1
2/*---------------------------------------------------------------*/
3/*--- begin                               guest_x86_helpers.c ---*/
4/*---------------------------------------------------------------*/
5
6/*
7   This file is part of Valgrind, a dynamic binary instrumentation
8   framework.
9
10   Copyright (C) 2004-2011 OpenWorks LLP
11      info@open-works.net
12
13   This program is free software; you can redistribute it and/or
14   modify it under the terms of the GNU General Public License as
15   published by the Free Software Foundation; either version 2 of the
16   License, or (at your option) any later version.
17
18   This program is distributed in the hope that it will be useful, but
19   WITHOUT ANY WARRANTY; without even the implied warranty of
20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21   General Public License for more details.
22
23   You should have received a copy of the GNU General Public License
24   along with this program; if not, write to the Free Software
25   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26   02110-1301, USA.
27
28   The GNU General Public License is contained in the file COPYING.
29
30   Neither the names of the U.S. Department of Energy nor the
31   University of California nor the names of its contributors may be
32   used to endorse or promote products derived from this software
33   without prior written permission.
34*/
35
36#include "libvex_basictypes.h"
37#include "libvex_emwarn.h"
38#include "libvex_guest_x86.h"
39#include "libvex_ir.h"
40#include "libvex.h"
41
42#include "main_util.h"
43#include "guest_generic_bb_to_IR.h"
44#include "guest_x86_defs.h"
45#include "guest_generic_x87.h"
46
47
48/* This file contains helper functions for x86 guest code.
49   Calls to these functions are generated by the back end.
50   These calls are of course in the host machine code and
51   this file will be compiled to host machine code, so that
52   all makes sense.
53
54   Only change the signatures of these helper functions very
55   carefully.  If you change the signature here, you'll have to change
56   the parameters passed to it in the IR calls constructed by
57   guest-x86/toIR.c.
58
59   The convention used is that all functions called from generated
60   code are named x86g_<something>, and any function whose name lacks
61   that prefix is not called from generated code.  Note that some
62   LibVEX_* functions can however be called by VEX's client, but that
63   is not the same as calling them from VEX-generated code.
64*/
65
66
67/* Set to 1 to get detailed profiling info about use of the flag
68   machinery. */
69#define PROFILE_EFLAGS 0
70
71
72/*---------------------------------------------------------------*/
73/*--- %eflags run-time helpers.                               ---*/
74/*---------------------------------------------------------------*/
75
76static const UChar parity_table[256] = {
77    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
78    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
79    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
80    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
81    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
82    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
83    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
84    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
85    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
86    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
87    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
88    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
89    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
90    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
91    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
92    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
93    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
94    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
95    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
96    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
97    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
98    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
99    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
100    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
101    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
102    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
103    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
104    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
105    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
106    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
107    X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0,
108    0, X86G_CC_MASK_P, X86G_CC_MASK_P, 0, X86G_CC_MASK_P, 0, 0, X86G_CC_MASK_P,
109};
110
111/* generalised left-shifter */
112inline static Int lshift ( Int x, Int n )
113{
114   if (n >= 0)
115      return x << n;
116   else
117      return x >> (-n);
118}
119
120/* identity on ULong */
121static inline ULong idULong ( ULong x )
122{
123   return x;
124}
125
126
127#define PREAMBLE(__data_bits)					\
128   /* const */ UInt DATA_MASK 					\
129      = __data_bits==8 ? 0xFF 					\
130                       : (__data_bits==16 ? 0xFFFF 		\
131                                          : 0xFFFFFFFF); 	\
132   /* const */ UInt SIGN_MASK = 1 << (__data_bits - 1);		\
133   /* const */ UInt CC_DEP1 = cc_dep1_formal;			\
134   /* const */ UInt CC_DEP2 = cc_dep2_formal;			\
135   /* const */ UInt CC_NDEP = cc_ndep_formal;			\
136   /* Four bogus assignments, which hopefully gcc can     */	\
137   /* optimise away, and which stop it complaining about  */	\
138   /* unused variables.                                   */	\
139   SIGN_MASK = SIGN_MASK;					\
140   DATA_MASK = DATA_MASK;					\
141   CC_DEP2 = CC_DEP2;						\
142   CC_NDEP = CC_NDEP;
143
144
145/*-------------------------------------------------------------*/
146
147#define ACTIONS_ADD(DATA_BITS,DATA_UTYPE)			\
148{								\
149   PREAMBLE(DATA_BITS);						\
150   { Int cf, pf, af, zf, sf, of;				\
151     Int argL, argR, res;					\
152     argL = CC_DEP1;						\
153     argR = CC_DEP2;						\
154     res  = argL + argR;					\
155     cf = (DATA_UTYPE)res < (DATA_UTYPE)argL;			\
156     pf = parity_table[(UChar)res];				\
157     af = (res ^ argL ^ argR) & 0x10;				\
158     zf = ((DATA_UTYPE)res == 0) << 6;				\
159     sf = lshift(res, 8 - DATA_BITS) & 0x80;			\
160     of = lshift((argL ^ argR ^ -1) & (argL ^ res), 		\
161                 12 - DATA_BITS) & X86G_CC_MASK_O;		\
162     return cf | pf | af | zf | sf | of;			\
163   }								\
164}
165
166/*-------------------------------------------------------------*/
167
168#define ACTIONS_SUB(DATA_BITS,DATA_UTYPE)			\
169{								\
170   PREAMBLE(DATA_BITS);						\
171   { Int cf, pf, af, zf, sf, of;				\
172     Int argL, argR, res;					\
173     argL = CC_DEP1;						\
174     argR = CC_DEP2;						\
175     res  = argL - argR;					\
176     cf = (DATA_UTYPE)argL < (DATA_UTYPE)argR;			\
177     pf = parity_table[(UChar)res];				\
178     af = (res ^ argL ^ argR) & 0x10;				\
179     zf = ((DATA_UTYPE)res == 0) << 6;				\
180     sf = lshift(res, 8 - DATA_BITS) & 0x80;			\
181     of = lshift((argL ^ argR) & (argL ^ res),	 		\
182                 12 - DATA_BITS) & X86G_CC_MASK_O; 		\
183     return cf | pf | af | zf | sf | of;			\
184   }								\
185}
186
187/*-------------------------------------------------------------*/
188
189#define ACTIONS_ADC(DATA_BITS,DATA_UTYPE)			\
190{								\
191   PREAMBLE(DATA_BITS);						\
192   { Int cf, pf, af, zf, sf, of;				\
193     Int argL, argR, oldC, res;		       			\
194     oldC = CC_NDEP & X86G_CC_MASK_C;				\
195     argL = CC_DEP1;						\
196     argR = CC_DEP2 ^ oldC;	       				\
197     res  = (argL + argR) + oldC;				\
198     if (oldC)							\
199        cf = (DATA_UTYPE)res <= (DATA_UTYPE)argL;		\
200     else							\
201        cf = (DATA_UTYPE)res < (DATA_UTYPE)argL;		\
202     pf = parity_table[(UChar)res];				\
203     af = (res ^ argL ^ argR) & 0x10;				\
204     zf = ((DATA_UTYPE)res == 0) << 6;				\
205     sf = lshift(res, 8 - DATA_BITS) & 0x80;			\
206     of = lshift((argL ^ argR ^ -1) & (argL ^ res), 		\
207                  12 - DATA_BITS) & X86G_CC_MASK_O;		\
208     return cf | pf | af | zf | sf | of;			\
209   }								\
210}
211
212/*-------------------------------------------------------------*/
213
214#define ACTIONS_SBB(DATA_BITS,DATA_UTYPE)			\
215{								\
216   PREAMBLE(DATA_BITS);						\
217   { Int cf, pf, af, zf, sf, of;				\
218     Int argL, argR, oldC, res;		       			\
219     oldC = CC_NDEP & X86G_CC_MASK_C;				\
220     argL = CC_DEP1;						\
221     argR = CC_DEP2 ^ oldC;	       				\
222     res  = (argL - argR) - oldC;				\
223     if (oldC)							\
224        cf = (DATA_UTYPE)argL <= (DATA_UTYPE)argR;		\
225     else							\
226        cf = (DATA_UTYPE)argL < (DATA_UTYPE)argR;		\
227     pf = parity_table[(UChar)res];				\
228     af = (res ^ argL ^ argR) & 0x10;				\
229     zf = ((DATA_UTYPE)res == 0) << 6;				\
230     sf = lshift(res, 8 - DATA_BITS) & 0x80;			\
231     of = lshift((argL ^ argR) & (argL ^ res), 			\
232                 12 - DATA_BITS) & X86G_CC_MASK_O;		\
233     return cf | pf | af | zf | sf | of;			\
234   }								\
235}
236
237/*-------------------------------------------------------------*/
238
239#define ACTIONS_LOGIC(DATA_BITS,DATA_UTYPE)			\
240{								\
241   PREAMBLE(DATA_BITS);						\
242   { Int cf, pf, af, zf, sf, of;				\
243     cf = 0;							\
244     pf = parity_table[(UChar)CC_DEP1];				\
245     af = 0;							\
246     zf = ((DATA_UTYPE)CC_DEP1 == 0) << 6;			\
247     sf = lshift(CC_DEP1, 8 - DATA_BITS) & 0x80;		\
248     of = 0;							\
249     return cf | pf | af | zf | sf | of;			\
250   }								\
251}
252
253/*-------------------------------------------------------------*/
254
255#define ACTIONS_INC(DATA_BITS,DATA_UTYPE)			\
256{								\
257   PREAMBLE(DATA_BITS);						\
258   { Int cf, pf, af, zf, sf, of;				\
259     Int argL, argR, res;					\
260     res  = CC_DEP1;						\
261     argL = res - 1;						\
262     argR = 1;							\
263     cf = CC_NDEP & X86G_CC_MASK_C;				\
264     pf = parity_table[(UChar)res];				\
265     af = (res ^ argL ^ argR) & 0x10;				\
266     zf = ((DATA_UTYPE)res == 0) << 6;				\
267     sf = lshift(res, 8 - DATA_BITS) & 0x80;			\
268     of = ((res & DATA_MASK) == SIGN_MASK) << 11;		\
269     return cf | pf | af | zf | sf | of;			\
270   }								\
271}
272
273/*-------------------------------------------------------------*/
274
275#define ACTIONS_DEC(DATA_BITS,DATA_UTYPE)			\
276{								\
277   PREAMBLE(DATA_BITS);						\
278   { Int cf, pf, af, zf, sf, of;				\
279     Int argL, argR, res;					\
280     res  = CC_DEP1;						\
281     argL = res + 1;						\
282     argR = 1;							\
283     cf = CC_NDEP & X86G_CC_MASK_C;				\
284     pf = parity_table[(UChar)res];				\
285     af = (res ^ argL ^ argR) & 0x10;				\
286     zf = ((DATA_UTYPE)res == 0) << 6;				\
287     sf = lshift(res, 8 - DATA_BITS) & 0x80;			\
288     of = ((res & DATA_MASK) 					\
289          == ((UInt)SIGN_MASK - 1)) << 11;			\
290     return cf | pf | af | zf | sf | of;			\
291   }								\
292}
293
294/*-------------------------------------------------------------*/
295
296#define ACTIONS_SHL(DATA_BITS,DATA_UTYPE)			\
297{								\
298   PREAMBLE(DATA_BITS);						\
299   { Int cf, pf, af, zf, sf, of;				\
300     cf = (CC_DEP2 >> (DATA_BITS - 1)) & X86G_CC_MASK_C;	\
301     pf = parity_table[(UChar)CC_DEP1];				\
302     af = 0; /* undefined */					\
303     zf = ((DATA_UTYPE)CC_DEP1 == 0) << 6;			\
304     sf = lshift(CC_DEP1, 8 - DATA_BITS) & 0x80;		\
305     /* of is defined if shift count == 1 */			\
306     of = lshift(CC_DEP2 ^ CC_DEP1, 12 - DATA_BITS) 		\
307          & X86G_CC_MASK_O;					\
308     return cf | pf | af | zf | sf | of;			\
309   }								\
310}
311
312/*-------------------------------------------------------------*/
313
314#define ACTIONS_SHR(DATA_BITS,DATA_UTYPE)			\
315{								\
316   PREAMBLE(DATA_BITS);  					\
317   { Int cf, pf, af, zf, sf, of;				\
318     cf = CC_DEP2 & 1;						\
319     pf = parity_table[(UChar)CC_DEP1];				\
320     af = 0; /* undefined */					\
321     zf = ((DATA_UTYPE)CC_DEP1 == 0) << 6;			\
322     sf = lshift(CC_DEP1, 8 - DATA_BITS) & 0x80;		\
323     /* of is defined if shift count == 1 */			\
324     of = lshift(CC_DEP2 ^ CC_DEP1, 12 - DATA_BITS)		\
325          & X86G_CC_MASK_O;					\
326     return cf | pf | af | zf | sf | of;			\
327   }								\
328}
329
330/*-------------------------------------------------------------*/
331
332/* ROL: cf' = lsb(result).  of' = msb(result) ^ lsb(result). */
333/* DEP1 = result, NDEP = old flags */
334#define ACTIONS_ROL(DATA_BITS,DATA_UTYPE)			\
335{								\
336   PREAMBLE(DATA_BITS);						\
337   { Int fl 							\
338        = (CC_NDEP & ~(X86G_CC_MASK_O | X86G_CC_MASK_C))	\
339          | (X86G_CC_MASK_C & CC_DEP1)				\
340          | (X86G_CC_MASK_O & (lshift(CC_DEP1,  		\
341                                      11-(DATA_BITS-1)) 	\
342                     ^ lshift(CC_DEP1, 11)));			\
343     return fl;							\
344   }								\
345}
346
347/*-------------------------------------------------------------*/
348
349/* ROR: cf' = msb(result).  of' = msb(result) ^ msb-1(result). */
350/* DEP1 = result, NDEP = old flags */
351#define ACTIONS_ROR(DATA_BITS,DATA_UTYPE)			\
352{								\
353   PREAMBLE(DATA_BITS);						\
354   { Int fl 							\
355        = (CC_NDEP & ~(X86G_CC_MASK_O | X86G_CC_MASK_C))	\
356          | (X86G_CC_MASK_C & (CC_DEP1 >> (DATA_BITS-1)))	\
357          | (X86G_CC_MASK_O & (lshift(CC_DEP1, 			\
358                                      11-(DATA_BITS-1)) 	\
359                     ^ lshift(CC_DEP1, 11-(DATA_BITS-1)+1)));	\
360     return fl;							\
361   }								\
362}
363
364/*-------------------------------------------------------------*/
365
366#define ACTIONS_UMUL(DATA_BITS, DATA_UTYPE,  NARROWtoU,         \
367                                DATA_U2TYPE, NARROWto2U)        \
368{                                                               \
369   PREAMBLE(DATA_BITS);                                         \
370   { Int cf, pf, af, zf, sf, of;                                \
371     DATA_UTYPE  hi;                                            \
372     DATA_UTYPE  lo                                             \
373        = NARROWtoU( ((DATA_UTYPE)CC_DEP1)                      \
374                     * ((DATA_UTYPE)CC_DEP2) );                 \
375     DATA_U2TYPE rr                                             \
376        = NARROWto2U(                                           \
377             ((DATA_U2TYPE)((DATA_UTYPE)CC_DEP1))               \
378             * ((DATA_U2TYPE)((DATA_UTYPE)CC_DEP2)) );          \
379     hi = NARROWtoU(rr >>/*u*/ DATA_BITS);                      \
380     cf = (hi != 0);                                            \
381     pf = parity_table[(UChar)lo];                              \
382     af = 0; /* undefined */                                    \
383     zf = (lo == 0) << 6;                                       \
384     sf = lshift(lo, 8 - DATA_BITS) & 0x80;                     \
385     of = cf << 11;                                             \
386     return cf | pf | af | zf | sf | of;                        \
387   }								\
388}
389
390/*-------------------------------------------------------------*/
391
392#define ACTIONS_SMUL(DATA_BITS, DATA_STYPE,  NARROWtoS,         \
393                                DATA_S2TYPE, NARROWto2S)        \
394{                                                               \
395   PREAMBLE(DATA_BITS);                                         \
396   { Int cf, pf, af, zf, sf, of;                                \
397     DATA_STYPE  hi;                                            \
398     DATA_STYPE  lo                                             \
399        = NARROWtoS( ((DATA_STYPE)CC_DEP1)                      \
400                     * ((DATA_STYPE)CC_DEP2) );                 \
401     DATA_S2TYPE rr                                             \
402        = NARROWto2S(                                           \
403             ((DATA_S2TYPE)((DATA_STYPE)CC_DEP1))               \
404             * ((DATA_S2TYPE)((DATA_STYPE)CC_DEP2)) );          \
405     hi = NARROWtoS(rr >>/*s*/ DATA_BITS);                      \
406     cf = (hi != (lo >>/*s*/ (DATA_BITS-1)));                   \
407     pf = parity_table[(UChar)lo];                              \
408     af = 0; /* undefined */                                    \
409     zf = (lo == 0) << 6;                                       \
410     sf = lshift(lo, 8 - DATA_BITS) & 0x80;                     \
411     of = cf << 11;                                             \
412     return cf | pf | af | zf | sf | of;                        \
413   }								\
414}
415
416
417#if PROFILE_EFLAGS
418
419static Bool initted     = False;
420
421/* C flag, fast route */
422static UInt tabc_fast[X86G_CC_OP_NUMBER];
423/* C flag, slow route */
424static UInt tabc_slow[X86G_CC_OP_NUMBER];
425/* table for calculate_cond */
426static UInt tab_cond[X86G_CC_OP_NUMBER][16];
427/* total entry counts for calc_all, calc_c, calc_cond. */
428static UInt n_calc_all  = 0;
429static UInt n_calc_c    = 0;
430static UInt n_calc_cond = 0;
431
432#define SHOW_COUNTS_NOW (0 == (0x3FFFFF & (n_calc_all+n_calc_c+n_calc_cond)))
433
434
435static void showCounts ( void )
436{
437   Int op, co;
438   Char ch;
439   vex_printf("\nTotal calls: calc_all=%u   calc_cond=%u   calc_c=%u\n",
440              n_calc_all, n_calc_cond, n_calc_c);
441
442   vex_printf("      cSLOW  cFAST    O   NO    B   NB    Z   NZ   BE  NBE"
443              "    S   NS    P   NP    L   NL   LE  NLE\n");
444   vex_printf("     -----------------------------------------------------"
445              "----------------------------------------\n");
446   for (op = 0; op < X86G_CC_OP_NUMBER; op++) {
447
448      ch = ' ';
449      if (op > 0 && (op-1) % 3 == 0)
450         ch = 'B';
451      if (op > 0 && (op-1) % 3 == 1)
452         ch = 'W';
453      if (op > 0 && (op-1) % 3 == 2)
454         ch = 'L';
455
456      vex_printf("%2d%c: ", op, ch);
457      vex_printf("%6u ", tabc_slow[op]);
458      vex_printf("%6u ", tabc_fast[op]);
459      for (co = 0; co < 16; co++) {
460         Int n = tab_cond[op][co];
461         if (n >= 1000) {
462            vex_printf(" %3dK", n / 1000);
463         } else
464         if (n >= 0) {
465            vex_printf(" %3d ", n );
466         } else {
467            vex_printf("     ");
468         }
469      }
470      vex_printf("\n");
471   }
472   vex_printf("\n");
473}
474
475static void initCounts ( void )
476{
477   Int op, co;
478   initted = True;
479   for (op = 0; op < X86G_CC_OP_NUMBER; op++) {
480      tabc_fast[op] = tabc_slow[op] = 0;
481      for (co = 0; co < 16; co++)
482         tab_cond[op][co] = 0;
483   }
484}
485
486#endif /* PROFILE_EFLAGS */
487
488
489/* CALLED FROM GENERATED CODE: CLEAN HELPER */
490/* Calculate all the 6 flags from the supplied thunk parameters.
491   Worker function, not directly called from generated code. */
492static
493UInt x86g_calculate_eflags_all_WRK ( UInt cc_op,
494                                     UInt cc_dep1_formal,
495                                     UInt cc_dep2_formal,
496                                     UInt cc_ndep_formal )
497{
498   switch (cc_op) {
499      case X86G_CC_OP_COPY:
500         return cc_dep1_formal
501                & (X86G_CC_MASK_O | X86G_CC_MASK_S | X86G_CC_MASK_Z
502                   | X86G_CC_MASK_A | X86G_CC_MASK_C | X86G_CC_MASK_P);
503
504      case X86G_CC_OP_ADDB:   ACTIONS_ADD( 8,  UChar  );
505      case X86G_CC_OP_ADDW:   ACTIONS_ADD( 16, UShort );
506      case X86G_CC_OP_ADDL:   ACTIONS_ADD( 32, UInt   );
507
508      case X86G_CC_OP_ADCB:   ACTIONS_ADC( 8,  UChar  );
509      case X86G_CC_OP_ADCW:   ACTIONS_ADC( 16, UShort );
510      case X86G_CC_OP_ADCL:   ACTIONS_ADC( 32, UInt   );
511
512      case X86G_CC_OP_SUBB:   ACTIONS_SUB(  8, UChar  );
513      case X86G_CC_OP_SUBW:   ACTIONS_SUB( 16, UShort );
514      case X86G_CC_OP_SUBL:   ACTIONS_SUB( 32, UInt   );
515
516      case X86G_CC_OP_SBBB:   ACTIONS_SBB(  8, UChar  );
517      case X86G_CC_OP_SBBW:   ACTIONS_SBB( 16, UShort );
518      case X86G_CC_OP_SBBL:   ACTIONS_SBB( 32, UInt   );
519
520      case X86G_CC_OP_LOGICB: ACTIONS_LOGIC(  8, UChar  );
521      case X86G_CC_OP_LOGICW: ACTIONS_LOGIC( 16, UShort );
522      case X86G_CC_OP_LOGICL: ACTIONS_LOGIC( 32, UInt   );
523
524      case X86G_CC_OP_INCB:   ACTIONS_INC(  8, UChar  );
525      case X86G_CC_OP_INCW:   ACTIONS_INC( 16, UShort );
526      case X86G_CC_OP_INCL:   ACTIONS_INC( 32, UInt   );
527
528      case X86G_CC_OP_DECB:   ACTIONS_DEC(  8, UChar  );
529      case X86G_CC_OP_DECW:   ACTIONS_DEC( 16, UShort );
530      case X86G_CC_OP_DECL:   ACTIONS_DEC( 32, UInt   );
531
532      case X86G_CC_OP_SHLB:   ACTIONS_SHL(  8, UChar  );
533      case X86G_CC_OP_SHLW:   ACTIONS_SHL( 16, UShort );
534      case X86G_CC_OP_SHLL:   ACTIONS_SHL( 32, UInt   );
535
536      case X86G_CC_OP_SHRB:   ACTIONS_SHR(  8, UChar  );
537      case X86G_CC_OP_SHRW:   ACTIONS_SHR( 16, UShort );
538      case X86G_CC_OP_SHRL:   ACTIONS_SHR( 32, UInt   );
539
540      case X86G_CC_OP_ROLB:   ACTIONS_ROL(  8, UChar  );
541      case X86G_CC_OP_ROLW:   ACTIONS_ROL( 16, UShort );
542      case X86G_CC_OP_ROLL:   ACTIONS_ROL( 32, UInt   );
543
544      case X86G_CC_OP_RORB:   ACTIONS_ROR(  8, UChar  );
545      case X86G_CC_OP_RORW:   ACTIONS_ROR( 16, UShort );
546      case X86G_CC_OP_RORL:   ACTIONS_ROR( 32, UInt   );
547
548      case X86G_CC_OP_UMULB:  ACTIONS_UMUL(  8, UChar,  toUChar,
549                                                UShort, toUShort );
550      case X86G_CC_OP_UMULW:  ACTIONS_UMUL( 16, UShort, toUShort,
551                                                UInt,   toUInt );
552      case X86G_CC_OP_UMULL:  ACTIONS_UMUL( 32, UInt,   toUInt,
553                                                ULong,  idULong );
554
555      case X86G_CC_OP_SMULB:  ACTIONS_SMUL(  8, Char,   toUChar,
556                                                Short,  toUShort );
557      case X86G_CC_OP_SMULW:  ACTIONS_SMUL( 16, Short,  toUShort,
558                                                Int,    toUInt   );
559      case X86G_CC_OP_SMULL:  ACTIONS_SMUL( 32, Int,    toUInt,
560                                                Long,   idULong );
561
562      default:
563         /* shouldn't really make these calls from generated code */
564         vex_printf("x86g_calculate_eflags_all_WRK(X86)"
565                    "( %u, 0x%x, 0x%x, 0x%x )\n",
566                    cc_op, cc_dep1_formal, cc_dep2_formal, cc_ndep_formal );
567         vpanic("x86g_calculate_eflags_all_WRK(X86)");
568   }
569}
570
571
572/* CALLED FROM GENERATED CODE: CLEAN HELPER */
573/* Calculate all the 6 flags from the supplied thunk parameters. */
574UInt x86g_calculate_eflags_all ( UInt cc_op,
575                                 UInt cc_dep1,
576                                 UInt cc_dep2,
577                                 UInt cc_ndep )
578{
579#  if PROFILE_EFLAGS
580   if (!initted) initCounts();
581   n_calc_all++;
582   if (SHOW_COUNTS_NOW) showCounts();
583#  endif
584   return
585      x86g_calculate_eflags_all_WRK ( cc_op, cc_dep1, cc_dep2, cc_ndep );
586}
587
588
589/* CALLED FROM GENERATED CODE: CLEAN HELPER */
590/* Calculate just the carry flag from the supplied thunk parameters. */
591VEX_REGPARM(3)
592UInt x86g_calculate_eflags_c ( UInt cc_op,
593                               UInt cc_dep1,
594                               UInt cc_dep2,
595                               UInt cc_ndep )
596{
597#  if PROFILE_EFLAGS
598   if (!initted) initCounts();
599   n_calc_c++;
600   tabc_fast[cc_op]++;
601   if (SHOW_COUNTS_NOW) showCounts();
602#  endif
603
604   /* Fast-case some common ones. */
605   switch (cc_op) {
606      case X86G_CC_OP_LOGICL:
607      case X86G_CC_OP_LOGICW:
608      case X86G_CC_OP_LOGICB:
609         return 0;
610      case X86G_CC_OP_SUBL:
611         return ((UInt)cc_dep1) < ((UInt)cc_dep2)
612                   ? X86G_CC_MASK_C : 0;
613      case X86G_CC_OP_SUBW:
614         return ((UInt)(cc_dep1 & 0xFFFF)) < ((UInt)(cc_dep2 & 0xFFFF))
615                   ? X86G_CC_MASK_C : 0;
616      case X86G_CC_OP_SUBB:
617         return ((UInt)(cc_dep1 & 0xFF)) < ((UInt)(cc_dep2 & 0xFF))
618                   ? X86G_CC_MASK_C : 0;
619      case X86G_CC_OP_INCL:
620      case X86G_CC_OP_DECL:
621         return cc_ndep & X86G_CC_MASK_C;
622      default:
623         break;
624   }
625
626#  if PROFILE_EFLAGS
627   tabc_fast[cc_op]--;
628   tabc_slow[cc_op]++;
629#  endif
630
631   return x86g_calculate_eflags_all_WRK(cc_op,cc_dep1,cc_dep2,cc_ndep)
632          & X86G_CC_MASK_C;
633}
634
635
636/* CALLED FROM GENERATED CODE: CLEAN HELPER */
637/* returns 1 or 0 */
638UInt x86g_calculate_condition ( UInt/*X86Condcode*/ cond,
639                                UInt cc_op,
640                                UInt cc_dep1,
641                                UInt cc_dep2,
642                                UInt cc_ndep )
643{
644   UInt eflags = x86g_calculate_eflags_all_WRK(cc_op, cc_dep1,
645                                               cc_dep2, cc_ndep);
646   UInt of,sf,zf,cf,pf;
647   UInt inv = cond & 1;
648
649#  if PROFILE_EFLAGS
650   if (!initted) initCounts();
651   tab_cond[cc_op][cond]++;
652   n_calc_cond++;
653   if (SHOW_COUNTS_NOW) showCounts();
654#  endif
655
656   switch (cond) {
657      case X86CondNO:
658      case X86CondO: /* OF == 1 */
659         of = eflags >> X86G_CC_SHIFT_O;
660         return 1 & (inv ^ of);
661
662      case X86CondNZ:
663      case X86CondZ: /* ZF == 1 */
664         zf = eflags >> X86G_CC_SHIFT_Z;
665         return 1 & (inv ^ zf);
666
667      case X86CondNB:
668      case X86CondB: /* CF == 1 */
669         cf = eflags >> X86G_CC_SHIFT_C;
670         return 1 & (inv ^ cf);
671         break;
672
673      case X86CondNBE:
674      case X86CondBE: /* (CF or ZF) == 1 */
675         cf = eflags >> X86G_CC_SHIFT_C;
676         zf = eflags >> X86G_CC_SHIFT_Z;
677         return 1 & (inv ^ (cf | zf));
678         break;
679
680      case X86CondNS:
681      case X86CondS: /* SF == 1 */
682         sf = eflags >> X86G_CC_SHIFT_S;
683         return 1 & (inv ^ sf);
684
685      case X86CondNP:
686      case X86CondP: /* PF == 1 */
687         pf = eflags >> X86G_CC_SHIFT_P;
688         return 1 & (inv ^ pf);
689
690      case X86CondNL:
691      case X86CondL: /* (SF xor OF) == 1 */
692         sf = eflags >> X86G_CC_SHIFT_S;
693         of = eflags >> X86G_CC_SHIFT_O;
694         return 1 & (inv ^ (sf ^ of));
695         break;
696
697      case X86CondNLE:
698      case X86CondLE: /* ((SF xor OF) or ZF)  == 1 */
699         sf = eflags >> X86G_CC_SHIFT_S;
700         of = eflags >> X86G_CC_SHIFT_O;
701         zf = eflags >> X86G_CC_SHIFT_Z;
702         return 1 & (inv ^ ((sf ^ of) | zf));
703         break;
704
705      default:
706         /* shouldn't really make these calls from generated code */
707         vex_printf("x86g_calculate_condition( %u, %u, 0x%x, 0x%x, 0x%x )\n",
708                    cond, cc_op, cc_dep1, cc_dep2, cc_ndep );
709         vpanic("x86g_calculate_condition");
710   }
711}
712
713
714/* VISIBLE TO LIBVEX CLIENT */
715UInt LibVEX_GuestX86_get_eflags ( /*IN*/VexGuestX86State* vex_state )
716{
717   UInt eflags = x86g_calculate_eflags_all_WRK(
718                    vex_state->guest_CC_OP,
719                    vex_state->guest_CC_DEP1,
720                    vex_state->guest_CC_DEP2,
721                    vex_state->guest_CC_NDEP
722                 );
723   UInt dflag = vex_state->guest_DFLAG;
724   vassert(dflag == 1 || dflag == 0xFFFFFFFF);
725   if (dflag == 0xFFFFFFFF)
726      eflags |= (1<<10);
727   if (vex_state->guest_IDFLAG == 1)
728      eflags |= (1<<21);
729   if (vex_state->guest_ACFLAG == 1)
730      eflags |= (1<<18);
731
732   return eflags;
733}
734
735/* VISIBLE TO LIBVEX CLIENT */
736void
737LibVEX_GuestX86_put_eflag_c ( UInt new_carry_flag,
738                              /*MOD*/VexGuestX86State* vex_state )
739{
740   UInt oszacp = x86g_calculate_eflags_all_WRK(
741                    vex_state->guest_CC_OP,
742                    vex_state->guest_CC_DEP1,
743                    vex_state->guest_CC_DEP2,
744                    vex_state->guest_CC_NDEP
745                 );
746   if (new_carry_flag & 1) {
747      oszacp |= X86G_CC_MASK_C;
748   } else {
749      oszacp &= ~X86G_CC_MASK_C;
750   }
751   vex_state->guest_CC_OP   = X86G_CC_OP_COPY;
752   vex_state->guest_CC_DEP1 = oszacp;
753   vex_state->guest_CC_DEP2 = 0;
754   vex_state->guest_CC_NDEP = 0;
755}
756
757
758/*---------------------------------------------------------------*/
759/*--- %eflags translation-time function specialisers.         ---*/
760/*--- These help iropt specialise calls the above run-time    ---*/
761/*--- %eflags functions.                                      ---*/
762/*---------------------------------------------------------------*/
763
764/* Used by the optimiser to try specialisations.  Returns an
765   equivalent expression, or NULL if none. */
766
767static inline Bool isU32 ( IRExpr* e, UInt n )
768{
769   return
770      toBool( e->tag == Iex_Const
771              && e->Iex.Const.con->tag == Ico_U32
772              && e->Iex.Const.con->Ico.U32 == n );
773}
774
775IRExpr* guest_x86_spechelper ( HChar*   function_name,
776                               IRExpr** args,
777                               IRStmt** precedingStmts,
778                               Int      n_precedingStmts )
779{
780#  define unop(_op,_a1) IRExpr_Unop((_op),(_a1))
781#  define binop(_op,_a1,_a2) IRExpr_Binop((_op),(_a1),(_a2))
782#  define mkU32(_n) IRExpr_Const(IRConst_U32(_n))
783#  define mkU8(_n)  IRExpr_Const(IRConst_U8(_n))
784
785   Int i, arity = 0;
786   for (i = 0; args[i]; i++)
787      arity++;
788#  if 0
789   vex_printf("spec request:\n");
790   vex_printf("   %s  ", function_name);
791   for (i = 0; i < arity; i++) {
792      vex_printf("  ");
793      ppIRExpr(args[i]);
794   }
795   vex_printf("\n");
796#  endif
797
798   /* --------- specialising "x86g_calculate_condition" --------- */
799
800   if (vex_streq(function_name, "x86g_calculate_condition")) {
801      /* specialise calls to above "calculate condition" function */
802      IRExpr *cond, *cc_op, *cc_dep1, *cc_dep2;
803      vassert(arity == 5);
804      cond    = args[0];
805      cc_op   = args[1];
806      cc_dep1 = args[2];
807      cc_dep2 = args[3];
808
809      /*---------------- ADDL ----------------*/
810
811      if (isU32(cc_op, X86G_CC_OP_ADDL) && isU32(cond, X86CondZ)) {
812         /* long add, then Z --> test (dst+src == 0) */
813         return unop(Iop_1Uto32,
814                     binop(Iop_CmpEQ32,
815                           binop(Iop_Add32, cc_dep1, cc_dep2),
816                           mkU32(0)));
817      }
818
819      /*---------------- SUBL ----------------*/
820
821      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondZ)) {
822         /* long sub/cmp, then Z --> test dst==src */
823         return unop(Iop_1Uto32,
824                     binop(Iop_CmpEQ32, cc_dep1, cc_dep2));
825      }
826      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondNZ)) {
827         /* long sub/cmp, then NZ --> test dst!=src */
828         return unop(Iop_1Uto32,
829                     binop(Iop_CmpNE32, cc_dep1, cc_dep2));
830      }
831
832      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondL)) {
833         /* long sub/cmp, then L (signed less than)
834            --> test dst <s src */
835         return unop(Iop_1Uto32,
836                     binop(Iop_CmpLT32S, cc_dep1, cc_dep2));
837      }
838      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondNL)) {
839         /* long sub/cmp, then NL (signed greater than or equal)
840            --> test !(dst <s src) */
841         return binop(Iop_Xor32,
842                      unop(Iop_1Uto32,
843                           binop(Iop_CmpLT32S, cc_dep1, cc_dep2)),
844                      mkU32(1));
845      }
846
847      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondLE)) {
848         /* long sub/cmp, then LE (signed less than or equal)
849            --> test dst <=s src */
850         return unop(Iop_1Uto32,
851                     binop(Iop_CmpLE32S, cc_dep1, cc_dep2));
852      }
853      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondNLE)) {
854         /* long sub/cmp, then NLE (signed not less than or equal)
855            --> test dst >s src
856            --> test !(dst <=s src) */
857         return binop(Iop_Xor32,
858                      unop(Iop_1Uto32,
859                           binop(Iop_CmpLE32S, cc_dep1, cc_dep2)),
860                      mkU32(1));
861      }
862
863      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondBE)) {
864         /* long sub/cmp, then BE (unsigned less than or equal)
865            --> test dst <=u src */
866         return unop(Iop_1Uto32,
867                     binop(Iop_CmpLE32U, cc_dep1, cc_dep2));
868      }
869      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondNBE)) {
870         /* long sub/cmp, then BE (unsigned greater than)
871            --> test !(dst <=u src) */
872         return binop(Iop_Xor32,
873                      unop(Iop_1Uto32,
874                           binop(Iop_CmpLE32U, cc_dep1, cc_dep2)),
875                      mkU32(1));
876      }
877
878      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondB)) {
879         /* long sub/cmp, then B (unsigned less than)
880            --> test dst <u src */
881         return unop(Iop_1Uto32,
882                     binop(Iop_CmpLT32U, cc_dep1, cc_dep2));
883      }
884      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondNB)) {
885         /* long sub/cmp, then NB (unsigned greater than or equal)
886            --> test !(dst <u src) */
887         return binop(Iop_Xor32,
888                      unop(Iop_1Uto32,
889                           binop(Iop_CmpLT32U, cc_dep1, cc_dep2)),
890                      mkU32(1));
891      }
892
893      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondS)) {
894         /* long sub/cmp, then S (negative) --> test (dst-src <s 0) */
895         return unop(Iop_1Uto32,
896                     binop(Iop_CmpLT32S,
897                           binop(Iop_Sub32, cc_dep1, cc_dep2),
898                           mkU32(0)));
899      }
900      if (isU32(cc_op, X86G_CC_OP_SUBL) && isU32(cond, X86CondNS)) {
901         /* long sub/cmp, then NS (not negative) --> test !(dst-src <s 0) */
902         return binop(Iop_Xor32,
903                      unop(Iop_1Uto32,
904                           binop(Iop_CmpLT32S,
905                                 binop(Iop_Sub32, cc_dep1, cc_dep2),
906                                 mkU32(0))),
907                      mkU32(1));
908      }
909
910      /*---------------- SUBW ----------------*/
911
912      if (isU32(cc_op, X86G_CC_OP_SUBW) && isU32(cond, X86CondZ)) {
913         /* word sub/cmp, then Z --> test dst==src */
914         return unop(Iop_1Uto32,
915                     binop(Iop_CmpEQ16,
916                           unop(Iop_32to16,cc_dep1),
917                           unop(Iop_32to16,cc_dep2)));
918      }
919      if (isU32(cc_op, X86G_CC_OP_SUBW) && isU32(cond, X86CondNZ)) {
920         /* word sub/cmp, then NZ --> test dst!=src */
921         return unop(Iop_1Uto32,
922                     binop(Iop_CmpNE16,
923                           unop(Iop_32to16,cc_dep1),
924                           unop(Iop_32to16,cc_dep2)));
925      }
926
927      /*---------------- SUBB ----------------*/
928
929      if (isU32(cc_op, X86G_CC_OP_SUBB) && isU32(cond, X86CondZ)) {
930         /* byte sub/cmp, then Z --> test dst==src */
931         return unop(Iop_1Uto32,
932                     binop(Iop_CmpEQ8,
933                           unop(Iop_32to8,cc_dep1),
934                           unop(Iop_32to8,cc_dep2)));
935      }
936      if (isU32(cc_op, X86G_CC_OP_SUBB) && isU32(cond, X86CondNZ)) {
937         /* byte sub/cmp, then NZ --> test dst!=src */
938         return unop(Iop_1Uto32,
939                     binop(Iop_CmpNE8,
940                           unop(Iop_32to8,cc_dep1),
941                           unop(Iop_32to8,cc_dep2)));
942      }
943
944      if (isU32(cc_op, X86G_CC_OP_SUBB) && isU32(cond, X86CondNBE)) {
945         /* byte sub/cmp, then NBE (unsigned greater than)
946            --> test src <u dst */
947         /* Note, args are opposite way round from the usual */
948         return unop(Iop_1Uto32,
949                     binop(Iop_CmpLT32U,
950                           binop(Iop_And32,cc_dep2,mkU32(0xFF)),
951			   binop(Iop_And32,cc_dep1,mkU32(0xFF))));
952      }
953
954      if (isU32(cc_op, X86G_CC_OP_SUBB) && isU32(cond, X86CondS)
955                                        && isU32(cc_dep2, 0)) {
956         /* byte sub/cmp of zero, then S --> test (dst-0 <s 0)
957                                         --> test dst <s 0
958                                         --> (UInt)dst[7]
959            This is yet another scheme by which gcc figures out if the
960            top bit of a byte is 1 or 0.  See also LOGICB/CondS below. */
961         /* Note: isU32(cc_dep2, 0) is correct, even though this is
962            for an 8-bit comparison, since the args to the helper
963            function are always U32s. */
964         return binop(Iop_And32,
965                      binop(Iop_Shr32,cc_dep1,mkU8(7)),
966                      mkU32(1));
967      }
968      if (isU32(cc_op, X86G_CC_OP_SUBB) && isU32(cond, X86CondNS)
969                                        && isU32(cc_dep2, 0)) {
970         /* byte sub/cmp of zero, then NS --> test !(dst-0 <s 0)
971                                          --> test !(dst <s 0)
972                                          --> (UInt) !dst[7]
973         */
974         return binop(Iop_Xor32,
975                      binop(Iop_And32,
976                            binop(Iop_Shr32,cc_dep1,mkU8(7)),
977                            mkU32(1)),
978                mkU32(1));
979      }
980
981      /*---------------- LOGICL ----------------*/
982
983      if (isU32(cc_op, X86G_CC_OP_LOGICL) && isU32(cond, X86CondZ)) {
984         /* long and/or/xor, then Z --> test dst==0 */
985         return unop(Iop_1Uto32,binop(Iop_CmpEQ32, cc_dep1, mkU32(0)));
986      }
987      if (isU32(cc_op, X86G_CC_OP_LOGICL) && isU32(cond, X86CondNZ)) {
988         /* long and/or/xor, then NZ --> test dst!=0 */
989         return unop(Iop_1Uto32,binop(Iop_CmpNE32, cc_dep1, mkU32(0)));
990      }
991
992      if (isU32(cc_op, X86G_CC_OP_LOGICL) && isU32(cond, X86CondLE)) {
993         /* long and/or/xor, then LE
994            This is pretty subtle.  LOGIC sets SF and ZF according to the
995            result and makes OF be zero.  LE computes (SZ ^ OF) | ZF, but
996            OF is zero, so this reduces to SZ | ZF -- which will be 1 iff
997            the result is <=signed 0.  Hence ...
998         */
999         return unop(Iop_1Uto32,binop(Iop_CmpLE32S, cc_dep1, mkU32(0)));
1000      }
1001
1002      if (isU32(cc_op, X86G_CC_OP_LOGICL) && isU32(cond, X86CondBE)) {
1003         /* long and/or/xor, then BE
1004            LOGIC sets ZF according to the result and makes CF be zero.
1005            BE computes (CF | ZF), but CF is zero, so this reduces ZF
1006            -- which will be 1 iff the result is zero.  Hence ...
1007         */
1008         return unop(Iop_1Uto32,binop(Iop_CmpEQ32, cc_dep1, mkU32(0)));
1009      }
1010
1011      if (isU32(cc_op, X86G_CC_OP_LOGICL) && isU32(cond, X86CondS)) {
1012         /* see comment below for (LOGICB, CondS) */
1013         /* long and/or/xor, then S --> (UInt)result[31] */
1014         return binop(Iop_And32,
1015                      binop(Iop_Shr32,cc_dep1,mkU8(31)),
1016                      mkU32(1));
1017      }
1018      if (isU32(cc_op, X86G_CC_OP_LOGICL) && isU32(cond, X86CondNS)) {
1019         /* see comment below for (LOGICB, CondNS) */
1020         /* long and/or/xor, then S --> (UInt) ~ result[31] */
1021         return binop(Iop_Xor32,
1022                binop(Iop_And32,
1023                      binop(Iop_Shr32,cc_dep1,mkU8(31)),
1024                      mkU32(1)),
1025                mkU32(1));
1026      }
1027
1028      /*---------------- LOGICW ----------------*/
1029
1030      if (isU32(cc_op, X86G_CC_OP_LOGICW) && isU32(cond, X86CondZ)) {
1031         /* word and/or/xor, then Z --> test dst==0 */
1032         return unop(Iop_1Uto32,
1033                     binop(Iop_CmpEQ32, binop(Iop_And32,cc_dep1,mkU32(0xFFFF)),
1034                                        mkU32(0)));
1035      }
1036
1037      if (isU32(cc_op, X86G_CC_OP_LOGICW) && isU32(cond, X86CondS)) {
1038         /* see comment below for (LOGICB, CondS) */
1039         /* word and/or/xor, then S --> (UInt)result[15] */
1040         return binop(Iop_And32,
1041                      binop(Iop_Shr32,cc_dep1,mkU8(15)),
1042                      mkU32(1));
1043      }
1044
1045      /*---------------- LOGICB ----------------*/
1046
1047      if (isU32(cc_op, X86G_CC_OP_LOGICB) && isU32(cond, X86CondZ)) {
1048         /* byte and/or/xor, then Z --> test dst==0 */
1049         return unop(Iop_1Uto32,
1050                     binop(Iop_CmpEQ32, binop(Iop_And32,cc_dep1,mkU32(255)),
1051                                        mkU32(0)));
1052      }
1053      if (isU32(cc_op, X86G_CC_OP_LOGICB) && isU32(cond, X86CondNZ)) {
1054         /* byte and/or/xor, then Z --> test dst!=0 */
1055         /* b9ac9:       84 c0                   test   %al,%al
1056            b9acb:       75 0d                   jne    b9ada */
1057         return unop(Iop_1Uto32,
1058                     binop(Iop_CmpNE32, binop(Iop_And32,cc_dep1,mkU32(255)),
1059                                        mkU32(0)));
1060      }
1061
1062      if (isU32(cc_op, X86G_CC_OP_LOGICB) && isU32(cond, X86CondS)) {
1063         /* this is an idiom gcc sometimes uses to find out if the top
1064            bit of a byte register is set: eg testb %al,%al; js ..
1065            Since it just depends on the top bit of the byte, extract
1066            that bit and explicitly get rid of all the rest.  This
1067            helps memcheck avoid false positives in the case where any
1068            of the other bits in the byte are undefined. */
1069         /* byte and/or/xor, then S --> (UInt)result[7] */
1070         return binop(Iop_And32,
1071                      binop(Iop_Shr32,cc_dep1,mkU8(7)),
1072                      mkU32(1));
1073      }
1074      if (isU32(cc_op, X86G_CC_OP_LOGICB) && isU32(cond, X86CondNS)) {
1075         /* ditto, for negation-of-S. */
1076         /* byte and/or/xor, then S --> (UInt) ~ result[7] */
1077         return binop(Iop_Xor32,
1078                binop(Iop_And32,
1079                      binop(Iop_Shr32,cc_dep1,mkU8(7)),
1080                      mkU32(1)),
1081                mkU32(1));
1082      }
1083
1084      /*---------------- DECL ----------------*/
1085
1086      if (isU32(cc_op, X86G_CC_OP_DECL) && isU32(cond, X86CondZ)) {
1087         /* dec L, then Z --> test dst == 0 */
1088         return unop(Iop_1Uto32,binop(Iop_CmpEQ32, cc_dep1, mkU32(0)));
1089      }
1090
1091      if (isU32(cc_op, X86G_CC_OP_DECL) && isU32(cond, X86CondS)) {
1092         /* dec L, then S --> compare DST <s 0 */
1093         return unop(Iop_1Uto32,binop(Iop_CmpLT32S, cc_dep1, mkU32(0)));
1094      }
1095
1096      /*---------------- DECW ----------------*/
1097
1098      if (isU32(cc_op, X86G_CC_OP_DECW) && isU32(cond, X86CondZ)) {
1099         /* dec W, then Z --> test dst == 0 */
1100         return unop(Iop_1Uto32,
1101                     binop(Iop_CmpEQ32,
1102                           binop(Iop_Shl32,cc_dep1,mkU8(16)),
1103                           mkU32(0)));
1104      }
1105
1106      /*---------------- INCW ----------------*/
1107
1108      if (isU32(cc_op, X86G_CC_OP_INCW) && isU32(cond, X86CondZ)) {
1109         /* This rewrite helps memcheck on 'incw %ax ; je ...'. */
1110         /* inc W, then Z --> test dst == 0 */
1111         return unop(Iop_1Uto32,
1112                     binop(Iop_CmpEQ32,
1113                           binop(Iop_Shl32,cc_dep1,mkU8(16)),
1114                           mkU32(0)));
1115      }
1116
1117      /*---------------- SHRL ----------------*/
1118
1119      if (isU32(cc_op, X86G_CC_OP_SHRL) && isU32(cond, X86CondZ)) {
1120         /* SHRL, then Z --> test dep1 == 0 */
1121         return unop(Iop_1Uto32,binop(Iop_CmpEQ32, cc_dep1, mkU32(0)));
1122      }
1123
1124      /*---------------- COPY ----------------*/
1125      /* This can happen, as a result of x87 FP compares: "fcom ... ;
1126         fnstsw %ax ; sahf ; jbe" for example. */
1127
1128      if (isU32(cc_op, X86G_CC_OP_COPY) &&
1129          (isU32(cond, X86CondBE) || isU32(cond, X86CondNBE))) {
1130         /* COPY, then BE --> extract C and Z from dep1, and test
1131            (C or Z) == 1. */
1132         /* COPY, then NBE --> extract C and Z from dep1, and test
1133            (C or Z) == 0. */
1134         UInt nnn = isU32(cond, X86CondBE) ? 1 : 0;
1135         return
1136            unop(
1137               Iop_1Uto32,
1138               binop(
1139                  Iop_CmpEQ32,
1140                  binop(
1141                     Iop_And32,
1142                     binop(
1143                        Iop_Or32,
1144                        binop(Iop_Shr32, cc_dep1, mkU8(X86G_CC_SHIFT_C)),
1145                        binop(Iop_Shr32, cc_dep1, mkU8(X86G_CC_SHIFT_Z))
1146                     ),
1147                     mkU32(1)
1148                  ),
1149                  mkU32(nnn)
1150               )
1151            );
1152      }
1153
1154      if (isU32(cc_op, X86G_CC_OP_COPY)
1155          && (isU32(cond, X86CondB) || isU32(cond, X86CondNB))) {
1156         /* COPY, then B --> extract C from dep1, and test (C == 1). */
1157         /* COPY, then NB --> extract C from dep1, and test (C == 0). */
1158         UInt nnn = isU32(cond, X86CondB) ? 1 : 0;
1159         return
1160            unop(
1161               Iop_1Uto32,
1162               binop(
1163                  Iop_CmpEQ32,
1164                  binop(
1165                     Iop_And32,
1166                     binop(Iop_Shr32, cc_dep1, mkU8(X86G_CC_SHIFT_C)),
1167                     mkU32(1)
1168                  ),
1169                  mkU32(nnn)
1170               )
1171            );
1172      }
1173
1174      if (isU32(cc_op, X86G_CC_OP_COPY)
1175          && (isU32(cond, X86CondZ) || isU32(cond, X86CondNZ))) {
1176         /* COPY, then Z --> extract Z from dep1, and test (Z == 1). */
1177         /* COPY, then NZ --> extract Z from dep1, and test (Z == 0). */
1178         UInt nnn = isU32(cond, X86CondZ) ? 1 : 0;
1179         return
1180            unop(
1181               Iop_1Uto32,
1182               binop(
1183                  Iop_CmpEQ32,
1184                  binop(
1185                     Iop_And32,
1186                     binop(Iop_Shr32, cc_dep1, mkU8(X86G_CC_SHIFT_Z)),
1187                     mkU32(1)
1188                  ),
1189                  mkU32(nnn)
1190               )
1191            );
1192      }
1193
1194      if (isU32(cc_op, X86G_CC_OP_COPY)
1195          && (isU32(cond, X86CondP) || isU32(cond, X86CondNP))) {
1196         /* COPY, then P --> extract P from dep1, and test (P == 1). */
1197         /* COPY, then NP --> extract P from dep1, and test (P == 0). */
1198         UInt nnn = isU32(cond, X86CondP) ? 1 : 0;
1199         return
1200            unop(
1201               Iop_1Uto32,
1202               binop(
1203                  Iop_CmpEQ32,
1204                  binop(
1205                     Iop_And32,
1206                     binop(Iop_Shr32, cc_dep1, mkU8(X86G_CC_SHIFT_P)),
1207                     mkU32(1)
1208                  ),
1209                  mkU32(nnn)
1210               )
1211            );
1212      }
1213
1214      return NULL;
1215   }
1216
1217   /* --------- specialising "x86g_calculate_eflags_c" --------- */
1218
1219   if (vex_streq(function_name, "x86g_calculate_eflags_c")) {
1220      /* specialise calls to above "calculate_eflags_c" function */
1221      IRExpr *cc_op, *cc_dep1, *cc_dep2, *cc_ndep;
1222      vassert(arity == 4);
1223      cc_op   = args[0];
1224      cc_dep1 = args[1];
1225      cc_dep2 = args[2];
1226      cc_ndep = args[3];
1227
1228      if (isU32(cc_op, X86G_CC_OP_SUBL)) {
1229         /* C after sub denotes unsigned less than */
1230         return unop(Iop_1Uto32,
1231                     binop(Iop_CmpLT32U, cc_dep1, cc_dep2));
1232      }
1233      if (isU32(cc_op, X86G_CC_OP_SUBB)) {
1234         /* C after sub denotes unsigned less than */
1235         return unop(Iop_1Uto32,
1236                     binop(Iop_CmpLT32U,
1237                           binop(Iop_And32,cc_dep1,mkU32(0xFF)),
1238                           binop(Iop_And32,cc_dep2,mkU32(0xFF))));
1239      }
1240      if (isU32(cc_op, X86G_CC_OP_LOGICL)
1241          || isU32(cc_op, X86G_CC_OP_LOGICW)
1242          || isU32(cc_op, X86G_CC_OP_LOGICB)) {
1243         /* cflag after logic is zero */
1244         return mkU32(0);
1245      }
1246      if (isU32(cc_op, X86G_CC_OP_DECL) || isU32(cc_op, X86G_CC_OP_INCL)) {
1247         /* If the thunk is dec or inc, the cflag is supplied as CC_NDEP. */
1248         return cc_ndep;
1249      }
1250      if (isU32(cc_op, X86G_CC_OP_COPY)) {
1251         /* cflag after COPY is stored in DEP1. */
1252         return
1253            binop(
1254               Iop_And32,
1255               binop(Iop_Shr32, cc_dep1, mkU8(X86G_CC_SHIFT_C)),
1256               mkU32(1)
1257            );
1258      }
1259      if (isU32(cc_op, X86G_CC_OP_ADDL)) {
1260         /* C after add denotes sum <u either arg */
1261         return unop(Iop_1Uto32,
1262                     binop(Iop_CmpLT32U,
1263                           binop(Iop_Add32, cc_dep1, cc_dep2),
1264                           cc_dep1));
1265      }
1266      // ATC, requires verification, no test case known
1267      //if (isU32(cc_op, X86G_CC_OP_SMULL)) {
1268      //   /* C after signed widening multiply denotes the case where
1269      //      the top half of the result isn't simply the sign extension
1270      //      of the bottom half (iow the result doesn't fit completely
1271      //      in the bottom half).  Hence:
1272      //        C = hi-half(dep1 x dep2) != lo-half(dep1 x dep2) >>s 31
1273      //      where 'x' denotes signed widening multiply.*/
1274      //   return
1275      //      unop(Iop_1Uto32,
1276      //           binop(Iop_CmpNE32,
1277      //                 unop(Iop_64HIto32,
1278      //                      binop(Iop_MullS32, cc_dep1, cc_dep2)),
1279      //                 binop(Iop_Sar32,
1280      //                       binop(Iop_Mul32, cc_dep1, cc_dep2), mkU8(31)) ));
1281      //}
1282#     if 0
1283      if (cc_op->tag == Iex_Const) {
1284         vex_printf("CFLAG "); ppIRExpr(cc_op); vex_printf("\n");
1285      }
1286#     endif
1287
1288      return NULL;
1289   }
1290
1291   /* --------- specialising "x86g_calculate_eflags_all" --------- */
1292
1293   if (vex_streq(function_name, "x86g_calculate_eflags_all")) {
1294      /* specialise calls to above "calculate_eflags_all" function */
1295      IRExpr *cc_op, *cc_dep1; /*, *cc_dep2, *cc_ndep; */
1296      vassert(arity == 4);
1297      cc_op   = args[0];
1298      cc_dep1 = args[1];
1299      /* cc_dep2 = args[2]; */
1300      /* cc_ndep = args[3]; */
1301
1302      if (isU32(cc_op, X86G_CC_OP_COPY)) {
1303         /* eflags after COPY are stored in DEP1. */
1304         return
1305            binop(
1306               Iop_And32,
1307               cc_dep1,
1308               mkU32(X86G_CC_MASK_O | X86G_CC_MASK_S | X86G_CC_MASK_Z
1309                     | X86G_CC_MASK_A | X86G_CC_MASK_C | X86G_CC_MASK_P)
1310            );
1311      }
1312      return NULL;
1313   }
1314
1315#  undef unop
1316#  undef binop
1317#  undef mkU32
1318#  undef mkU8
1319
1320   return NULL;
1321}
1322
1323
1324/*---------------------------------------------------------------*/
1325/*--- Supporting functions for x87 FPU activities.            ---*/
1326/*---------------------------------------------------------------*/
1327
1328static inline Bool host_is_little_endian ( void )
1329{
1330   UInt x = 0x76543210;
1331   UChar* p = (UChar*)(&x);
1332   return toBool(*p == 0x10);
1333}
1334
1335/* 80 and 64-bit floating point formats:
1336
1337   80-bit:
1338
1339    S  0       0-------0      zero
1340    S  0       0X------X      denormals
1341    S  1-7FFE  1X------X      normals (all normals have leading 1)
1342    S  7FFF    10------0      infinity
1343    S  7FFF    10X-----X      snan
1344    S  7FFF    11X-----X      qnan
1345
1346   S is the sign bit.  For runs X----X, at least one of the Xs must be
1347   nonzero.  Exponent is 15 bits, fractional part is 63 bits, and
1348   there is an explicitly represented leading 1, and a sign bit,
1349   giving 80 in total.
1350
1351   64-bit avoids the confusion of an explicitly represented leading 1
1352   and so is simpler:
1353
1354    S  0      0------0   zero
1355    S  0      X------X   denormals
1356    S  1-7FE  any        normals
1357    S  7FF    0------0   infinity
1358    S  7FF    0X-----X   snan
1359    S  7FF    1X-----X   qnan
1360
1361   Exponent is 11 bits, fractional part is 52 bits, and there is a
1362   sign bit, giving 64 in total.
1363*/
1364
1365/* Inspect a value and its tag, as per the x87 'FXAM' instruction. */
1366/* CALLED FROM GENERATED CODE: CLEAN HELPER */
1367UInt x86g_calculate_FXAM ( UInt tag, ULong dbl )
1368{
1369   Bool   mantissaIsZero;
1370   Int    bexp;
1371   UChar  sign;
1372   UChar* f64;
1373
1374   vassert(host_is_little_endian());
1375
1376   /* vex_printf("calculate_FXAM ( %d, %llx ) .. ", tag, dbl ); */
1377
1378   f64  = (UChar*)(&dbl);
1379   sign = toUChar( (f64[7] >> 7) & 1 );
1380
1381   /* First off, if the tag indicates the register was empty,
1382      return 1,0,sign,1 */
1383   if (tag == 0) {
1384      /* vex_printf("Empty\n"); */
1385      return X86G_FC_MASK_C3 | 0 | (sign << X86G_FC_SHIFT_C1)
1386                                 | X86G_FC_MASK_C0;
1387   }
1388
1389   bexp = (f64[7] << 4) | ((f64[6] >> 4) & 0x0F);
1390   bexp &= 0x7FF;
1391
1392   mantissaIsZero
1393      = toBool(
1394           (f64[6] & 0x0F) == 0
1395           && (f64[5] | f64[4] | f64[3] | f64[2] | f64[1] | f64[0]) == 0
1396        );
1397
1398   /* If both exponent and mantissa are zero, the value is zero.
1399      Return 1,0,sign,0. */
1400   if (bexp == 0 && mantissaIsZero) {
1401      /* vex_printf("Zero\n"); */
1402      return X86G_FC_MASK_C3 | 0
1403                             | (sign << X86G_FC_SHIFT_C1) | 0;
1404   }
1405
1406   /* If exponent is zero but mantissa isn't, it's a denormal.
1407      Return 1,1,sign,0. */
1408   if (bexp == 0 && !mantissaIsZero) {
1409      /* vex_printf("Denormal\n"); */
1410      return X86G_FC_MASK_C3 | X86G_FC_MASK_C2
1411                             | (sign << X86G_FC_SHIFT_C1) | 0;
1412   }
1413
1414   /* If the exponent is 7FF and the mantissa is zero, this is an infinity.
1415      Return 0,1,sign,1. */
1416   if (bexp == 0x7FF && mantissaIsZero) {
1417      /* vex_printf("Inf\n"); */
1418      return 0 | X86G_FC_MASK_C2 | (sign << X86G_FC_SHIFT_C1)
1419                                 | X86G_FC_MASK_C0;
1420   }
1421
1422   /* If the exponent is 7FF and the mantissa isn't zero, this is a NaN.
1423      Return 0,0,sign,1. */
1424   if (bexp == 0x7FF && !mantissaIsZero) {
1425      /* vex_printf("NaN\n"); */
1426      return 0 | 0 | (sign << X86G_FC_SHIFT_C1) | X86G_FC_MASK_C0;
1427   }
1428
1429   /* Uh, ok, we give up.  It must be a normal finite number.
1430      Return 0,1,sign,0.
1431   */
1432   /* vex_printf("normal\n"); */
1433   return 0 | X86G_FC_MASK_C2 | (sign << X86G_FC_SHIFT_C1) | 0;
1434}
1435
1436
1437/* CALLED FROM GENERATED CODE */
1438/* DIRTY HELPER (reads guest memory) */
1439ULong x86g_dirtyhelper_loadF80le ( UInt addrU )
1440{
1441   ULong f64;
1442   convert_f80le_to_f64le ( (UChar*)ULong_to_Ptr(addrU), (UChar*)&f64 );
1443   return f64;
1444}
1445
1446/* CALLED FROM GENERATED CODE */
1447/* DIRTY HELPER (writes guest memory) */
1448void x86g_dirtyhelper_storeF80le ( UInt addrU, ULong f64 )
1449{
1450   convert_f64le_to_f80le( (UChar*)&f64, (UChar*)ULong_to_Ptr(addrU) );
1451}
1452
1453
1454/*----------------------------------------------*/
1455/*--- The exported fns ..                    ---*/
1456/*----------------------------------------------*/
1457
1458/* Layout of the real x87 state. */
1459/* 13 June 05: Fpu_State and auxiliary constants was moved to
1460   g_generic_x87.h */
1461
1462
1463/* CLEAN HELPER */
1464/* fpucw[15:0] contains a x87 native format FPU control word.
1465   Extract from it the required FPROUND value and any resulting
1466   emulation warning, and return (warn << 32) | fpround value.
1467*/
1468ULong x86g_check_fldcw ( UInt fpucw )
1469{
1470   /* Decide on a rounding mode.  fpucw[11:10] holds it. */
1471   /* NOTE, encoded exactly as per enum IRRoundingMode. */
1472   UInt rmode = (fpucw >> 10) & 3;
1473
1474   /* Detect any required emulation warnings. */
1475   VexEmWarn ew = EmWarn_NONE;
1476
1477   if ((fpucw & 0x3F) != 0x3F) {
1478      /* unmasked exceptions! */
1479      ew = EmWarn_X86_x87exns;
1480   }
1481   else
1482   if (((fpucw >> 8) & 3) != 3) {
1483      /* unsupported precision */
1484      ew = EmWarn_X86_x87precision;
1485   }
1486
1487   return (((ULong)ew) << 32) | ((ULong)rmode);
1488}
1489
1490/* CLEAN HELPER */
1491/* Given fpround as an IRRoundingMode value, create a suitable x87
1492   native format FPU control word. */
1493UInt x86g_create_fpucw ( UInt fpround )
1494{
1495   fpround &= 3;
1496   return 0x037F | (fpround << 10);
1497}
1498
1499
1500/* CLEAN HELPER */
1501/* mxcsr[15:0] contains a SSE native format MXCSR value.
1502   Extract from it the required SSEROUND value and any resulting
1503   emulation warning, and return (warn << 32) | sseround value.
1504*/
1505ULong x86g_check_ldmxcsr ( UInt mxcsr )
1506{
1507   /* Decide on a rounding mode.  mxcsr[14:13] holds it. */
1508   /* NOTE, encoded exactly as per enum IRRoundingMode. */
1509   UInt rmode = (mxcsr >> 13) & 3;
1510
1511   /* Detect any required emulation warnings. */
1512   VexEmWarn ew = EmWarn_NONE;
1513
1514   if ((mxcsr & 0x1F80) != 0x1F80) {
1515      /* unmasked exceptions! */
1516      ew = EmWarn_X86_sseExns;
1517   }
1518   else
1519   if (mxcsr & (1<<15)) {
1520      /* FZ is set */
1521      ew = EmWarn_X86_fz;
1522   }
1523   else
1524   if (mxcsr & (1<<6)) {
1525      /* DAZ is set */
1526      ew = EmWarn_X86_daz;
1527   }
1528
1529   return (((ULong)ew) << 32) | ((ULong)rmode);
1530}
1531
1532
1533/* CLEAN HELPER */
1534/* Given sseround as an IRRoundingMode value, create a suitable SSE
1535   native format MXCSR value. */
1536UInt x86g_create_mxcsr ( UInt sseround )
1537{
1538   sseround &= 3;
1539   return 0x1F80 | (sseround << 13);
1540}
1541
1542
1543/* CALLED FROM GENERATED CODE */
1544/* DIRTY HELPER (writes guest state) */
1545/* Initialise the x87 FPU state as per 'finit'. */
1546void x86g_dirtyhelper_FINIT ( VexGuestX86State* gst )
1547{
1548   Int i;
1549   gst->guest_FTOP = 0;
1550   for (i = 0; i < 8; i++) {
1551      gst->guest_FPTAG[i] = 0; /* empty */
1552      gst->guest_FPREG[i] = 0; /* IEEE754 64-bit zero */
1553   }
1554   gst->guest_FPROUND = (UInt)Irrm_NEAREST;
1555   gst->guest_FC3210  = 0;
1556}
1557
1558
1559/* This is used to implement both 'frstor' and 'fldenv'.  The latter
1560   appears to differ from the former only in that the 8 FP registers
1561   themselves are not transferred into the guest state. */
1562static
1563VexEmWarn do_put_x87 ( Bool moveRegs,
1564                       /*IN*/UChar* x87_state,
1565                       /*OUT*/VexGuestX86State* vex_state )
1566{
1567   Int        stno, preg;
1568   UInt       tag;
1569   ULong*     vexRegs = (ULong*)(&vex_state->guest_FPREG[0]);
1570   UChar*     vexTags = (UChar*)(&vex_state->guest_FPTAG[0]);
1571   Fpu_State* x87     = (Fpu_State*)x87_state;
1572   UInt       ftop    = (x87->env[FP_ENV_STAT] >> 11) & 7;
1573   UInt       tagw    = x87->env[FP_ENV_TAG];
1574   UInt       fpucw   = x87->env[FP_ENV_CTRL];
1575   UInt       c3210   = x87->env[FP_ENV_STAT] & 0x4700;
1576   VexEmWarn  ew;
1577   UInt       fpround;
1578   ULong      pair;
1579
1580   /* Copy registers and tags */
1581   for (stno = 0; stno < 8; stno++) {
1582      preg = (stno + ftop) & 7;
1583      tag = (tagw >> (2*preg)) & 3;
1584      if (tag == 3) {
1585         /* register is empty */
1586         /* hmm, if it's empty, does it still get written?  Probably
1587            safer to say it does.  If we don't, memcheck could get out
1588            of sync, in that it thinks all FP registers are defined by
1589            this helper, but in reality some have not been updated. */
1590         if (moveRegs)
1591            vexRegs[preg] = 0; /* IEEE754 64-bit zero */
1592         vexTags[preg] = 0;
1593      } else {
1594         /* register is non-empty */
1595         if (moveRegs)
1596            convert_f80le_to_f64le( &x87->reg[10*stno],
1597                                    (UChar*)&vexRegs[preg] );
1598         vexTags[preg] = 1;
1599      }
1600   }
1601
1602   /* stack pointer */
1603   vex_state->guest_FTOP = ftop;
1604
1605   /* status word */
1606   vex_state->guest_FC3210 = c3210;
1607
1608   /* handle the control word, setting FPROUND and detecting any
1609      emulation warnings. */
1610   pair    = x86g_check_fldcw ( (UInt)fpucw );
1611   fpround = (UInt)pair;
1612   ew      = (VexEmWarn)(pair >> 32);
1613
1614   vex_state->guest_FPROUND = fpround & 3;
1615
1616   /* emulation warnings --> caller */
1617   return ew;
1618}
1619
1620
1621/* Create an x87 FPU state from the guest state, as close as
1622   we can approximate it. */
1623static
1624void do_get_x87 ( /*IN*/VexGuestX86State* vex_state,
1625                  /*OUT*/UChar* x87_state )
1626{
1627   Int        i, stno, preg;
1628   UInt       tagw;
1629   ULong*     vexRegs = (ULong*)(&vex_state->guest_FPREG[0]);
1630   UChar*     vexTags = (UChar*)(&vex_state->guest_FPTAG[0]);
1631   Fpu_State* x87     = (Fpu_State*)x87_state;
1632   UInt       ftop    = vex_state->guest_FTOP;
1633   UInt       c3210   = vex_state->guest_FC3210;
1634
1635   for (i = 0; i < 14; i++)
1636      x87->env[i] = 0;
1637
1638   x87->env[1] = x87->env[3] = x87->env[5] = x87->env[13] = 0xFFFF;
1639   x87->env[FP_ENV_STAT]
1640      = toUShort(((ftop & 7) << 11) | (c3210 & 0x4700));
1641   x87->env[FP_ENV_CTRL]
1642      = toUShort(x86g_create_fpucw( vex_state->guest_FPROUND ));
1643
1644   /* Dump the register stack in ST order. */
1645   tagw = 0;
1646   for (stno = 0; stno < 8; stno++) {
1647      preg = (stno + ftop) & 7;
1648      if (vexTags[preg] == 0) {
1649         /* register is empty */
1650         tagw |= (3 << (2*preg));
1651         convert_f64le_to_f80le( (UChar*)&vexRegs[preg],
1652                                 &x87->reg[10*stno] );
1653      } else {
1654         /* register is full. */
1655         tagw |= (0 << (2*preg));
1656         convert_f64le_to_f80le( (UChar*)&vexRegs[preg],
1657                                 &x87->reg[10*stno] );
1658      }
1659   }
1660   x87->env[FP_ENV_TAG] = toUShort(tagw);
1661}
1662
1663
1664/* CALLED FROM GENERATED CODE */
1665/* DIRTY HELPER (reads guest state, writes guest mem) */
1666void x86g_dirtyhelper_FXSAVE ( VexGuestX86State* gst, HWord addr )
1667{
1668   /* Somewhat roundabout, but at least it's simple. */
1669   Fpu_State tmp;
1670   UShort*   addrS = (UShort*)addr;
1671   UChar*    addrC = (UChar*)addr;
1672   U128*     xmm   = (U128*)(addr + 160);
1673   UInt      mxcsr;
1674   UShort    fp_tags;
1675   UInt      summary_tags;
1676   Int       r, stno;
1677   UShort    *srcS, *dstS;
1678
1679   do_get_x87( gst, (UChar*)&tmp );
1680   mxcsr = x86g_create_mxcsr( gst->guest_SSEROUND );
1681
1682   /* Now build the proper fxsave image from the x87 image we just
1683      made. */
1684
1685   addrS[0]  = tmp.env[FP_ENV_CTRL]; /* FCW: fpu control word */
1686   addrS[1]  = tmp.env[FP_ENV_STAT]; /* FCW: fpu status word */
1687
1688   /* set addrS[2] in an endian-independent way */
1689   summary_tags = 0;
1690   fp_tags = tmp.env[FP_ENV_TAG];
1691   for (r = 0; r < 8; r++) {
1692      if ( ((fp_tags >> (2*r)) & 3) != 3 )
1693         summary_tags |= (1 << r);
1694   }
1695   addrC[4]  = toUChar(summary_tags); /* FTW: tag summary byte */
1696   addrC[5]  = 0; /* pad */
1697
1698   addrS[3]  = 0; /* FOP: fpu opcode (bogus) */
1699   addrS[4]  = 0;
1700   addrS[5]  = 0; /* FPU IP (bogus) */
1701   addrS[6]  = 0; /* FPU IP's segment selector (bogus) (although we
1702                     could conceivably dump %CS here) */
1703
1704   addrS[7]  = 0; /* Intel reserved */
1705
1706   addrS[8]  = 0; /* FPU DP (operand pointer) (bogus) */
1707   addrS[9]  = 0; /* FPU DP (operand pointer) (bogus) */
1708   addrS[10] = 0; /* segment selector for above operand pointer; %DS
1709                     perhaps? */
1710   addrS[11] = 0; /* Intel reserved */
1711
1712   addrS[12] = toUShort(mxcsr);  /* MXCSR */
1713   addrS[13] = toUShort(mxcsr >> 16);
1714
1715   addrS[14] = 0xFFFF; /* MXCSR mask (lo16); who knows what for */
1716   addrS[15] = 0xFFFF; /* MXCSR mask (hi16); who knows what for */
1717
1718   /* Copy in the FP registers, in ST order. */
1719   for (stno = 0; stno < 8; stno++) {
1720      srcS = (UShort*)(&tmp.reg[10*stno]);
1721      dstS = (UShort*)(&addrS[16 + 8*stno]);
1722      dstS[0] = srcS[0];
1723      dstS[1] = srcS[1];
1724      dstS[2] = srcS[2];
1725      dstS[3] = srcS[3];
1726      dstS[4] = srcS[4];
1727      dstS[5] = 0;
1728      dstS[6] = 0;
1729      dstS[7] = 0;
1730   }
1731
1732   /* That's the first 160 bytes of the image done.  Now only %xmm0
1733      .. %xmm7 remain to be copied.  If the host is big-endian, these
1734      need to be byte-swapped. */
1735   vassert(host_is_little_endian());
1736
1737#  define COPY_U128(_dst,_src)                       \
1738      do { _dst[0] = _src[0]; _dst[1] = _src[1];     \
1739           _dst[2] = _src[2]; _dst[3] = _src[3]; }   \
1740      while (0)
1741
1742   COPY_U128( xmm[0], gst->guest_XMM0 );
1743   COPY_U128( xmm[1], gst->guest_XMM1 );
1744   COPY_U128( xmm[2], gst->guest_XMM2 );
1745   COPY_U128( xmm[3], gst->guest_XMM3 );
1746   COPY_U128( xmm[4], gst->guest_XMM4 );
1747   COPY_U128( xmm[5], gst->guest_XMM5 );
1748   COPY_U128( xmm[6], gst->guest_XMM6 );
1749   COPY_U128( xmm[7], gst->guest_XMM7 );
1750
1751#  undef COPY_U128
1752}
1753
1754
1755/* CALLED FROM GENERATED CODE */
1756/* DIRTY HELPER (writes guest state, reads guest mem) */
1757VexEmWarn x86g_dirtyhelper_FXRSTOR ( VexGuestX86State* gst, HWord addr )
1758{
1759   Fpu_State tmp;
1760   VexEmWarn warnX87 = EmWarn_NONE;
1761   VexEmWarn warnXMM = EmWarn_NONE;
1762   UShort*   addrS   = (UShort*)addr;
1763   UChar*    addrC   = (UChar*)addr;
1764   U128*     xmm     = (U128*)(addr + 160);
1765   UShort    fp_tags;
1766   Int       r, stno, i;
1767
1768   /* Restore %xmm0 .. %xmm7.  If the host is big-endian, these need
1769      to be byte-swapped. */
1770   vassert(host_is_little_endian());
1771
1772#  define COPY_U128(_dst,_src)                       \
1773      do { _dst[0] = _src[0]; _dst[1] = _src[1];     \
1774           _dst[2] = _src[2]; _dst[3] = _src[3]; }   \
1775      while (0)
1776
1777   COPY_U128( gst->guest_XMM0, xmm[0] );
1778   COPY_U128( gst->guest_XMM1, xmm[1] );
1779   COPY_U128( gst->guest_XMM2, xmm[2] );
1780   COPY_U128( gst->guest_XMM3, xmm[3] );
1781   COPY_U128( gst->guest_XMM4, xmm[4] );
1782   COPY_U128( gst->guest_XMM5, xmm[5] );
1783   COPY_U128( gst->guest_XMM6, xmm[6] );
1784   COPY_U128( gst->guest_XMM7, xmm[7] );
1785
1786#  undef COPY_U128
1787
1788   /* Copy the x87 registers out of the image, into a temporary
1789      Fpu_State struct. */
1790   for (i = 0; i < 14; i++) tmp.env[i] = 0;
1791   for (i = 0; i < 80; i++) tmp.reg[i] = 0;
1792   /* fill in tmp.reg[0..7] */
1793   for (stno = 0; stno < 8; stno++) {
1794      UShort* dstS = (UShort*)(&tmp.reg[10*stno]);
1795      UShort* srcS = (UShort*)(&addrS[16 + 8*stno]);
1796      dstS[0] = srcS[0];
1797      dstS[1] = srcS[1];
1798      dstS[2] = srcS[2];
1799      dstS[3] = srcS[3];
1800      dstS[4] = srcS[4];
1801   }
1802   /* fill in tmp.env[0..13] */
1803   tmp.env[FP_ENV_CTRL] = addrS[0]; /* FCW: fpu control word */
1804   tmp.env[FP_ENV_STAT] = addrS[1]; /* FCW: fpu status word */
1805
1806   fp_tags = 0;
1807   for (r = 0; r < 8; r++) {
1808      if (addrC[4] & (1<<r))
1809         fp_tags |= (0 << (2*r)); /* EMPTY */
1810      else
1811         fp_tags |= (3 << (2*r)); /* VALID -- not really precise enough. */
1812   }
1813   tmp.env[FP_ENV_TAG] = fp_tags;
1814
1815   /* Now write 'tmp' into the guest state. */
1816   warnX87 = do_put_x87( True/*moveRegs*/, (UChar*)&tmp, gst );
1817
1818   { UInt w32 = (((UInt)addrS[12]) & 0xFFFF)
1819                | ((((UInt)addrS[13]) & 0xFFFF) << 16);
1820     ULong w64 = x86g_check_ldmxcsr( w32 );
1821
1822     warnXMM = (VexEmWarn)(w64 >> 32);
1823
1824     gst->guest_SSEROUND = (UInt)w64;
1825   }
1826
1827   /* Prefer an X87 emwarn over an XMM one, if both exist. */
1828   if (warnX87 != EmWarn_NONE)
1829      return warnX87;
1830   else
1831      return warnXMM;
1832}
1833
1834
1835/* CALLED FROM GENERATED CODE */
1836/* DIRTY HELPER (reads guest state, writes guest mem) */
1837void x86g_dirtyhelper_FSAVE ( VexGuestX86State* gst, HWord addr )
1838{
1839   do_get_x87( gst, (UChar*)addr );
1840}
1841
1842/* CALLED FROM GENERATED CODE */
1843/* DIRTY HELPER (writes guest state, reads guest mem) */
1844VexEmWarn x86g_dirtyhelper_FRSTOR ( VexGuestX86State* gst, HWord addr )
1845{
1846   return do_put_x87( True/*regs too*/, (UChar*)addr, gst );
1847}
1848
1849/* CALLED FROM GENERATED CODE */
1850/* DIRTY HELPER (reads guest state, writes guest mem) */
1851void x86g_dirtyhelper_FSTENV ( VexGuestX86State* gst, HWord addr )
1852{
1853   /* Somewhat roundabout, but at least it's simple. */
1854   Int       i;
1855   UShort*   addrP = (UShort*)addr;
1856   Fpu_State tmp;
1857   do_get_x87( gst, (UChar*)&tmp );
1858   for (i = 0; i < 14; i++)
1859      addrP[i] = tmp.env[i];
1860}
1861
1862/* CALLED FROM GENERATED CODE */
1863/* DIRTY HELPER (writes guest state, reads guest mem) */
1864VexEmWarn x86g_dirtyhelper_FLDENV ( VexGuestX86State* gst, HWord addr )
1865{
1866   return do_put_x87( False/*don't move regs*/, (UChar*)addr, gst);
1867}
1868
1869
1870/*---------------------------------------------------------------*/
1871/*--- Misc integer helpers, including rotates and CPUID.      ---*/
1872/*---------------------------------------------------------------*/
1873
1874/* CALLED FROM GENERATED CODE: CLEAN HELPER */
1875/* Calculate both flags and value result for rotate right
1876   through the carry bit.  Result in low 32 bits,
1877   new flags (OSZACP) in high 32 bits.
1878*/
1879ULong x86g_calculate_RCR ( UInt arg, UInt rot_amt, UInt eflags_in, UInt sz )
1880{
1881   UInt tempCOUNT = rot_amt & 0x1F, cf=0, of=0, tempcf;
1882
1883   switch (sz) {
1884      case 4:
1885         cf        = (eflags_in >> X86G_CC_SHIFT_C) & 1;
1886         of        = ((arg >> 31) ^ cf) & 1;
1887         while (tempCOUNT > 0) {
1888            tempcf = arg & 1;
1889            arg    = (arg >> 1) | (cf << 31);
1890            cf     = tempcf;
1891            tempCOUNT--;
1892         }
1893         break;
1894      case 2:
1895         while (tempCOUNT >= 17) tempCOUNT -= 17;
1896         cf        = (eflags_in >> X86G_CC_SHIFT_C) & 1;
1897         of        = ((arg >> 15) ^ cf) & 1;
1898         while (tempCOUNT > 0) {
1899            tempcf = arg & 1;
1900            arg    = ((arg >> 1) & 0x7FFF) | (cf << 15);
1901            cf     = tempcf;
1902            tempCOUNT--;
1903         }
1904         break;
1905      case 1:
1906         while (tempCOUNT >= 9) tempCOUNT -= 9;
1907         cf        = (eflags_in >> X86G_CC_SHIFT_C) & 1;
1908         of        = ((arg >> 7) ^ cf) & 1;
1909         while (tempCOUNT > 0) {
1910            tempcf = arg & 1;
1911            arg    = ((arg >> 1) & 0x7F) | (cf << 7);
1912            cf     = tempcf;
1913            tempCOUNT--;
1914         }
1915         break;
1916      default:
1917         vpanic("calculate_RCR: invalid size");
1918   }
1919
1920   cf &= 1;
1921   of &= 1;
1922   eflags_in &= ~(X86G_CC_MASK_C | X86G_CC_MASK_O);
1923   eflags_in |= (cf << X86G_CC_SHIFT_C) | (of << X86G_CC_SHIFT_O);
1924
1925   return (((ULong)eflags_in) << 32) | ((ULong)arg);
1926}
1927
1928
1929/* CALLED FROM GENERATED CODE: CLEAN HELPER */
1930/* Calculate both flags and value result for rotate left
1931   through the carry bit.  Result in low 32 bits,
1932   new flags (OSZACP) in high 32 bits.
1933*/
1934ULong x86g_calculate_RCL ( UInt arg, UInt rot_amt, UInt eflags_in, UInt sz )
1935{
1936   UInt tempCOUNT = rot_amt & 0x1F, cf=0, of=0, tempcf;
1937
1938   switch (sz) {
1939      case 4:
1940         cf = (eflags_in >> X86G_CC_SHIFT_C) & 1;
1941         while (tempCOUNT > 0) {
1942            tempcf = (arg >> 31) & 1;
1943            arg    = (arg << 1) | (cf & 1);
1944            cf     = tempcf;
1945            tempCOUNT--;
1946         }
1947         of = ((arg >> 31) ^ cf) & 1;
1948         break;
1949      case 2:
1950         while (tempCOUNT >= 17) tempCOUNT -= 17;
1951         cf = (eflags_in >> X86G_CC_SHIFT_C) & 1;
1952         while (tempCOUNT > 0) {
1953            tempcf = (arg >> 15) & 1;
1954            arg    = 0xFFFF & ((arg << 1) | (cf & 1));
1955            cf     = tempcf;
1956            tempCOUNT--;
1957         }
1958         of = ((arg >> 15) ^ cf) & 1;
1959         break;
1960      case 1:
1961         while (tempCOUNT >= 9) tempCOUNT -= 9;
1962         cf = (eflags_in >> X86G_CC_SHIFT_C) & 1;
1963         while (tempCOUNT > 0) {
1964            tempcf = (arg >> 7) & 1;
1965            arg    = 0xFF & ((arg << 1) | (cf & 1));
1966            cf     = tempcf;
1967            tempCOUNT--;
1968         }
1969         of = ((arg >> 7) ^ cf) & 1;
1970         break;
1971      default:
1972         vpanic("calculate_RCL: invalid size");
1973   }
1974
1975   cf &= 1;
1976   of &= 1;
1977   eflags_in &= ~(X86G_CC_MASK_C | X86G_CC_MASK_O);
1978   eflags_in |= (cf << X86G_CC_SHIFT_C) | (of << X86G_CC_SHIFT_O);
1979
1980   return (((ULong)eflags_in) << 32) | ((ULong)arg);
1981}
1982
1983
1984/* CALLED FROM GENERATED CODE: CLEAN HELPER */
1985/* Calculate both flags and value result for DAA/DAS/AAA/AAS.
1986   AX value in low half of arg, OSZACP in upper half.
1987   See guest-x86/toIR.c usage point for details.
1988*/
1989static UInt calc_parity_8bit ( UInt w32 ) {
1990   UInt i;
1991   UInt p = 1;
1992   for (i = 0; i < 8; i++)
1993      p ^= (1 & (w32 >> i));
1994   return p;
1995}
1996UInt x86g_calculate_daa_das_aaa_aas ( UInt flags_and_AX, UInt opcode )
1997{
1998   UInt r_AL = (flags_and_AX >> 0) & 0xFF;
1999   UInt r_AH = (flags_and_AX >> 8) & 0xFF;
2000   UInt r_O  = (flags_and_AX >> (16 + X86G_CC_SHIFT_O)) & 1;
2001   UInt r_S  = (flags_and_AX >> (16 + X86G_CC_SHIFT_S)) & 1;
2002   UInt r_Z  = (flags_and_AX >> (16 + X86G_CC_SHIFT_Z)) & 1;
2003   UInt r_A  = (flags_and_AX >> (16 + X86G_CC_SHIFT_A)) & 1;
2004   UInt r_C  = (flags_and_AX >> (16 + X86G_CC_SHIFT_C)) & 1;
2005   UInt r_P  = (flags_and_AX >> (16 + X86G_CC_SHIFT_P)) & 1;
2006   UInt result = 0;
2007
2008   switch (opcode) {
2009      case 0x27: { /* DAA */
2010         UInt old_AL = r_AL;
2011         UInt old_C  = r_C;
2012         r_C = 0;
2013         if ((r_AL & 0xF) > 9 || r_A == 1) {
2014            r_AL = r_AL + 6;
2015            r_C  = old_C;
2016            if (r_AL >= 0x100) r_C = 1;
2017            r_A = 1;
2018         } else {
2019            r_A = 0;
2020         }
2021         if (old_AL > 0x99 || old_C == 1) {
2022            r_AL = r_AL + 0x60;
2023            r_C  = 1;
2024         } else {
2025            r_C = 0;
2026         }
2027         /* O is undefined.  S Z and P are set according to the
2028	    result. */
2029         r_AL &= 0xFF;
2030         r_O = 0; /* let's say */
2031         r_S = (r_AL & 0x80) ? 1 : 0;
2032         r_Z = (r_AL == 0) ? 1 : 0;
2033         r_P = calc_parity_8bit( r_AL );
2034         break;
2035      }
2036      case 0x2F: { /* DAS */
2037         UInt old_AL = r_AL;
2038         UInt old_C  = r_C;
2039         r_C = 0;
2040         if ((r_AL & 0xF) > 9 || r_A == 1) {
2041            Bool borrow = r_AL < 6;
2042            r_AL = r_AL - 6;
2043            r_C  = old_C;
2044            if (borrow) r_C = 1;
2045            r_A = 1;
2046         } else {
2047            r_A = 0;
2048         }
2049         if (old_AL > 0x99 || old_C == 1) {
2050            r_AL = r_AL - 0x60;
2051            r_C  = 1;
2052         } else {
2053            /* Intel docs are wrong: r_C = 0; */
2054         }
2055         /* O is undefined.  S Z and P are set according to the
2056	    result. */
2057         r_AL &= 0xFF;
2058         r_O = 0; /* let's say */
2059         r_S = (r_AL & 0x80) ? 1 : 0;
2060         r_Z = (r_AL == 0) ? 1 : 0;
2061         r_P = calc_parity_8bit( r_AL );
2062         break;
2063      }
2064      case 0x37: { /* AAA */
2065         Bool nudge = r_AL > 0xF9;
2066         if ((r_AL & 0xF) > 9 || r_A == 1) {
2067            r_AL = r_AL + 6;
2068            r_AH = r_AH + 1 + (nudge ? 1 : 0);
2069            r_A  = 1;
2070            r_C  = 1;
2071            r_AL = r_AL & 0xF;
2072         } else {
2073            r_A  = 0;
2074            r_C  = 0;
2075            r_AL = r_AL & 0xF;
2076         }
2077         /* O S Z and P are undefined. */
2078         r_O = r_S = r_Z = r_P = 0; /* let's say */
2079         break;
2080      }
2081      case 0x3F: { /* AAS */
2082         Bool nudge = r_AL < 0x06;
2083         if ((r_AL & 0xF) > 9 || r_A == 1) {
2084            r_AL = r_AL - 6;
2085            r_AH = r_AH - 1 - (nudge ? 1 : 0);
2086            r_A  = 1;
2087            r_C  = 1;
2088            r_AL = r_AL & 0xF;
2089         } else {
2090            r_A  = 0;
2091            r_C  = 0;
2092            r_AL = r_AL & 0xF;
2093         }
2094         /* O S Z and P are undefined. */
2095         r_O = r_S = r_Z = r_P = 0; /* let's say */
2096         break;
2097      }
2098      default:
2099         vassert(0);
2100   }
2101   result =   ( (r_O & 1) << (16 + X86G_CC_SHIFT_O) )
2102            | ( (r_S & 1) << (16 + X86G_CC_SHIFT_S) )
2103            | ( (r_Z & 1) << (16 + X86G_CC_SHIFT_Z) )
2104            | ( (r_A & 1) << (16 + X86G_CC_SHIFT_A) )
2105            | ( (r_C & 1) << (16 + X86G_CC_SHIFT_C) )
2106            | ( (r_P & 1) << (16 + X86G_CC_SHIFT_P) )
2107            | ( (r_AH & 0xFF) << 8 )
2108            | ( (r_AL & 0xFF) << 0 );
2109   return result;
2110}
2111
2112UInt x86g_calculate_aad_aam ( UInt flags_and_AX, UInt opcode )
2113{
2114   UInt r_AL = (flags_and_AX >> 0) & 0xFF;
2115   UInt r_AH = (flags_and_AX >> 8) & 0xFF;
2116   UInt r_O  = (flags_and_AX >> (16 + X86G_CC_SHIFT_O)) & 1;
2117   UInt r_S  = (flags_and_AX >> (16 + X86G_CC_SHIFT_S)) & 1;
2118   UInt r_Z  = (flags_and_AX >> (16 + X86G_CC_SHIFT_Z)) & 1;
2119   UInt r_A  = (flags_and_AX >> (16 + X86G_CC_SHIFT_A)) & 1;
2120   UInt r_C  = (flags_and_AX >> (16 + X86G_CC_SHIFT_C)) & 1;
2121   UInt r_P  = (flags_and_AX >> (16 + X86G_CC_SHIFT_P)) & 1;
2122   UInt result = 0;
2123
2124   switch (opcode) {
2125      case 0xD4: { /* AAM */
2126         r_AH = r_AL / 10;
2127         r_AL = r_AL % 10;
2128         break;
2129      }
2130      case 0xD5: { /* AAD */
2131         r_AL = ((r_AH * 10) + r_AL) & 0xff;
2132         r_AH = 0;
2133         break;
2134      }
2135      default:
2136         vassert(0);
2137   }
2138
2139   r_O = 0; /* let's say (undefined) */
2140   r_C = 0; /* let's say (undefined) */
2141   r_A = 0; /* let's say (undefined) */
2142   r_S = (r_AL & 0x80) ? 1 : 0;
2143   r_Z = (r_AL == 0) ? 1 : 0;
2144   r_P = calc_parity_8bit( r_AL );
2145
2146   result =   ( (r_O & 1) << (16 + X86G_CC_SHIFT_O) )
2147            | ( (r_S & 1) << (16 + X86G_CC_SHIFT_S) )
2148            | ( (r_Z & 1) << (16 + X86G_CC_SHIFT_Z) )
2149            | ( (r_A & 1) << (16 + X86G_CC_SHIFT_A) )
2150            | ( (r_C & 1) << (16 + X86G_CC_SHIFT_C) )
2151            | ( (r_P & 1) << (16 + X86G_CC_SHIFT_P) )
2152            | ( (r_AH & 0xFF) << 8 )
2153            | ( (r_AL & 0xFF) << 0 );
2154   return result;
2155}
2156
2157
2158/* CALLED FROM GENERATED CODE */
2159/* DIRTY HELPER (non-referentially-transparent) */
2160/* Horrible hack.  On non-x86 platforms, return 1. */
2161ULong x86g_dirtyhelper_RDTSC ( void )
2162{
2163#  if defined(__i386__)
2164   ULong res;
2165   __asm__ __volatile__("rdtsc" : "=A" (res));
2166   return res;
2167#  else
2168   return 1ULL;
2169#  endif
2170}
2171
2172
2173/* CALLED FROM GENERATED CODE */
2174/* DIRTY HELPER (modifies guest state) */
2175/* Claim to be a P55C (Intel Pentium/MMX) */
2176void x86g_dirtyhelper_CPUID_sse0 ( VexGuestX86State* st )
2177{
2178   switch (st->guest_EAX) {
2179      case 0:
2180         st->guest_EAX = 0x1;
2181         st->guest_EBX = 0x756e6547;
2182         st->guest_ECX = 0x6c65746e;
2183         st->guest_EDX = 0x49656e69;
2184         break;
2185      default:
2186         st->guest_EAX = 0x543;
2187         st->guest_EBX = 0x0;
2188         st->guest_ECX = 0x0;
2189         st->guest_EDX = 0x8001bf;
2190         break;
2191   }
2192}
2193
2194/* CALLED FROM GENERATED CODE */
2195/* DIRTY HELPER (modifies guest state) */
2196/* Claim to be the following SSE1-capable CPU:
2197   vendor_id       : GenuineIntel
2198   cpu family      : 6
2199   model           : 11
2200   model name      : Intel(R) Pentium(R) III CPU family      1133MHz
2201   stepping        : 1
2202   cpu MHz         : 1131.013
2203   cache size      : 512 KB
2204*/
2205void x86g_dirtyhelper_CPUID_sse1 ( VexGuestX86State* st )
2206{
2207   switch (st->guest_EAX) {
2208      case 0:
2209         st->guest_EAX = 0x00000002;
2210         st->guest_EBX = 0x756e6547;
2211         st->guest_ECX = 0x6c65746e;
2212         st->guest_EDX = 0x49656e69;
2213         break;
2214      case 1:
2215         st->guest_EAX = 0x000006b1;
2216         st->guest_EBX = 0x00000004;
2217         st->guest_ECX = 0x00000000;
2218         st->guest_EDX = 0x0383fbff;
2219         break;
2220      default:
2221         st->guest_EAX = 0x03020101;
2222         st->guest_EBX = 0x00000000;
2223         st->guest_ECX = 0x00000000;
2224         st->guest_EDX = 0x0c040883;
2225         break;
2226   }
2227}
2228
2229/* Claim to be the following SSSE3-capable CPU (2 x ...):
2230   vendor_id       : GenuineIntel
2231   cpu family      : 6
2232   model           : 15
2233   model name      : Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz
2234   stepping        : 6
2235   cpu MHz         : 2394.000
2236   cache size      : 4096 KB
2237   physical id     : 0
2238   siblings        : 2
2239   core id         : 0
2240   cpu cores       : 2
2241   fpu             : yes
2242   fpu_exception   : yes
2243   cpuid level     : 10
2244   wp              : yes
2245   flags           : fpu vme de pse tsc msr pae mce cx8 apic sep
2246                     mtrr pge mca cmov pat pse36 clflush dts acpi
2247                     mmx fxsr sse sse2 ss ht tm syscall nx lm
2248                     constant_tsc pni monitor ds_cpl vmx est tm2
2249                     cx16 xtpr lahf_lm
2250   bogomips        : 4798.78
2251   clflush size    : 64
2252   cache_alignment : 64
2253   address sizes   : 36 bits physical, 48 bits virtual
2254   power management:
2255*/
2256void x86g_dirtyhelper_CPUID_sse2 ( VexGuestX86State* st )
2257{
2258#  define SET_ABCD(_a,_b,_c,_d)               \
2259      do { st->guest_EAX = (UInt)(_a);        \
2260           st->guest_EBX = (UInt)(_b);        \
2261           st->guest_ECX = (UInt)(_c);        \
2262           st->guest_EDX = (UInt)(_d);        \
2263      } while (0)
2264
2265   switch (st->guest_EAX) {
2266      case 0x00000000:
2267         SET_ABCD(0x0000000a, 0x756e6547, 0x6c65746e, 0x49656e69);
2268         break;
2269      case 0x00000001:
2270         SET_ABCD(0x000006f6, 0x00020800, 0x0000e3bd, 0xbfebfbff);
2271         break;
2272      case 0x00000002:
2273         SET_ABCD(0x05b0b101, 0x005657f0, 0x00000000, 0x2cb43049);
2274         break;
2275      case 0x00000003:
2276         SET_ABCD(0x00000000, 0x00000000, 0x00000000, 0x00000000);
2277         break;
2278      case 0x00000004: {
2279         switch (st->guest_ECX) {
2280            case 0x00000000: SET_ABCD(0x04000121, 0x01c0003f,
2281                                      0x0000003f, 0x00000001); break;
2282            case 0x00000001: SET_ABCD(0x04000122, 0x01c0003f,
2283                                      0x0000003f, 0x00000001); break;
2284            case 0x00000002: SET_ABCD(0x04004143, 0x03c0003f,
2285                                      0x00000fff, 0x00000001); break;
2286            default:         SET_ABCD(0x00000000, 0x00000000,
2287                                      0x00000000, 0x00000000); break;
2288         }
2289         break;
2290      }
2291      case 0x00000005:
2292         SET_ABCD(0x00000040, 0x00000040, 0x00000003, 0x00000020);
2293         break;
2294      case 0x00000006:
2295         SET_ABCD(0x00000001, 0x00000002, 0x00000001, 0x00000000);
2296         break;
2297      case 0x00000007:
2298         SET_ABCD(0x00000000, 0x00000000, 0x00000000, 0x00000000);
2299         break;
2300      case 0x00000008:
2301         SET_ABCD(0x00000400, 0x00000000, 0x00000000, 0x00000000);
2302         break;
2303      case 0x00000009:
2304         SET_ABCD(0x00000000, 0x00000000, 0x00000000, 0x00000000);
2305         break;
2306      case 0x0000000a:
2307      unhandled_eax_value:
2308         SET_ABCD(0x07280202, 0x00000000, 0x00000000, 0x00000000);
2309         break;
2310      case 0x80000000:
2311         SET_ABCD(0x80000008, 0x00000000, 0x00000000, 0x00000000);
2312         break;
2313      case 0x80000001:
2314         SET_ABCD(0x00000000, 0x00000000, 0x00000001, 0x20100000);
2315         break;
2316      case 0x80000002:
2317         SET_ABCD(0x65746e49, 0x2952286c, 0x726f4320, 0x4d542865);
2318         break;
2319      case 0x80000003:
2320         SET_ABCD(0x43203229, 0x20205550, 0x20202020, 0x20202020);
2321         break;
2322      case 0x80000004:
2323         SET_ABCD(0x30303636, 0x20402020, 0x30342e32, 0x007a4847);
2324         break;
2325      case 0x80000005:
2326         SET_ABCD(0x00000000, 0x00000000, 0x00000000, 0x00000000);
2327         break;
2328      case 0x80000006:
2329         SET_ABCD(0x00000000, 0x00000000, 0x10008040, 0x00000000);
2330         break;
2331      case 0x80000007:
2332         SET_ABCD(0x00000000, 0x00000000, 0x00000000, 0x00000000);
2333         break;
2334      case 0x80000008:
2335         SET_ABCD(0x00003024, 0x00000000, 0x00000000, 0x00000000);
2336         break;
2337      default:
2338         goto unhandled_eax_value;
2339   }
2340#  undef SET_ABCD
2341}
2342
2343
2344/* CALLED FROM GENERATED CODE */
2345/* DIRTY HELPER (non-referentially-transparent) */
2346/* Horrible hack.  On non-x86 platforms, return 0. */
2347UInt x86g_dirtyhelper_IN ( UInt portno, UInt sz/*1,2 or 4*/ )
2348{
2349#  if defined(__i386__)
2350   UInt r = 0;
2351   portno &= 0xFFFF;
2352   switch (sz) {
2353      case 4:
2354         __asm__ __volatile__("movl $0,%%eax; inl %w1,%0"
2355                              : "=a" (r) : "Nd" (portno));
2356	 break;
2357      case 2:
2358         __asm__ __volatile__("movl $0,%%eax; inw %w1,%w0"
2359                              : "=a" (r) : "Nd" (portno));
2360	 break;
2361      case 1:
2362         __asm__ __volatile__("movl $0,%%eax; inb %w1,%b0"
2363                              : "=a" (r) : "Nd" (portno));
2364	 break;
2365      default:
2366         break;
2367   }
2368   return r;
2369#  else
2370   return 0;
2371#  endif
2372}
2373
2374
2375/* CALLED FROM GENERATED CODE */
2376/* DIRTY HELPER (non-referentially-transparent) */
2377/* Horrible hack.  On non-x86 platforms, do nothing. */
2378void x86g_dirtyhelper_OUT ( UInt portno, UInt data, UInt sz/*1,2 or 4*/ )
2379{
2380#  if defined(__i386__)
2381   portno &= 0xFFFF;
2382   switch (sz) {
2383      case 4:
2384         __asm__ __volatile__("outl %0, %w1"
2385                              : : "a" (data), "Nd" (portno));
2386	 break;
2387      case 2:
2388         __asm__ __volatile__("outw %w0, %w1"
2389                              : : "a" (data), "Nd" (portno));
2390	 break;
2391      case 1:
2392         __asm__ __volatile__("outb %b0, %w1"
2393                              : : "a" (data), "Nd" (portno));
2394	 break;
2395      default:
2396         break;
2397   }
2398#  else
2399   /* do nothing */
2400#  endif
2401}
2402
2403/* CALLED FROM GENERATED CODE */
2404/* DIRTY HELPER (non-referentially-transparent) */
2405/* Horrible hack.  On non-x86 platforms, do nothing. */
2406/* op = 0: call the native SGDT instruction.
2407   op = 1: call the native SIDT instruction.
2408*/
2409void x86g_dirtyhelper_SxDT ( void *address, UInt op ) {
2410#  if defined(__i386__)
2411   switch (op) {
2412      case 0:
2413         __asm__ __volatile__("sgdt (%0)" : : "r" (address) : "memory");
2414         break;
2415      case 1:
2416         __asm__ __volatile__("sidt (%0)" : : "r" (address) : "memory");
2417         break;
2418      default:
2419         vpanic("x86g_dirtyhelper_SxDT");
2420   }
2421#  else
2422   /* do nothing */
2423   UChar* p = (UChar*)address;
2424   p[0] = p[1] = p[2] = p[3] = p[4] = p[5] = 0;
2425#  endif
2426}
2427
2428/*---------------------------------------------------------------*/
2429/*--- Helpers for MMX/SSE/SSE2.                               ---*/
2430/*---------------------------------------------------------------*/
2431
2432static inline UChar abdU8 ( UChar xx, UChar yy ) {
2433   return toUChar(xx>yy ? xx-yy : yy-xx);
2434}
2435
2436static inline ULong mk32x2 ( UInt w1, UInt w0 ) {
2437   return (((ULong)w1) << 32) | ((ULong)w0);
2438}
2439
2440static inline UShort sel16x4_3 ( ULong w64 ) {
2441   UInt hi32 = toUInt(w64 >> 32);
2442   return toUShort(hi32 >> 16);
2443}
2444static inline UShort sel16x4_2 ( ULong w64 ) {
2445   UInt hi32 = toUInt(w64 >> 32);
2446   return toUShort(hi32);
2447}
2448static inline UShort sel16x4_1 ( ULong w64 ) {
2449   UInt lo32 = toUInt(w64);
2450   return toUShort(lo32 >> 16);
2451}
2452static inline UShort sel16x4_0 ( ULong w64 ) {
2453   UInt lo32 = toUInt(w64);
2454   return toUShort(lo32);
2455}
2456
2457static inline UChar sel8x8_7 ( ULong w64 ) {
2458   UInt hi32 = toUInt(w64 >> 32);
2459   return toUChar(hi32 >> 24);
2460}
2461static inline UChar sel8x8_6 ( ULong w64 ) {
2462   UInt hi32 = toUInt(w64 >> 32);
2463   return toUChar(hi32 >> 16);
2464}
2465static inline UChar sel8x8_5 ( ULong w64 ) {
2466   UInt hi32 = toUInt(w64 >> 32);
2467   return toUChar(hi32 >> 8);
2468}
2469static inline UChar sel8x8_4 ( ULong w64 ) {
2470   UInt hi32 = toUInt(w64 >> 32);
2471   return toUChar(hi32 >> 0);
2472}
2473static inline UChar sel8x8_3 ( ULong w64 ) {
2474   UInt lo32 = toUInt(w64);
2475   return toUChar(lo32 >> 24);
2476}
2477static inline UChar sel8x8_2 ( ULong w64 ) {
2478   UInt lo32 = toUInt(w64);
2479   return toUChar(lo32 >> 16);
2480}
2481static inline UChar sel8x8_1 ( ULong w64 ) {
2482   UInt lo32 = toUInt(w64);
2483   return toUChar(lo32 >> 8);
2484}
2485static inline UChar sel8x8_0 ( ULong w64 ) {
2486   UInt lo32 = toUInt(w64);
2487   return toUChar(lo32 >> 0);
2488}
2489
2490/* CALLED FROM GENERATED CODE: CLEAN HELPER */
2491ULong x86g_calculate_mmx_pmaddwd ( ULong xx, ULong yy )
2492{
2493   return
2494      mk32x2(
2495         (((Int)(Short)sel16x4_3(xx)) * ((Int)(Short)sel16x4_3(yy)))
2496            + (((Int)(Short)sel16x4_2(xx)) * ((Int)(Short)sel16x4_2(yy))),
2497         (((Int)(Short)sel16x4_1(xx)) * ((Int)(Short)sel16x4_1(yy)))
2498            + (((Int)(Short)sel16x4_0(xx)) * ((Int)(Short)sel16x4_0(yy)))
2499      );
2500}
2501
2502/* CALLED FROM GENERATED CODE: CLEAN HELPER */
2503UInt x86g_calculate_mmx_pmovmskb ( ULong xx )
2504{
2505   UInt r = 0;
2506   if (xx & (1ULL << (64-1))) r |= (1<<7);
2507   if (xx & (1ULL << (56-1))) r |= (1<<6);
2508   if (xx & (1ULL << (48-1))) r |= (1<<5);
2509   if (xx & (1ULL << (40-1))) r |= (1<<4);
2510   if (xx & (1ULL << (32-1))) r |= (1<<3);
2511   if (xx & (1ULL << (24-1))) r |= (1<<2);
2512   if (xx & (1ULL << (16-1))) r |= (1<<1);
2513   if (xx & (1ULL << ( 8-1))) r |= (1<<0);
2514   return r;
2515}
2516
2517/* CALLED FROM GENERATED CODE: CLEAN HELPER */
2518ULong x86g_calculate_mmx_psadbw ( ULong xx, ULong yy )
2519{
2520   UInt t = 0;
2521   t += (UInt)abdU8( sel8x8_7(xx), sel8x8_7(yy) );
2522   t += (UInt)abdU8( sel8x8_6(xx), sel8x8_6(yy) );
2523   t += (UInt)abdU8( sel8x8_5(xx), sel8x8_5(yy) );
2524   t += (UInt)abdU8( sel8x8_4(xx), sel8x8_4(yy) );
2525   t += (UInt)abdU8( sel8x8_3(xx), sel8x8_3(yy) );
2526   t += (UInt)abdU8( sel8x8_2(xx), sel8x8_2(yy) );
2527   t += (UInt)abdU8( sel8x8_1(xx), sel8x8_1(yy) );
2528   t += (UInt)abdU8( sel8x8_0(xx), sel8x8_0(yy) );
2529   t &= 0xFFFF;
2530   return (ULong)t;
2531}
2532
2533/* CALLED FROM GENERATED CODE: CLEAN HELPER */
2534UInt x86g_calculate_sse_pmovmskb ( ULong w64hi, ULong w64lo )
2535{
2536   UInt rHi8 = x86g_calculate_mmx_pmovmskb ( w64hi );
2537   UInt rLo8 = x86g_calculate_mmx_pmovmskb ( w64lo );
2538   return ((rHi8 & 0xFF) << 8) | (rLo8 & 0xFF);
2539}
2540
2541
2542/*---------------------------------------------------------------*/
2543/*--- Helpers for dealing with segment overrides.             ---*/
2544/*---------------------------------------------------------------*/
2545
2546static inline
2547UInt get_segdescr_base ( VexGuestX86SegDescr* ent )
2548{
2549   UInt lo  = 0xFFFF & (UInt)ent->LdtEnt.Bits.BaseLow;
2550   UInt mid =   0xFF & (UInt)ent->LdtEnt.Bits.BaseMid;
2551   UInt hi  =   0xFF & (UInt)ent->LdtEnt.Bits.BaseHi;
2552   return (hi << 24) | (mid << 16) | lo;
2553}
2554
2555static inline
2556UInt get_segdescr_limit ( VexGuestX86SegDescr* ent )
2557{
2558    UInt lo    = 0xFFFF & (UInt)ent->LdtEnt.Bits.LimitLow;
2559    UInt hi    =    0xF & (UInt)ent->LdtEnt.Bits.LimitHi;
2560    UInt limit = (hi << 16) | lo;
2561    if (ent->LdtEnt.Bits.Granularity)
2562       limit = (limit << 12) | 0xFFF;
2563    return limit;
2564}
2565
2566/* CALLED FROM GENERATED CODE: CLEAN HELPER */
2567ULong x86g_use_seg_selector ( HWord ldt, HWord gdt,
2568                              UInt seg_selector, UInt virtual_addr )
2569{
2570   UInt tiBit, base, limit;
2571   VexGuestX86SegDescr* the_descrs;
2572
2573   Bool verboze = False;
2574
2575   /* If this isn't true, we're in Big Trouble. */
2576   vassert(8 == sizeof(VexGuestX86SegDescr));
2577
2578   if (verboze)
2579      vex_printf("x86h_use_seg_selector: "
2580                 "seg_selector = 0x%x, vaddr = 0x%x\n",
2581                 seg_selector, virtual_addr);
2582
2583   /* Check for wildly invalid selector. */
2584   if (seg_selector & ~0xFFFF)
2585      goto bad;
2586
2587   seg_selector &= 0x0000FFFF;
2588
2589   /* Sanity check the segment selector.  Ensure that RPL=11b (least
2590      privilege).  This forms the bottom 2 bits of the selector. */
2591   if ((seg_selector & 3) != 3)
2592      goto bad;
2593
2594   /* Extract the TI bit (0 means GDT, 1 means LDT) */
2595   tiBit = (seg_selector >> 2) & 1;
2596
2597   /* Convert the segment selector onto a table index */
2598   seg_selector >>= 3;
2599   vassert(seg_selector >= 0 && seg_selector < 8192);
2600
2601   if (tiBit == 0) {
2602
2603      /* GDT access. */
2604      /* Do we actually have a GDT to look at? */
2605      if (gdt == 0)
2606         goto bad;
2607
2608      /* Check for access to non-existent entry. */
2609      if (seg_selector >= VEX_GUEST_X86_GDT_NENT)
2610         goto bad;
2611
2612      the_descrs = (VexGuestX86SegDescr*)gdt;
2613      base  = get_segdescr_base (&the_descrs[seg_selector]);
2614      limit = get_segdescr_limit(&the_descrs[seg_selector]);
2615
2616   } else {
2617
2618      /* All the same stuff, except for the LDT. */
2619      if (ldt == 0)
2620         goto bad;
2621
2622      if (seg_selector >= VEX_GUEST_X86_LDT_NENT)
2623         goto bad;
2624
2625      the_descrs = (VexGuestX86SegDescr*)ldt;
2626      base  = get_segdescr_base (&the_descrs[seg_selector]);
2627      limit = get_segdescr_limit(&the_descrs[seg_selector]);
2628
2629   }
2630
2631   /* Do the limit check.  Note, this check is just slightly too
2632      slack.  Really it should be "if (virtual_addr + size - 1 >=
2633      limit)," but we don't have the size info to hand.  Getting it
2634      could be significantly complex.  */
2635   if (virtual_addr >= limit)
2636      goto bad;
2637
2638   if (verboze)
2639      vex_printf("x86h_use_seg_selector: "
2640                 "base = 0x%x, addr = 0x%x\n",
2641                 base, base + virtual_addr);
2642
2643   /* High 32 bits are zero, indicating success. */
2644   return (ULong)( ((UInt)virtual_addr) + base );
2645
2646 bad:
2647   return 1ULL << 32;
2648}
2649
2650
2651/*---------------------------------------------------------------*/
2652/*--- Helpers for dealing with, and describing,               ---*/
2653/*--- guest state as a whole.                                 ---*/
2654/*---------------------------------------------------------------*/
2655
2656/* Initialise the entire x86 guest state. */
2657/* VISIBLE TO LIBVEX CLIENT */
2658void LibVEX_GuestX86_initialise ( /*OUT*/VexGuestX86State* vex_state )
2659{
2660   vex_state->guest_EAX = 0;
2661   vex_state->guest_ECX = 0;
2662   vex_state->guest_EDX = 0;
2663   vex_state->guest_EBX = 0;
2664   vex_state->guest_ESP = 0;
2665   vex_state->guest_EBP = 0;
2666   vex_state->guest_ESI = 0;
2667   vex_state->guest_EDI = 0;
2668
2669   vex_state->guest_CC_OP   = X86G_CC_OP_COPY;
2670   vex_state->guest_CC_DEP1 = 0;
2671   vex_state->guest_CC_DEP2 = 0;
2672   vex_state->guest_CC_NDEP = 0;
2673   vex_state->guest_DFLAG   = 1; /* forwards */
2674   vex_state->guest_IDFLAG  = 0;
2675   vex_state->guest_ACFLAG  = 0;
2676
2677   vex_state->guest_EIP = 0;
2678
2679   /* Initialise the simulated FPU */
2680   x86g_dirtyhelper_FINIT( vex_state );
2681
2682   /* Initialse the SSE state. */
2683#  define SSEZERO(_xmm) _xmm[0]=_xmm[1]=_xmm[2]=_xmm[3] = 0;
2684
2685   vex_state->guest_SSEROUND = (UInt)Irrm_NEAREST;
2686   SSEZERO(vex_state->guest_XMM0);
2687   SSEZERO(vex_state->guest_XMM1);
2688   SSEZERO(vex_state->guest_XMM2);
2689   SSEZERO(vex_state->guest_XMM3);
2690   SSEZERO(vex_state->guest_XMM4);
2691   SSEZERO(vex_state->guest_XMM5);
2692   SSEZERO(vex_state->guest_XMM6);
2693   SSEZERO(vex_state->guest_XMM7);
2694
2695#  undef SSEZERO
2696
2697   vex_state->guest_CS  = 0;
2698   vex_state->guest_DS  = 0;
2699   vex_state->guest_ES  = 0;
2700   vex_state->guest_FS  = 0;
2701   vex_state->guest_GS  = 0;
2702   vex_state->guest_SS  = 0;
2703   vex_state->guest_LDT = 0;
2704   vex_state->guest_GDT = 0;
2705
2706   vex_state->guest_EMWARN = EmWarn_NONE;
2707
2708   /* SSE2 has a 'clflush' cache-line-invalidator which uses these. */
2709   vex_state->guest_TISTART = 0;
2710   vex_state->guest_TILEN   = 0;
2711
2712   vex_state->guest_NRADDR   = 0;
2713   vex_state->guest_SC_CLASS = 0;
2714   vex_state->guest_IP_AT_SYSCALL = 0;
2715
2716   vex_state->padding1 = 0;
2717   vex_state->padding2 = 0;
2718   vex_state->padding3 = 0;
2719}
2720
2721
2722/* Figure out if any part of the guest state contained in minoff
2723   .. maxoff requires precise memory exceptions.  If in doubt return
2724   True (but this is generates significantly slower code).
2725
2726   By default we enforce precise exns for guest %ESP, %EBP and %EIP
2727   only.  These are the minimum needed to extract correct stack
2728   backtraces from x86 code.
2729*/
2730Bool guest_x86_state_requires_precise_mem_exns ( Int minoff,
2731                                                 Int maxoff)
2732{
2733   Int ebp_min = offsetof(VexGuestX86State, guest_EBP);
2734   Int ebp_max = ebp_min + 4 - 1;
2735   Int esp_min = offsetof(VexGuestX86State, guest_ESP);
2736   Int esp_max = esp_min + 4 - 1;
2737   Int eip_min = offsetof(VexGuestX86State, guest_EIP);
2738   Int eip_max = eip_min + 4 - 1;
2739
2740   if (maxoff < ebp_min || minoff > ebp_max) {
2741      /* no overlap with ebp */
2742   } else {
2743      return True;
2744   }
2745
2746   if (maxoff < esp_min || minoff > esp_max) {
2747      /* no overlap with esp */
2748   } else {
2749      return True;
2750   }
2751
2752   if (maxoff < eip_min || minoff > eip_max) {
2753      /* no overlap with eip */
2754   } else {
2755      return True;
2756   }
2757
2758   return False;
2759}
2760
2761
2762#define ALWAYSDEFD(field)                           \
2763    { offsetof(VexGuestX86State, field),            \
2764      (sizeof ((VexGuestX86State*)0)->field) }
2765
2766VexGuestLayout
2767   x86guest_layout
2768      = {
2769          /* Total size of the guest state, in bytes. */
2770          .total_sizeB = sizeof(VexGuestX86State),
2771
2772          /* Describe the stack pointer. */
2773          .offset_SP = offsetof(VexGuestX86State,guest_ESP),
2774          .sizeof_SP = 4,
2775
2776          /* Describe the frame pointer. */
2777          .offset_FP = offsetof(VexGuestX86State,guest_EBP),
2778          .sizeof_FP = 4,
2779
2780          /* Describe the instruction pointer. */
2781          .offset_IP = offsetof(VexGuestX86State,guest_EIP),
2782          .sizeof_IP = 4,
2783
2784          /* Describe any sections to be regarded by Memcheck as
2785             'always-defined'. */
2786          .n_alwaysDefd = 24,
2787
2788          /* flags thunk: OP and NDEP are always defd, whereas DEP1
2789             and DEP2 have to be tracked.  See detailed comment in
2790             gdefs.h on meaning of thunk fields. */
2791          .alwaysDefd
2792             = { /*  0 */ ALWAYSDEFD(guest_CC_OP),
2793                 /*  1 */ ALWAYSDEFD(guest_CC_NDEP),
2794                 /*  2 */ ALWAYSDEFD(guest_DFLAG),
2795                 /*  3 */ ALWAYSDEFD(guest_IDFLAG),
2796                 /*  4 */ ALWAYSDEFD(guest_ACFLAG),
2797                 /*  5 */ ALWAYSDEFD(guest_EIP),
2798                 /*  6 */ ALWAYSDEFD(guest_FTOP),
2799                 /*  7 */ ALWAYSDEFD(guest_FPTAG),
2800                 /*  8 */ ALWAYSDEFD(guest_FPROUND),
2801                 /*  9 */ ALWAYSDEFD(guest_FC3210),
2802                 /* 10 */ ALWAYSDEFD(guest_CS),
2803                 /* 11 */ ALWAYSDEFD(guest_DS),
2804                 /* 12 */ ALWAYSDEFD(guest_ES),
2805                 /* 13 */ ALWAYSDEFD(guest_FS),
2806                 /* 14 */ ALWAYSDEFD(guest_GS),
2807                 /* 15 */ ALWAYSDEFD(guest_SS),
2808                 /* 16 */ ALWAYSDEFD(guest_LDT),
2809                 /* 17 */ ALWAYSDEFD(guest_GDT),
2810                 /* 18 */ ALWAYSDEFD(guest_EMWARN),
2811                 /* 19 */ ALWAYSDEFD(guest_SSEROUND),
2812                 /* 20 */ ALWAYSDEFD(guest_TISTART),
2813                 /* 21 */ ALWAYSDEFD(guest_TILEN),
2814                 /* 22 */ ALWAYSDEFD(guest_SC_CLASS),
2815                 /* 23 */ ALWAYSDEFD(guest_IP_AT_SYSCALL)
2816               }
2817        };
2818
2819
2820/*---------------------------------------------------------------*/
2821/*--- end                                 guest_x86_helpers.c ---*/
2822/*---------------------------------------------------------------*/
2823