1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * A service that exchanges time synchronization information between
19 * a master that defines a timeline and clients that follow the timeline.
20 */
21
22#define LOG_TAG "common_time"
23#include <utils/Log.h>
24
25#include <arpa/inet.h>
26#include <assert.h>
27#include <fcntl.h>
28#include <linux/if_ether.h>
29#include <net/if.h>
30#include <net/if_arp.h>
31#include <netinet/ip.h>
32#include <poll.h>
33#include <stdio.h>
34#include <sys/eventfd.h>
35#include <sys/ioctl.h>
36#include <sys/stat.h>
37#include <sys/types.h>
38#include <sys/socket.h>
39
40#include <common_time/local_clock.h>
41#include <binder/IPCThreadState.h>
42#include <binder/ProcessState.h>
43#include <utils/Timers.h>
44
45#include "common_clock_service.h"
46#include "common_time_config_service.h"
47#include "common_time_server.h"
48#include "common_time_server_packets.h"
49#include "clock_recovery.h"
50#include "common_clock.h"
51
52#define MAX_INT ((int)0x7FFFFFFF)
53
54namespace android {
55
56const char*    CommonTimeServer::kDefaultMasterElectionAddr = "239.195.128.88";
57const uint16_t CommonTimeServer::kDefaultMasterElectionPort = 8887;
58const uint64_t CommonTimeServer::kDefaultSyncGroupID = 0;
59const uint8_t  CommonTimeServer::kDefaultMasterPriority = 1;
60const uint32_t CommonTimeServer::kDefaultMasterAnnounceIntervalMs = 10000;
61const uint32_t CommonTimeServer::kDefaultSyncRequestIntervalMs = 1000;
62const uint32_t CommonTimeServer::kDefaultPanicThresholdUsec = 50000;
63const bool     CommonTimeServer::kDefaultAutoDisable = true;
64const int      CommonTimeServer::kSetupRetryTimeoutMs = 30000;
65const int64_t  CommonTimeServer::kNoGoodDataPanicThresholdUsec = 600000000ll;
66const uint32_t CommonTimeServer::kRTTDiscardPanicThreshMultiplier = 5;
67
68// timeout value representing an infinite timeout
69const int CommonTimeServer::kInfiniteTimeout = -1;
70
71/*** Initial state constants ***/
72
73// number of WhoIsMaster attempts sent before giving up
74const int CommonTimeServer::kInitial_NumWhoIsMasterRetries = 6;
75
76// timeout used when waiting for a response to a WhoIsMaster request
77const int CommonTimeServer::kInitial_WhoIsMasterTimeoutMs = 500;
78
79/*** Client state constants ***/
80
81// number of sync requests that can fail before a client assumes its master
82// is dead
83const int CommonTimeServer::kClient_NumSyncRequestRetries = 10;
84
85/*** Master state constants ***/
86
87/*** Ronin state constants ***/
88
89// number of WhoIsMaster attempts sent before declaring ourselves master
90const int CommonTimeServer::kRonin_NumWhoIsMasterRetries = 20;
91
92// timeout used when waiting for a response to a WhoIsMaster request
93const int CommonTimeServer::kRonin_WhoIsMasterTimeoutMs = 500;
94
95/*** WaitForElection state constants ***/
96
97// how long do we wait for an announcement from a master before
98// trying another election?
99const int CommonTimeServer::kWaitForElection_TimeoutMs = 12500;
100
101CommonTimeServer::CommonTimeServer()
102    : Thread(false)
103    , mState(ICommonClock::STATE_INITIAL)
104    , mClockRecovery(&mLocalClock, &mCommonClock)
105    , mSocket(-1)
106    , mLastPacketRxLocalTime(0)
107    , mTimelineID(ICommonClock::kInvalidTimelineID)
108    , mClockSynced(false)
109    , mCommonClockHasClients(false)
110    , mInitial_WhoIsMasterRequestTimeouts(0)
111    , mClient_MasterDeviceID(0)
112    , mClient_MasterDevicePriority(0)
113    , mRonin_WhoIsMasterRequestTimeouts(0) {
114    // zero out sync stats
115    resetSyncStats();
116
117    // Setup the master election endpoint to use the default.
118    struct sockaddr_in* meep =
119        reinterpret_cast<struct sockaddr_in*>(&mMasterElectionEP);
120    memset(&mMasterElectionEP, 0, sizeof(mMasterElectionEP));
121    inet_aton(kDefaultMasterElectionAddr, &meep->sin_addr);
122    meep->sin_family = AF_INET;
123    meep->sin_port   = htons(kDefaultMasterElectionPort);
124
125    // Zero out the master endpoint.
126    memset(&mMasterEP, 0, sizeof(mMasterEP));
127    mMasterEPValid    = false;
128    mBindIfaceValid   = false;
129    setForceLowPriority(false);
130
131    // Set all remaining configuration parameters to their defaults.
132    mDeviceID                 = 0;
133    mSyncGroupID              = kDefaultSyncGroupID;
134    mMasterPriority           = kDefaultMasterPriority;
135    mMasterAnnounceIntervalMs = kDefaultMasterAnnounceIntervalMs;
136    mSyncRequestIntervalMs    = kDefaultSyncRequestIntervalMs;
137    mPanicThresholdUsec       = kDefaultPanicThresholdUsec;
138    mAutoDisable              = kDefaultAutoDisable;
139
140    // Create the eventfd we will use to signal our thread to wake up when
141    // needed.
142    mWakeupThreadFD = eventfd(0, EFD_NONBLOCK);
143
144    // seed the random number generator (used to generated timeline IDs)
145    srand48(static_cast<unsigned int>(systemTime()));
146}
147
148CommonTimeServer::~CommonTimeServer() {
149    shutdownThread();
150
151    // No need to grab the lock here.  We are in the destructor; if the the user
152    // has a thread in any of the APIs while the destructor is being called,
153    // there is a threading problem a the application level we cannot reasonably
154    // do anything about.
155    cleanupSocket_l();
156
157    if (mWakeupThreadFD >= 0) {
158        close(mWakeupThreadFD);
159        mWakeupThreadFD = -1;
160    }
161}
162
163bool CommonTimeServer::startServices() {
164    // start the ICommonClock service
165    mICommonClock = CommonClockService::instantiate(*this);
166    if (mICommonClock == NULL)
167        return false;
168
169    // start the ICommonTimeConfig service
170    mICommonTimeConfig = CommonTimeConfigService::instantiate(*this);
171    if (mICommonTimeConfig == NULL)
172        return false;
173
174    return true;
175}
176
177bool CommonTimeServer::threadLoop() {
178    // Register our service interfaces.
179    if (!startServices())
180        return false;
181
182    // Hold the lock while we are in the main thread loop.  It will release the
183    // lock when it blocks, and hold the lock at all other times.
184    mLock.lock();
185    runStateMachine_l();
186    mLock.unlock();
187
188    IPCThreadState::self()->stopProcess();
189    return false;
190}
191
192bool CommonTimeServer::runStateMachine_l() {
193    if (!mLocalClock.initCheck())
194        return false;
195
196    if (!mCommonClock.init(mLocalClock.getLocalFreq()))
197        return false;
198
199    // Enter the initial state.
200    becomeInitial("startup");
201
202    // run the state machine
203    while (!exitPending()) {
204        struct pollfd pfds[2];
205        int rc;
206        int eventCnt = 0;
207        int64_t wakeupTime;
208
209        // We are always interested in our wakeup FD.
210        pfds[eventCnt].fd      = mWakeupThreadFD;
211        pfds[eventCnt].events  = POLLIN;
212        pfds[eventCnt].revents = 0;
213        eventCnt++;
214
215        // If we have a valid socket, then we are interested in what it has to
216        // say as well.
217        if (mSocket >= 0) {
218            pfds[eventCnt].fd      = mSocket;
219            pfds[eventCnt].events  = POLLIN;
220            pfds[eventCnt].revents = 0;
221            eventCnt++;
222        }
223
224        // Note, we were holding mLock when this function was called.  We
225        // release it only while we are blocking and hold it at all other times.
226        mLock.unlock();
227        rc          = poll(pfds, eventCnt, mCurTimeout.msecTillTimeout());
228        wakeupTime  = mLocalClock.getLocalTime();
229        mLock.lock();
230
231        // Is it time to shutdown?  If so, don't hesitate... just do it.
232        if (exitPending())
233            break;
234
235        // Did the poll fail?  This should never happen and is fatal if it does.
236        if (rc < 0) {
237            ALOGE("%s:%d poll failed", __PRETTY_FUNCTION__, __LINE__);
238            return false;
239        }
240
241        if (rc == 0)
242            mCurTimeout.setTimeout(kInfiniteTimeout);
243
244        // Were we woken up on purpose?  If so, clear the eventfd with a read.
245        if (pfds[0].revents)
246            clearPendingWakeupEvents_l();
247
248        // Is out bind address dirty?  If so, clean up our socket (if any).
249        // Alternatively, do we have an active socket but should be auto
250        // disabled?  If so, release the socket and enter the proper sync state.
251        bool droppedSocket = false;
252        if (mBindIfaceDirty || ((mSocket >= 0) && shouldAutoDisable())) {
253            cleanupSocket_l();
254            mBindIfaceDirty = false;
255            droppedSocket = true;
256        }
257
258        // Do we not have a socket but should have one?  If so, try to set one
259        // up.
260        if ((mSocket < 0) && mBindIfaceValid && !shouldAutoDisable()) {
261            if (setupSocket_l()) {
262                // Success!  We are now joining a new network (either coming
263                // from no network, or coming from a potentially different
264                // network).  Force our priority to be lower so that we defer to
265                // any other masters which may already be on the network we are
266                // joining.  Later, when we enter either the client or the
267                // master state, we will clear this flag and go back to our
268                // normal election priority.
269                setForceLowPriority(true);
270                switch (mState) {
271                    // If we were in initial (whether we had a immediately
272                    // before this network or not) we want to simply reset the
273                    // system and start again.  Forcing a transition from
274                    // INITIAL to INITIAL should do the job.
275                    case CommonClockService::STATE_INITIAL:
276                        becomeInitial("bound interface");
277                        break;
278
279                    // If we were in the master state, then either we were the
280                    // master in a no-network situation, or we were the master
281                    // of a different network and have moved to a new interface.
282                    // In either case, immediately transition to Ronin at low
283                    // priority.  If there is no one in the network we just
284                    // joined, we will become master soon enough.  If there is,
285                    // we want to be certain to defer master status to the
286                    // existing timeline currently running on the network.
287                    //
288                    case CommonClockService::STATE_MASTER:
289                        becomeRonin("leaving networkless mode");
290                        break;
291
292                    // If we were in any other state (CLIENT, RONIN, or
293                    // WAIT_FOR_ELECTION) then we must be moving from one
294                    // network to another.  We have lost our old master;
295                    // transition to RONIN in an attempt to find a new master.
296                    // If there are none out there, we will just assume
297                    // responsibility for the timeline we used to be a client
298                    // of.
299                    default:
300                        becomeRonin("bound interface");
301                        break;
302                }
303            } else {
304                // That's odd... we failed to set up our socket.  This could be
305                // due to some transient network change which will work itself
306                // out shortly; schedule a retry attempt in the near future.
307                mCurTimeout.setTimeout(kSetupRetryTimeoutMs);
308            }
309
310            // One way or the other, we don't have any data to process at this
311            // point (since we just tried to bulid a new socket).  Loop back
312            // around and wait for the next thing to do.
313            continue;
314        } else if (droppedSocket) {
315            // We just lost our socket, and for whatever reason (either no
316            // config, or auto disable engaged) we are not supposed to rebuild
317            // one at this time.  We are not going to rebuild our socket until
318            // something about our config/auto-disabled status changes, so we
319            // are basically in network-less mode.  If we are already in either
320            // INITIAL or MASTER, just stay there until something changes.  If
321            // we are in any other state (CLIENT, RONIN or WAIT_FOR_ELECTION),
322            // then transition to either INITIAL or MASTER depending on whether
323            // or not our timeline is valid.
324            ALOGI("Entering networkless mode interface is %s, "
325                 "shouldAutoDisable = %s",
326                 mBindIfaceValid ? "valid" : "invalid",
327                 shouldAutoDisable() ? "true" : "false");
328            if ((mState != ICommonClock::STATE_INITIAL) &&
329                (mState != ICommonClock::STATE_MASTER)) {
330                if (mTimelineID == ICommonClock::kInvalidTimelineID)
331                    becomeInitial("network-less mode");
332                else
333                    becomeMaster("network-less mode");
334            }
335
336            continue;
337        }
338
339        // Did we wakeup with no signalled events across all of our FDs?  If so,
340        // we must have hit our timeout.
341        if (rc == 0) {
342            if (!handleTimeout())
343                ALOGE("handleTimeout failed");
344            continue;
345        }
346
347        // Does our socket have data for us (assuming we still have one, we
348        // may have RXed a packet at the same time as a config change telling us
349        // to shut our socket down)?  If so, process its data.
350        if ((mSocket >= 0) && (eventCnt > 1) && (pfds[1].revents)) {
351            mLastPacketRxLocalTime = wakeupTime;
352            if (!handlePacket())
353                ALOGE("handlePacket failed");
354        }
355    }
356
357    cleanupSocket_l();
358    return true;
359}
360
361void CommonTimeServer::clearPendingWakeupEvents_l() {
362    int64_t tmp;
363    read(mWakeupThreadFD, &tmp, sizeof(tmp));
364}
365
366void CommonTimeServer::wakeupThread_l() {
367    int64_t tmp = 1;
368    write(mWakeupThreadFD, &tmp, sizeof(tmp));
369}
370
371void CommonTimeServer::cleanupSocket_l() {
372    if (mSocket >= 0) {
373        close(mSocket);
374        mSocket = -1;
375    }
376}
377
378void CommonTimeServer::shutdownThread() {
379    // Flag the work thread for shutdown.
380    this->requestExit();
381
382    // Signal the thread in case its sleeping.
383    mLock.lock();
384    wakeupThread_l();
385    mLock.unlock();
386
387    // Wait for the thread to exit.
388    this->join();
389}
390
391bool CommonTimeServer::setupSocket_l() {
392    int rc;
393    bool ret_val = false;
394    struct sockaddr_in* ipv4_addr = NULL;
395    char masterElectionEPStr[64];
396    const int one = 1;
397
398    // This should never be needed, but if we happened to have an old socket
399    // lying around, be sure to not leak it before proceeding.
400    cleanupSocket_l();
401
402    // If we don't have a valid endpoint to bind to, then how did we get here in
403    // the first place?  Regardless, we know that we are going to fail to bind,
404    // so don't even try.
405    if (!mBindIfaceValid)
406        return false;
407
408    sockaddrToString(mMasterElectionEP, true, masterElectionEPStr,
409                     sizeof(masterElectionEPStr));
410    ALOGI("Building socket :: bind = %s master election = %s",
411         mBindIface.string(), masterElectionEPStr);
412
413    // TODO: add proper support for IPv6.  Right now, we block IPv6 addresses at
414    // the configuration interface level.
415    if (AF_INET != mMasterElectionEP.ss_family) {
416        ALOGW("TODO: add proper IPv6 support");
417        goto bailout;
418    }
419
420    // open a UDP socket for the timeline serivce
421    mSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
422    if (mSocket < 0) {
423        ALOGE("Failed to create socket (errno = %d)", errno);
424        goto bailout;
425    }
426
427    // Bind to the selected interface using Linux's spiffy SO_BINDTODEVICE.
428    struct ifreq ifr;
429    memset(&ifr, 0, sizeof(ifr));
430    snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%s", mBindIface.string());
431    ifr.ifr_name[sizeof(ifr.ifr_name) - 1] = 0;
432    rc = setsockopt(mSocket, SOL_SOCKET, SO_BINDTODEVICE,
433                    (void *)&ifr, sizeof(ifr));
434    if (rc) {
435        ALOGE("Failed to bind socket at to interface %s (errno = %d)",
436              ifr.ifr_name, errno);
437        goto bailout;
438    }
439
440    // Bind our socket to INADDR_ANY and the master election port.  The
441    // interface binding we made using SO_BINDTODEVICE should limit us to
442    // traffic only on the interface we are interested in.  We need to bind to
443    // INADDR_ANY and the specific master election port in order to be able to
444    // receive both unicast traffic and master election multicast traffic with
445    // just a single socket.
446    struct sockaddr_in bindAddr;
447    ipv4_addr = reinterpret_cast<struct sockaddr_in*>(&mMasterElectionEP);
448    memcpy(&bindAddr, ipv4_addr, sizeof(bindAddr));
449    bindAddr.sin_addr.s_addr = INADDR_ANY;
450    rc = bind(mSocket,
451              reinterpret_cast<const sockaddr *>(&bindAddr),
452              sizeof(bindAddr));
453    if (rc) {
454        ALOGE("Failed to bind socket to port %hu (errno = %d)",
455              ntohs(bindAddr.sin_port), errno);
456        goto bailout;
457    }
458
459    if (0xE0000000 == (ntohl(ipv4_addr->sin_addr.s_addr) & 0xF0000000)) {
460        // If our master election endpoint is a multicast address, be sure to join
461        // the multicast group.
462        struct ip_mreq mreq;
463        mreq.imr_multiaddr = ipv4_addr->sin_addr;
464        mreq.imr_interface.s_addr = htonl(INADDR_ANY);
465        rc = setsockopt(mSocket, IPPROTO_IP, IP_ADD_MEMBERSHIP,
466                        &mreq, sizeof(mreq));
467        if (rc == -1) {
468            ALOGE("Failed to join multicast group at %s.  (errno = %d)",
469                 masterElectionEPStr, errno);
470            goto bailout;
471        }
472
473        // disable loopback of multicast packets
474        const int zero = 0;
475        rc = setsockopt(mSocket, IPPROTO_IP, IP_MULTICAST_LOOP,
476                        &zero, sizeof(zero));
477        if (rc == -1) {
478            ALOGE("Failed to disable multicast loopback (errno = %d)", errno);
479            goto bailout;
480        }
481    } else
482    if (ntohl(ipv4_addr->sin_addr.s_addr) != 0xFFFFFFFF) {
483        // If the master election address is neither broadcast, nor multicast,
484        // then we are misconfigured.  The config API layer should prevent this
485        // from ever happening.
486        goto bailout;
487    }
488
489    // Set the TTL of sent packets to 1.  (Time protocol sync should never leave
490    // the local subnet)
491    rc = setsockopt(mSocket, IPPROTO_IP, IP_TTL, &one, sizeof(one));
492    if (rc == -1) {
493        ALOGE("Failed to set TTL to %d (errno = %d)", one, errno);
494        goto bailout;
495    }
496
497    // get the device's unique ID
498    if (!assignDeviceID())
499        goto bailout;
500
501    ret_val = true;
502
503bailout:
504    if (!ret_val)
505        cleanupSocket_l();
506    return ret_val;
507}
508
509// generate a unique device ID that can be used for arbitration
510bool CommonTimeServer::assignDeviceID() {
511    if (!mBindIfaceValid)
512        return false;
513
514    struct ifreq ifr;
515    memset(&ifr, 0, sizeof(ifr));
516    ifr.ifr_addr.sa_family = AF_INET;
517    strlcpy(ifr.ifr_name, mBindIface.string(), IFNAMSIZ);
518
519    int rc = ioctl(mSocket, SIOCGIFHWADDR, &ifr);
520    if (rc) {
521        ALOGE("%s:%d ioctl failed", __PRETTY_FUNCTION__, __LINE__);
522        return false;
523    }
524
525    if (ifr.ifr_addr.sa_family != ARPHRD_ETHER) {
526        ALOGE("%s:%d got non-Ethernet address", __PRETTY_FUNCTION__, __LINE__);
527        return false;
528    }
529
530    mDeviceID = 0;
531    for (int i = 0; i < ETH_ALEN; i++) {
532        mDeviceID = (mDeviceID << 8) | ifr.ifr_hwaddr.sa_data[i];
533    }
534
535    return true;
536}
537
538// generate a new timeline ID
539void CommonTimeServer::assignTimelineID() {
540    do {
541        mTimelineID = (static_cast<uint64_t>(lrand48()) << 32)
542                    |  static_cast<uint64_t>(lrand48());
543    } while (mTimelineID == ICommonClock::kInvalidTimelineID);
544}
545
546// Select a preference between the device IDs of two potential masters.
547// Returns true if the first ID wins, or false if the second ID wins.
548bool CommonTimeServer::arbitrateMaster(
549        uint64_t deviceID1, uint8_t devicePrio1,
550        uint64_t deviceID2, uint8_t devicePrio2) {
551    return ((devicePrio1 >  devicePrio2) ||
552           ((devicePrio1 == devicePrio2) && (deviceID1 > deviceID2)));
553}
554
555bool CommonTimeServer::handlePacket() {
556    uint8_t buf[256];
557    struct sockaddr_storage srcAddr;
558    socklen_t srcAddrLen = sizeof(srcAddr);
559
560    ssize_t recvBytes = recvfrom(
561            mSocket, buf, sizeof(buf), 0,
562            reinterpret_cast<const sockaddr *>(&srcAddr), &srcAddrLen);
563
564    if (recvBytes < 0) {
565        ALOGE("%s:%d recvfrom failed", __PRETTY_FUNCTION__, __LINE__);
566        return false;
567    }
568
569    UniversalTimeServicePacket pkt;
570    recvBytes = pkt.deserializePacket(buf, recvBytes, mSyncGroupID);
571    if (recvBytes < 0)
572        return false;
573
574    bool result;
575    switch (pkt.packetType) {
576        case TIME_PACKET_WHO_IS_MASTER_REQUEST:
577            result = handleWhoIsMasterRequest(&pkt.p.who_is_master_request,
578                                              srcAddr);
579            break;
580
581        case TIME_PACKET_WHO_IS_MASTER_RESPONSE:
582            result = handleWhoIsMasterResponse(&pkt.p.who_is_master_response,
583                                               srcAddr);
584            break;
585
586        case TIME_PACKET_SYNC_REQUEST:
587            result = handleSyncRequest(&pkt.p.sync_request, srcAddr);
588            break;
589
590        case TIME_PACKET_SYNC_RESPONSE:
591            result = handleSyncResponse(&pkt.p.sync_response, srcAddr);
592            break;
593
594        case TIME_PACKET_MASTER_ANNOUNCEMENT:
595            result = handleMasterAnnouncement(&pkt.p.master_announcement,
596                                              srcAddr);
597            break;
598
599        default: {
600            ALOGD("%s:%d unknown packet type(%d)",
601                    __PRETTY_FUNCTION__, __LINE__, pkt.packetType);
602            result = false;
603        } break;
604    }
605
606    return result;
607}
608
609bool CommonTimeServer::handleTimeout() {
610    // If we have no socket, then this must be a timeout to retry socket setup.
611    if (mSocket < 0)
612        return true;
613
614    switch (mState) {
615        case ICommonClock::STATE_INITIAL:
616            return handleTimeoutInitial();
617        case ICommonClock::STATE_CLIENT:
618            return handleTimeoutClient();
619        case ICommonClock::STATE_MASTER:
620            return handleTimeoutMaster();
621        case ICommonClock::STATE_RONIN:
622            return handleTimeoutRonin();
623        case ICommonClock::STATE_WAIT_FOR_ELECTION:
624            return handleTimeoutWaitForElection();
625    }
626
627    return false;
628}
629
630bool CommonTimeServer::handleTimeoutInitial() {
631    if (++mInitial_WhoIsMasterRequestTimeouts ==
632            kInitial_NumWhoIsMasterRetries) {
633        // none of our attempts to discover a master succeeded, so make
634        // this device the master
635        return becomeMaster("initial timeout");
636    } else {
637        // retry the WhoIsMaster request
638        return sendWhoIsMasterRequest();
639    }
640}
641
642bool CommonTimeServer::handleTimeoutClient() {
643    if (shouldPanicNotGettingGoodData())
644        return becomeInitial("timeout panic, no good data");
645
646    if (mClient_SyncRequestPending) {
647        mClient_SyncRequestPending = false;
648
649        if (++mClient_SyncRequestTimeouts < kClient_NumSyncRequestRetries) {
650            // a sync request has timed out, so retry
651            return sendSyncRequest();
652        } else {
653            // The master has failed to respond to a sync request for too many
654            // times in a row.  Assume the master is dead and start electing
655            // a new master.
656            return becomeRonin("master not responding");
657        }
658    } else {
659        // initiate the next sync request
660        return sendSyncRequest();
661    }
662}
663
664bool CommonTimeServer::handleTimeoutMaster() {
665    // send another announcement from the master
666    return sendMasterAnnouncement();
667}
668
669bool CommonTimeServer::handleTimeoutRonin() {
670    if (++mRonin_WhoIsMasterRequestTimeouts == kRonin_NumWhoIsMasterRetries) {
671        // no other master is out there, so we won the election
672        return becomeMaster("no better masters detected");
673    } else {
674        return sendWhoIsMasterRequest();
675    }
676}
677
678bool CommonTimeServer::handleTimeoutWaitForElection() {
679    return becomeRonin("timeout waiting for election conclusion");
680}
681
682bool CommonTimeServer::handleWhoIsMasterRequest(
683        const WhoIsMasterRequestPacket* request,
684        const sockaddr_storage& srcAddr) {
685    if (mState == ICommonClock::STATE_MASTER) {
686        // is this request related to this master's timeline?
687        if (request->timelineID != ICommonClock::kInvalidTimelineID &&
688            request->timelineID != mTimelineID)
689            return true;
690
691        WhoIsMasterResponsePacket pkt;
692        pkt.initHeader(mTimelineID, mSyncGroupID);
693        pkt.deviceID = mDeviceID;
694        pkt.devicePriority = effectivePriority();
695
696        uint8_t buf[256];
697        ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
698        if (bufSz < 0)
699            return false;
700
701        ssize_t sendBytes = sendto(
702                mSocket, buf, bufSz, 0,
703                reinterpret_cast<const sockaddr *>(&srcAddr),
704                sizeof(srcAddr));
705        if (sendBytes == -1) {
706            ALOGE("%s:%d sendto failed", __PRETTY_FUNCTION__, __LINE__);
707            return false;
708        }
709    } else if (mState == ICommonClock::STATE_RONIN) {
710        // if we hear a WhoIsMaster request from another device following
711        // the same timeline and that device wins arbitration, then we will stop
712        // trying to elect ourselves master and will instead wait for an
713        // announcement from the election winner
714        if (request->timelineID != mTimelineID)
715            return true;
716
717        if (arbitrateMaster(request->senderDeviceID,
718                            request->senderDevicePriority,
719                            mDeviceID,
720                            effectivePriority()))
721            return becomeWaitForElection("would lose election");
722
723        return true;
724    } else if (mState == ICommonClock::STATE_INITIAL) {
725        // If a group of devices booted simultaneously (e.g. after a power
726        // outage) and all of them are in the initial state and there is no
727        // master, then each device may time out and declare itself master at
728        // the same time.  To avoid this, listen for
729        // WhoIsMaster(InvalidTimeline) requests from peers.  If we would lose
730        // arbitration against that peer, reset our timeout count so that the
731        // peer has a chance to become master before we time out.
732        if (request->timelineID == ICommonClock::kInvalidTimelineID &&
733                arbitrateMaster(request->senderDeviceID,
734                                request->senderDevicePriority,
735                                mDeviceID,
736                                effectivePriority())) {
737            mInitial_WhoIsMasterRequestTimeouts = 0;
738        }
739    }
740
741    return true;
742}
743
744bool CommonTimeServer::handleWhoIsMasterResponse(
745        const WhoIsMasterResponsePacket* response,
746        const sockaddr_storage& srcAddr) {
747    if (mState == ICommonClock::STATE_INITIAL || mState == ICommonClock::STATE_RONIN) {
748        return becomeClient(srcAddr,
749                            response->deviceID,
750                            response->devicePriority,
751                            response->timelineID,
752                            "heard whois response");
753    } else if (mState == ICommonClock::STATE_CLIENT) {
754        // if we get multiple responses because there are multiple devices
755        // who believe that they are master, then follow the master that
756        // wins arbitration
757        if (arbitrateMaster(response->deviceID,
758                            response->devicePriority,
759                            mClient_MasterDeviceID,
760                            mClient_MasterDevicePriority)) {
761            return becomeClient(srcAddr,
762                                response->deviceID,
763                                response->devicePriority,
764                                response->timelineID,
765                                "heard whois response");
766        }
767    }
768
769    return true;
770}
771
772bool CommonTimeServer::handleSyncRequest(const SyncRequestPacket* request,
773                                         const sockaddr_storage& srcAddr) {
774    SyncResponsePacket pkt;
775    pkt.initHeader(mTimelineID, mSyncGroupID);
776
777    if ((mState == ICommonClock::STATE_MASTER) &&
778        (mTimelineID == request->timelineID)) {
779        int64_t rxLocalTime = mLastPacketRxLocalTime;
780        int64_t rxCommonTime;
781
782        // If we are master on an actual network and have actual clients, then
783        // we are no longer low priority.
784        setForceLowPriority(false);
785
786        if (OK != mCommonClock.localToCommon(rxLocalTime, &rxCommonTime)) {
787            return false;
788        }
789
790        int64_t txLocalTime = mLocalClock.getLocalTime();;
791        int64_t txCommonTime;
792        if (OK != mCommonClock.localToCommon(txLocalTime, &txCommonTime)) {
793            return false;
794        }
795
796        pkt.nak = 0;
797        pkt.clientTxLocalTime  = request->clientTxLocalTime;
798        pkt.masterRxCommonTime = rxCommonTime;
799        pkt.masterTxCommonTime = txCommonTime;
800    } else {
801        pkt.nak = 1;
802        pkt.clientTxLocalTime  = 0;
803        pkt.masterRxCommonTime = 0;
804        pkt.masterTxCommonTime = 0;
805    }
806
807    uint8_t buf[256];
808    ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
809    if (bufSz < 0)
810        return false;
811
812    ssize_t sendBytes = sendto(
813            mSocket, &buf, bufSz, 0,
814            reinterpret_cast<const sockaddr *>(&srcAddr),
815            sizeof(srcAddr));
816    if (sendBytes == -1) {
817        ALOGE("%s:%d sendto failed", __PRETTY_FUNCTION__, __LINE__);
818        return false;
819    }
820
821    return true;
822}
823
824bool CommonTimeServer::handleSyncResponse(
825        const SyncResponsePacket* response,
826        const sockaddr_storage& srcAddr) {
827    if (mState != ICommonClock::STATE_CLIENT)
828        return true;
829
830    assert(mMasterEPValid);
831    if (!sockaddrMatch(srcAddr, mMasterEP, true)) {
832        char srcEP[64], expectedEP[64];
833        sockaddrToString(srcAddr, true, srcEP, sizeof(srcEP));
834        sockaddrToString(mMasterEP, true, expectedEP, sizeof(expectedEP));
835        ALOGI("Dropping sync response from unexpected address."
836             " Expected %s Got %s", expectedEP, srcEP);
837        return true;
838    }
839
840    if (response->nak) {
841        // if our master is no longer accepting requests, then we need to find
842        // a new master
843        return becomeRonin("master NAK'ed");
844    }
845
846    mClient_SyncRequestPending = 0;
847    mClient_SyncRequestTimeouts = 0;
848    mClient_PacketRTTLog.logRX(response->clientTxLocalTime,
849                               mLastPacketRxLocalTime);
850
851    bool result;
852    if (!(mClient_SyncRespsRXedFromCurMaster++)) {
853        // the first request/response exchange between a client and a master
854        // may take unusually long due to ARP, so discard it.
855        result = true;
856    } else {
857        int64_t clientTxLocalTime  = response->clientTxLocalTime;
858        int64_t clientRxLocalTime  = mLastPacketRxLocalTime;
859        int64_t masterTxCommonTime = response->masterTxCommonTime;
860        int64_t masterRxCommonTime = response->masterRxCommonTime;
861
862        int64_t rtt       = (clientRxLocalTime - clientTxLocalTime);
863        int64_t avgLocal  = (clientTxLocalTime + clientRxLocalTime) >> 1;
864        int64_t avgCommon = (masterTxCommonTime + masterRxCommonTime) >> 1;
865
866        // if the RTT of the packet is significantly larger than the panic
867        // threshold, we should simply discard it.  Its better to do nothing
868        // than to take cues from a packet like that.
869        int rttCommon = mCommonClock.localDurationToCommonDuration(rtt);
870        if (rttCommon > (static_cast<int64_t>(mPanicThresholdUsec) *
871                         kRTTDiscardPanicThreshMultiplier)) {
872            ALOGV("Dropping sync response with RTT of %lld uSec", rttCommon);
873            mClient_ExpiredSyncRespsRXedFromCurMaster++;
874            if (shouldPanicNotGettingGoodData())
875                return becomeInitial("RX panic, no good data");
876        } else {
877            result = mClockRecovery.pushDisciplineEvent(avgLocal, avgCommon, rttCommon);
878            mClient_LastGoodSyncRX = clientRxLocalTime;
879
880            if (result) {
881                // indicate to listeners that we've synced to the common timeline
882                notifyClockSync();
883            } else {
884                ALOGE("Panic!  Observed clock sync error is too high to tolerate,"
885                        " resetting state machine and starting over.");
886                notifyClockSyncLoss();
887                return becomeInitial("panic");
888            }
889        }
890    }
891
892    mCurTimeout.setTimeout(mSyncRequestIntervalMs);
893    return result;
894}
895
896bool CommonTimeServer::handleMasterAnnouncement(
897        const MasterAnnouncementPacket* packet,
898        const sockaddr_storage& srcAddr) {
899    uint64_t newDeviceID   = packet->deviceID;
900    uint8_t  newDevicePrio = packet->devicePriority;
901    uint64_t newTimelineID = packet->timelineID;
902
903    if (mState == ICommonClock::STATE_INITIAL ||
904        mState == ICommonClock::STATE_RONIN ||
905        mState == ICommonClock::STATE_WAIT_FOR_ELECTION) {
906        // if we aren't currently following a master, then start following
907        // this new master
908        return becomeClient(srcAddr,
909                            newDeviceID,
910                            newDevicePrio,
911                            newTimelineID,
912                            "heard master announcement");
913    } else if (mState == ICommonClock::STATE_CLIENT) {
914        // if the new master wins arbitration against our current master,
915        // then become a client of the new master
916        if (arbitrateMaster(newDeviceID,
917                            newDevicePrio,
918                            mClient_MasterDeviceID,
919                            mClient_MasterDevicePriority))
920            return becomeClient(srcAddr,
921                                newDeviceID,
922                                newDevicePrio,
923                                newTimelineID,
924                                "heard master announcement");
925    } else if (mState == ICommonClock::STATE_MASTER) {
926        // two masters are competing - if the new one wins arbitration, then
927        // cease acting as master
928        if (arbitrateMaster(newDeviceID, newDevicePrio,
929                            mDeviceID, effectivePriority()))
930            return becomeClient(srcAddr, newDeviceID,
931                                newDevicePrio, newTimelineID,
932                                "heard master announcement");
933    }
934
935    return true;
936}
937
938bool CommonTimeServer::sendWhoIsMasterRequest() {
939    assert(mState == ICommonClock::STATE_INITIAL || mState == ICommonClock::STATE_RONIN);
940
941    // If we have no socket, then we must be in the unconfigured initial state.
942    // Don't report any errors, just don't try to send the initial who-is-master
943    // query.  Eventually, our network will either become configured, or we will
944    // be forced into network-less master mode by higher level code.
945    if (mSocket < 0) {
946        assert(mState == ICommonClock::STATE_INITIAL);
947        return true;
948    }
949
950    bool ret = false;
951    WhoIsMasterRequestPacket pkt;
952    pkt.initHeader(mSyncGroupID);
953    pkt.senderDeviceID = mDeviceID;
954    pkt.senderDevicePriority = effectivePriority();
955
956    uint8_t buf[256];
957    ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
958    if (bufSz >= 0) {
959        ssize_t sendBytes = sendto(
960                mSocket, buf, bufSz, 0,
961                reinterpret_cast<const sockaddr *>(&mMasterElectionEP),
962                sizeof(mMasterElectionEP));
963        if (sendBytes < 0)
964            ALOGE("WhoIsMaster sendto failed (errno %d)", errno);
965        ret = true;
966    }
967
968    if (mState == ICommonClock::STATE_INITIAL) {
969        mCurTimeout.setTimeout(kInitial_WhoIsMasterTimeoutMs);
970    } else {
971        mCurTimeout.setTimeout(kRonin_WhoIsMasterTimeoutMs);
972    }
973
974    return ret;
975}
976
977bool CommonTimeServer::sendSyncRequest() {
978    // If we are sending sync requests, then we must be in the client state and
979    // we must have a socket (when we have no network, we are only supposed to
980    // be in INITIAL or MASTER)
981    assert(mState == ICommonClock::STATE_CLIENT);
982    assert(mSocket >= 0);
983
984    bool ret = false;
985    SyncRequestPacket pkt;
986    pkt.initHeader(mTimelineID, mSyncGroupID);
987    pkt.clientTxLocalTime = mLocalClock.getLocalTime();
988
989    if (!mClient_FirstSyncTX)
990        mClient_FirstSyncTX = pkt.clientTxLocalTime;
991
992    mClient_PacketRTTLog.logTX(pkt.clientTxLocalTime);
993
994    uint8_t buf[256];
995    ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
996    if (bufSz >= 0) {
997        ssize_t sendBytes = sendto(
998                mSocket, buf, bufSz, 0,
999                reinterpret_cast<const sockaddr *>(&mMasterEP),
1000                sizeof(mMasterEP));
1001        if (sendBytes < 0)
1002            ALOGE("SyncRequest sendto failed (errno %d)", errno);
1003        ret = true;
1004    }
1005
1006    mClient_SyncsSentToCurMaster++;
1007    mCurTimeout.setTimeout(mSyncRequestIntervalMs);
1008    mClient_SyncRequestPending = true;
1009
1010    return ret;
1011}
1012
1013bool CommonTimeServer::sendMasterAnnouncement() {
1014    bool ret = false;
1015    assert(mState == ICommonClock::STATE_MASTER);
1016
1017    // If we are being asked to send a master announcement, but we have no
1018    // socket, we must be in network-less master mode.  Don't bother to send the
1019    // announcement, and don't bother to schedule a timeout.  When the network
1020    // comes up, the work thread will get poked and start the process of
1021    // figuring out who the current master should be.
1022    if (mSocket < 0) {
1023        mCurTimeout.setTimeout(kInfiniteTimeout);
1024        return true;
1025    }
1026
1027    MasterAnnouncementPacket pkt;
1028    pkt.initHeader(mTimelineID, mSyncGroupID);
1029    pkt.deviceID = mDeviceID;
1030    pkt.devicePriority = effectivePriority();
1031
1032    uint8_t buf[256];
1033    ssize_t bufSz = pkt.serializePacket(buf, sizeof(buf));
1034    if (bufSz >= 0) {
1035        ssize_t sendBytes = sendto(
1036                mSocket, buf, bufSz, 0,
1037                reinterpret_cast<const sockaddr *>(&mMasterElectionEP),
1038                sizeof(mMasterElectionEP));
1039        if (sendBytes < 0)
1040            ALOGE("MasterAnnouncement sendto failed (errno %d)", errno);
1041        ret = true;
1042    }
1043
1044    mCurTimeout.setTimeout(mMasterAnnounceIntervalMs);
1045    return ret;
1046}
1047
1048bool CommonTimeServer::becomeClient(const sockaddr_storage& masterEP,
1049                                    uint64_t masterDeviceID,
1050                                    uint8_t  masterDevicePriority,
1051                                    uint64_t timelineID,
1052                                    const char* cause) {
1053    char newEPStr[64], oldEPStr[64];
1054    sockaddrToString(masterEP, true, newEPStr, sizeof(newEPStr));
1055    sockaddrToString(mMasterEP, mMasterEPValid, oldEPStr, sizeof(oldEPStr));
1056
1057    ALOGI("%s --> CLIENT (%s) :%s"
1058         " OldMaster: %02x-%014llx::%016llx::%s"
1059         " NewMaster: %02x-%014llx::%016llx::%s",
1060         stateToString(mState), cause,
1061         (mTimelineID != timelineID) ? " (new timeline)" : "",
1062         mClient_MasterDevicePriority, mClient_MasterDeviceID,
1063         mTimelineID, oldEPStr,
1064         masterDevicePriority, masterDeviceID,
1065         timelineID, newEPStr);
1066
1067    if (mTimelineID != timelineID) {
1068        // start following a new timeline
1069        mTimelineID = timelineID;
1070        mClockRecovery.reset(true, true);
1071        notifyClockSyncLoss();
1072    } else {
1073        // start following a new master on the existing timeline
1074        mClockRecovery.reset(false, true);
1075    }
1076
1077    mMasterEP = masterEP;
1078    mMasterEPValid = true;
1079
1080    // If we are on a real network as a client of a real master, then we should
1081    // no longer force low priority.  If our master disappears, we should have
1082    // the high priority bit set during the election to replace the master
1083    // because this group was a real group and not a singleton created in
1084    // networkless mode.
1085    setForceLowPriority(false);
1086
1087    mClient_MasterDeviceID = masterDeviceID;
1088    mClient_MasterDevicePriority = masterDevicePriority;
1089    resetSyncStats();
1090
1091    setState(ICommonClock::STATE_CLIENT);
1092
1093    // add some jitter to when the various clients send their requests
1094    // in order to reduce the likelihood that a group of clients overload
1095    // the master after receiving a master announcement
1096    usleep((lrand48() % 100) * 1000);
1097
1098    return sendSyncRequest();
1099}
1100
1101bool CommonTimeServer::becomeMaster(const char* cause) {
1102    uint64_t oldTimelineID = mTimelineID;
1103    if (mTimelineID == ICommonClock::kInvalidTimelineID) {
1104        // this device has not been following any existing timeline,
1105        // so it will create a new timeline and declare itself master
1106        assert(!mCommonClock.isValid());
1107
1108        // set the common time basis
1109        mCommonClock.setBasis(mLocalClock.getLocalTime(), 0);
1110
1111        // assign an arbitrary timeline iD
1112        assignTimelineID();
1113
1114        // notify listeners that we've created a common timeline
1115        notifyClockSync();
1116    }
1117
1118    ALOGI("%s --> MASTER (%s) : %s timeline %016llx",
1119         stateToString(mState), cause,
1120         (oldTimelineID == mTimelineID) ? "taking ownership of"
1121                                        : "creating new",
1122         mTimelineID);
1123
1124    memset(&mMasterEP, 0, sizeof(mMasterEP));
1125    mMasterEPValid = false;
1126    mClient_MasterDevicePriority = effectivePriority();
1127    mClient_MasterDeviceID = mDeviceID;
1128    mClockRecovery.reset(false, true);
1129    resetSyncStats();
1130
1131    setState(ICommonClock::STATE_MASTER);
1132    return sendMasterAnnouncement();
1133}
1134
1135bool CommonTimeServer::becomeRonin(const char* cause) {
1136    // If we were the client of a given timeline, but had never received even a
1137    // single time sync packet, then we transition back to Initial instead of
1138    // Ronin.  If we transition to Ronin and end up becoming the new Master, we
1139    // will be unable to service requests for other clients because we never
1140    // actually knew what time it was.  By going to initial, we ensure that
1141    // other clients who know what time it is, but would lose master arbitration
1142    // in the Ronin case, will step up and become the proper new master of the
1143    // old timeline.
1144
1145    char oldEPStr[64];
1146    sockaddrToString(mMasterEP, mMasterEPValid, oldEPStr, sizeof(oldEPStr));
1147    memset(&mMasterEP, 0, sizeof(mMasterEP));
1148    mMasterEPValid = false;
1149
1150    if (mCommonClock.isValid()) {
1151        ALOGI("%s --> RONIN (%s) : lost track of previously valid timeline "
1152             "%02x-%014llx::%016llx::%s (%d TXed %d RXed %d RXExpired)",
1153             stateToString(mState), cause,
1154             mClient_MasterDevicePriority, mClient_MasterDeviceID,
1155             mTimelineID, oldEPStr,
1156             mClient_SyncsSentToCurMaster,
1157             mClient_SyncRespsRXedFromCurMaster,
1158             mClient_ExpiredSyncRespsRXedFromCurMaster);
1159
1160        mRonin_WhoIsMasterRequestTimeouts = 0;
1161        setState(ICommonClock::STATE_RONIN);
1162        return sendWhoIsMasterRequest();
1163    } else {
1164        ALOGI("%s --> INITIAL (%s) : never synced timeline "
1165             "%02x-%014llx::%016llx::%s (%d TXed %d RXed %d RXExpired)",
1166             stateToString(mState), cause,
1167             mClient_MasterDevicePriority, mClient_MasterDeviceID,
1168             mTimelineID, oldEPStr,
1169             mClient_SyncsSentToCurMaster,
1170             mClient_SyncRespsRXedFromCurMaster,
1171             mClient_ExpiredSyncRespsRXedFromCurMaster);
1172
1173        return becomeInitial("ronin, no timeline");
1174    }
1175}
1176
1177bool CommonTimeServer::becomeWaitForElection(const char* cause) {
1178    ALOGI("%s --> WAIT_FOR_ELECTION (%s) : dropping out of election,"
1179         " waiting %d mSec for completion.",
1180         stateToString(mState), cause, kWaitForElection_TimeoutMs);
1181
1182    setState(ICommonClock::STATE_WAIT_FOR_ELECTION);
1183    mCurTimeout.setTimeout(kWaitForElection_TimeoutMs);
1184    return true;
1185}
1186
1187bool CommonTimeServer::becomeInitial(const char* cause) {
1188    ALOGI("Entering INITIAL (%s), total reset.", cause);
1189
1190    setState(ICommonClock::STATE_INITIAL);
1191
1192    // reset clock recovery
1193    mClockRecovery.reset(true, true);
1194
1195    // reset internal state bookkeeping.
1196    mCurTimeout.setTimeout(kInfiniteTimeout);
1197    memset(&mMasterEP, 0, sizeof(mMasterEP));
1198    mMasterEPValid = false;
1199    mLastPacketRxLocalTime = 0;
1200    mTimelineID = ICommonClock::kInvalidTimelineID;
1201    mClockSynced = false;
1202    mInitial_WhoIsMasterRequestTimeouts = 0;
1203    mClient_MasterDeviceID = 0;
1204    mClient_MasterDevicePriority = 0;
1205    mRonin_WhoIsMasterRequestTimeouts = 0;
1206    resetSyncStats();
1207
1208    // send the first request to discover the master
1209    return sendWhoIsMasterRequest();
1210}
1211
1212void CommonTimeServer::notifyClockSync() {
1213    if (!mClockSynced) {
1214        mClockSynced = true;
1215        mICommonClock->notifyOnTimelineChanged(mTimelineID);
1216    }
1217}
1218
1219void CommonTimeServer::notifyClockSyncLoss() {
1220    if (mClockSynced) {
1221        mClockSynced = false;
1222        mICommonClock->notifyOnTimelineChanged(
1223                ICommonClock::kInvalidTimelineID);
1224    }
1225}
1226
1227void CommonTimeServer::setState(ICommonClock::State s) {
1228    mState = s;
1229}
1230
1231const char* CommonTimeServer::stateToString(ICommonClock::State s) {
1232    switch(s) {
1233        case ICommonClock::STATE_INITIAL:
1234            return "INITIAL";
1235        case ICommonClock::STATE_CLIENT:
1236            return "CLIENT";
1237        case ICommonClock::STATE_MASTER:
1238            return "MASTER";
1239        case ICommonClock::STATE_RONIN:
1240            return "RONIN";
1241        case ICommonClock::STATE_WAIT_FOR_ELECTION:
1242            return "WAIT_FOR_ELECTION";
1243        default:
1244            return "unknown";
1245    }
1246}
1247
1248void CommonTimeServer::sockaddrToString(const sockaddr_storage& addr,
1249                                        bool addrValid,
1250                                        char* buf, size_t bufLen) {
1251    if (!bufLen || !buf)
1252        return;
1253
1254    if (addrValid) {
1255        switch (addr.ss_family) {
1256            case AF_INET: {
1257                const struct sockaddr_in* sa =
1258                    reinterpret_cast<const struct sockaddr_in*>(&addr);
1259                unsigned long a = ntohl(sa->sin_addr.s_addr);
1260                uint16_t      p = ntohs(sa->sin_port);
1261                snprintf(buf, bufLen, "%lu.%lu.%lu.%lu:%hu",
1262                        ((a >> 24) & 0xFF), ((a >> 16) & 0xFF),
1263                        ((a >>  8) & 0xFF),  (a        & 0xFF), p);
1264            } break;
1265
1266            case AF_INET6: {
1267                const struct sockaddr_in6* sa =
1268                    reinterpret_cast<const struct sockaddr_in6*>(&addr);
1269                const uint8_t* a = sa->sin6_addr.s6_addr;
1270                uint16_t       p = ntohs(sa->sin6_port);
1271                snprintf(buf, bufLen,
1272                        "%02X%02X:%02X%02X:%02X%02X:%02X%02X:"
1273                        "%02X%02X:%02X%02X:%02X%02X:%02X%02X port %hd",
1274                        a[0], a[1], a[ 2], a[ 3], a[ 4], a[ 5], a[ 6], a[ 7],
1275                        a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15],
1276                        p);
1277            } break;
1278
1279            default:
1280                snprintf(buf, bufLen,
1281                         "<unknown sockaddr family %d>", addr.ss_family);
1282                break;
1283        }
1284    } else {
1285        snprintf(buf, bufLen, "<none>");
1286    }
1287
1288    buf[bufLen - 1] = 0;
1289}
1290
1291bool CommonTimeServer::sockaddrMatch(const sockaddr_storage& a1,
1292                                     const sockaddr_storage& a2,
1293                                     bool matchAddressOnly) {
1294    if (a1.ss_family != a2.ss_family)
1295        return false;
1296
1297    switch (a1.ss_family) {
1298        case AF_INET: {
1299            const struct sockaddr_in* sa1 =
1300                reinterpret_cast<const struct sockaddr_in*>(&a1);
1301            const struct sockaddr_in* sa2 =
1302                reinterpret_cast<const struct sockaddr_in*>(&a2);
1303
1304            if (sa1->sin_addr.s_addr != sa2->sin_addr.s_addr)
1305                return false;
1306
1307            return (matchAddressOnly || (sa1->sin_port == sa2->sin_port));
1308        } break;
1309
1310        case AF_INET6: {
1311            const struct sockaddr_in6* sa1 =
1312                reinterpret_cast<const struct sockaddr_in6*>(&a1);
1313            const struct sockaddr_in6* sa2 =
1314                reinterpret_cast<const struct sockaddr_in6*>(&a2);
1315
1316            if (memcmp(&sa1->sin6_addr, &sa2->sin6_addr, sizeof(sa2->sin6_addr)))
1317                return false;
1318
1319            return (matchAddressOnly || (sa1->sin6_port == sa2->sin6_port));
1320        } break;
1321
1322        // Huh?  We don't deal in non-IPv[46] addresses.  Not sure how we got
1323        // here, but we don't know how to comapre these addresses and simply
1324        // default to a no-match decision.
1325        default: return false;
1326    }
1327}
1328
1329void CommonTimeServer::TimeoutHelper::setTimeout(int msec) {
1330    mTimeoutValid = (msec >= 0);
1331    if (mTimeoutValid)
1332        mEndTime = systemTime() +
1333                   (static_cast<nsecs_t>(msec) * 1000000);
1334}
1335
1336int CommonTimeServer::TimeoutHelper::msecTillTimeout() {
1337    if (!mTimeoutValid)
1338        return kInfiniteTimeout;
1339
1340    nsecs_t now = systemTime();
1341    if (now >= mEndTime)
1342        return 0;
1343
1344    uint64_t deltaMsec = (((mEndTime - now) + 999999) / 1000000);
1345
1346    if (deltaMsec > static_cast<uint64_t>(MAX_INT))
1347        return MAX_INT;
1348
1349    return static_cast<int>(deltaMsec);
1350}
1351
1352bool CommonTimeServer::shouldPanicNotGettingGoodData() {
1353    if (mClient_FirstSyncTX) {
1354        int64_t now = mLocalClock.getLocalTime();
1355        int64_t delta = now - (mClient_LastGoodSyncRX
1356                             ? mClient_LastGoodSyncRX
1357                             : mClient_FirstSyncTX);
1358        int64_t deltaUsec = mCommonClock.localDurationToCommonDuration(delta);
1359
1360        if (deltaUsec >= kNoGoodDataPanicThresholdUsec)
1361            return true;
1362    }
1363
1364    return false;
1365}
1366
1367void CommonTimeServer::PacketRTTLog::logTX(int64_t txTime) {
1368    txTimes[wrPtr] = txTime;
1369    rxTimes[wrPtr] = 0;
1370    wrPtr = (wrPtr + 1) % RTT_LOG_SIZE;
1371    if (!wrPtr)
1372        logFull = true;
1373}
1374
1375void CommonTimeServer::PacketRTTLog::logRX(int64_t txTime, int64_t rxTime) {
1376    if (!logFull && !wrPtr)
1377        return;
1378
1379    uint32_t i = logFull ? wrPtr : 0;
1380    do {
1381        if (txTimes[i] == txTime) {
1382            rxTimes[i] = rxTime;
1383            break;
1384        }
1385        i = (i + 1) % RTT_LOG_SIZE;
1386    } while (i != wrPtr);
1387}
1388
1389}  // namespace android
1390