_offset|.
1254  void InitializeFieldsWithFiller(Register start_offset,
1255                                  Register end_offset,
1256                                  Register filler);
1257
1258
1259  // ---------------------------------------------------------------------------
1260  // StatsCounter support
1261
1262  void SetCounter(StatsCounter* counter, int value);
1263  void IncrementCounter(StatsCounter* counter, int value);
1264  void DecrementCounter(StatsCounter* counter, int value);
1265
1266
1267  // ---------------------------------------------------------------------------
1268  // Debugging
1269
1270  // Calls Abort(msg) if the condition cc is not satisfied.
1271  // Use --debug_code to enable.
1272  void Assert(Condition cc, const char* msg);
1273
1274  void AssertFastElements(Register elements);
1275
1276  // Like Assert(), but always enabled.
1277  void Check(Condition cc, const char* msg);
1278
1279  // Print a message to stdout and abort execution.
1280  void Abort(const char* msg);
1281
1282  // Check that the stack is aligned.
1283  void CheckStackAlignment();
1284
1285  // Verify restrictions about code generated in stubs.
1286  void set_generating_stub(bool value) { generating_stub_ = value; }
1287  bool generating_stub() { return generating_stub_; }
1288  void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
1289  bool allow_stub_calls() { return allow_stub_calls_; }
1290  void set_has_frame(bool value) { has_frame_ = value; }
1291  bool has_frame() { return has_frame_; }
1292  inline bool AllowThisStubCall(CodeStub* stub);
1293
1294  static int SafepointRegisterStackIndex(Register reg) {
1295    return SafepointRegisterStackIndex(reg.code());
1296  }
1297
1298  // Activation support.
1299  void EnterFrame(StackFrame::Type type);
1300  void LeaveFrame(StackFrame::Type type);
1301
1302  // Expects object in rax and returns map with validated enum cache
1303  // in rax.  Assumes that any other register can be used as a scratch.
1304  void CheckEnumCache(Register null_value,
1305                      Label* call_runtime);
1306
1307 private:
1308  // Order general registers are pushed by Pushad.
1309  // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
1310  static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
1311  static const int kNumSafepointSavedRegisters = 11;
1312  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1313
1314  bool generating_stub_;
1315  bool allow_stub_calls_;
1316  bool has_frame_;
1317  bool root_array_available_;
1318
1319  // Returns a register holding the smi value. The register MUST NOT be
1320  // modified. It may be the "smi 1 constant" register.
1321  Register GetSmiConstant(Smi* value);
1322
1323  // Moves the smi value to the destination register.
1324  void LoadSmiConstant(Register dst, Smi* value);
1325
1326  // This handle will be patched with the code object on installation.
1327  Handle<Object> code_object_;
1328
1329  // Helper functions for generating invokes.
1330  void InvokePrologue(const ParameterCount& expected,
1331                      const ParameterCount& actual,
1332                      Handle<Code> code_constant,
1333                      Register code_register,
1334                      Label* done,
1335                      bool* definitely_mismatches,
1336                      InvokeFlag flag,
1337                      Label::Distance near_jump = Label::kFar,
1338                      const CallWrapper& call_wrapper = NullCallWrapper(),
1339                      CallKind call_kind = CALL_AS_METHOD);
1340
1341  void EnterExitFramePrologue(bool save_rax);
1342
1343  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
1344  // accessible via StackSpaceOperand.
1345  void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
1346
1347  void LeaveExitFrameEpilogue();
1348
1349  // Allocation support helpers.
1350  // Loads the top of new-space into the result register.
1351  // Otherwise the address of the new-space top is loaded into scratch (if
1352  // scratch is valid), and the new-space top is loaded into result.
1353  void LoadAllocationTopHelper(Register result,
1354                               Register scratch,
1355                               AllocationFlags flags);
1356  // Update allocation top with value in result_end register.
1357  // If scratch is valid, it contains the address of the allocation top.
1358  void UpdateAllocationTopHelper(Register result_end, Register scratch);
1359
1360  // Helper for PopHandleScope.  Allowed to perform a GC and returns
1361  // NULL if gc_allowed.  Does not perform a GC if !gc_allowed, and
1362  // possibly returns a failure object indicating an allocation failure.
1363  Object* PopHandleScopeHelper(Register saved,
1364                               Register scratch,
1365                               bool gc_allowed);
1366
1367  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1368  void InNewSpace(Register object,
1369                  Register scratch,
1370                  Condition cc,
1371                  Label* branch,
1372                  Label::Distance distance = Label::kFar);
1373
1374  // Helper for finding the mark bits for an address.  Afterwards, the
1375  // bitmap register points at the word with the mark bits and the mask
1376  // the position of the first bit.  Uses rcx as scratch and leaves addr_reg
1377  // unchanged.
1378  inline void GetMarkBits(Register addr_reg,
1379                          Register bitmap_reg,
1380                          Register mask_reg);
1381
1382  // Helper for throwing exceptions.  Compute a handler address and jump to
1383  // it.  See the implementation for register usage.
1384  void JumpToHandlerEntry();
1385
1386  // Compute memory operands for safepoint stack slots.
1387  Operand SafepointRegisterSlot(Register reg);
1388  static int SafepointRegisterStackIndex(int reg_code) {
1389    return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
1390  }
1391
1392  // Needs access to SafepointRegisterStackIndex for optimized frame
1393  // traversal.
1394  friend class OptimizedFrame;
1395};
1396
1397
1398// The code patcher is used to patch (typically) small parts of code e.g. for
1399// debugging and other types of instrumentation. When using the code patcher
1400// the exact number of bytes specified must be emitted. Is not legal to emit
1401// relocation information. If any of these constraints are violated it causes
1402// an assertion.
1403class CodePatcher {
1404 public:
1405  CodePatcher(byte* address, int size);
1406  virtual ~CodePatcher();
1407
1408  // Macro assembler to emit code.
1409  MacroAssembler* masm() { return &masm_; }
1410
1411 private:
1412  byte* address_;  // The address of the code being patched.
1413  int size_;  // Number of bytes of the expected patch size.
1414  MacroAssembler masm_;  // Macro assembler used to generate the code.
1415};
1416
1417
1418// -----------------------------------------------------------------------------
1419// Static helper functions.
1420
1421// Generate an Operand for loading a field from an object.
1422inline Operand FieldOperand(Register object, int offset) {
1423  return Operand(object, offset - kHeapObjectTag);
1424}
1425
1426
1427// Generate an Operand for loading an indexed field from an object.
1428inline Operand FieldOperand(Register object,
1429                            Register index,
1430                            ScaleFactor scale,
1431                            int offset) {
1432  return Operand(object, index, scale, offset - kHeapObjectTag);
1433}
1434
1435
1436inline Operand ContextOperand(Register context, int index) {
1437  return Operand(context, Context::SlotOffset(index));
1438}
1439
1440
1441inline Operand GlobalObjectOperand() {
1442  return ContextOperand(rsi, Context::GLOBAL_INDEX);
1443}
1444
1445
1446// Provides access to exit frame stack space (not GCed).
1447inline Operand StackSpaceOperand(int index) {
1448#ifdef _WIN64
1449  const int kShaddowSpace = 4;
1450  return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
1451#else
1452  return Operand(rsp, index * kPointerSize);
1453#endif
1454}
1455
1456
1457
1458#ifdef GENERATED_CODE_COVERAGE
1459extern void LogGeneratedCodeCoverage(const char* file_line);
1460#define CODE_COVERAGE_STRINGIFY(x) #x
1461#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1462#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1463#define ACCESS_MASM(masm) {                                               \
1464    byte* x64_coverage_function =                                         \
1465        reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1466    masm->pushfd();                                                       \
1467    masm->pushad();                                                       \
1468    masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
1469    masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY);          \
1470    masm->pop(rax);                                                       \
1471    masm->popad();                                                        \
1472    masm->popfd();                                                        \
1473  }                                                                       \
1474  masm->
1475#else
1476#define ACCESS_MASM(masm) masm->
1477#endif
1478
1479} }  // namespace v8::internal
1480
1481#endif  // V8_X64_MACRO_ASSEMBLER_X64_H_
1482