1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Bitcode writer implementation. 11// 12//===----------------------------------------------------------------------===// 13 14#include "ReaderWriter_2_9.h" 15#include "llvm/Bitcode/BitstreamWriter.h" 16#include "llvm/Bitcode/LLVMBitCodes.h" 17#include "ValueEnumerator.h" 18#include "llvm/Constants.h" 19#include "llvm/DerivedTypes.h" 20#include "llvm/InlineAsm.h" 21#include "llvm/Instructions.h" 22#include "llvm/Module.h" 23#include "llvm/Operator.h" 24#include "llvm/ValueSymbolTable.h" 25#include "llvm/ADT/Triple.h" 26#include "llvm/Support/ErrorHandling.h" 27#include "llvm/Support/MathExtras.h" 28#include "llvm/Support/raw_ostream.h" 29#include "llvm/Support/Program.h" 30#include <cctype> 31#include <map> 32using namespace llvm; 33 34// Redefine older bitcode opcodes for use here. Note that these come from 35// LLVM 2.7 (which is what HC shipped with). 36#define METADATA_NODE_2_7 2 37#define METADATA_FN_NODE_2_7 3 38#define METADATA_NAMED_NODE_2_7 5 39#define METADATA_ATTACHMENT_2_7 7 40#define FUNC_CODE_INST_CALL_2_7 22 41#define FUNC_CODE_DEBUG_LOC_2_7 32 42 43// Redefine older bitcode opcodes for use here. Note that these come from 44// LLVM 2.7 - 3.0. 45#define TYPE_BLOCK_ID_OLD_3_0 10 46#define TYPE_SYMTAB_BLOCK_ID_OLD_3_0 13 47#define TYPE_CODE_STRUCT_OLD_3_0 10 48 49/// These are manifest constants used by the bitcode writer. They do not need to 50/// be kept in sync with the reader, but need to be consistent within this file. 51enum { 52 CurVersion = 0, 53 54 // VALUE_SYMTAB_BLOCK abbrev id's. 55 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 56 VST_ENTRY_7_ABBREV, 57 VST_ENTRY_6_ABBREV, 58 VST_BBENTRY_6_ABBREV, 59 60 // CONSTANTS_BLOCK abbrev id's. 61 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 62 CONSTANTS_INTEGER_ABBREV, 63 CONSTANTS_CE_CAST_Abbrev, 64 CONSTANTS_NULL_Abbrev, 65 66 // FUNCTION_BLOCK abbrev id's. 67 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 68 FUNCTION_INST_BINOP_ABBREV, 69 FUNCTION_INST_BINOP_FLAGS_ABBREV, 70 FUNCTION_INST_CAST_ABBREV, 71 FUNCTION_INST_RET_VOID_ABBREV, 72 FUNCTION_INST_RET_VAL_ABBREV, 73 FUNCTION_INST_UNREACHABLE_ABBREV 74}; 75 76 77static unsigned GetEncodedCastOpcode(unsigned Opcode) { 78 switch (Opcode) { 79 default: llvm_unreachable("Unknown cast instruction!"); 80 case Instruction::Trunc : return bitc::CAST_TRUNC; 81 case Instruction::ZExt : return bitc::CAST_ZEXT; 82 case Instruction::SExt : return bitc::CAST_SEXT; 83 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 84 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 85 case Instruction::UIToFP : return bitc::CAST_UITOFP; 86 case Instruction::SIToFP : return bitc::CAST_SITOFP; 87 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 88 case Instruction::FPExt : return bitc::CAST_FPEXT; 89 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 90 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 91 case Instruction::BitCast : return bitc::CAST_BITCAST; 92 } 93} 94 95static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 96 switch (Opcode) { 97 default: llvm_unreachable("Unknown binary instruction!"); 98 case Instruction::Add: 99 case Instruction::FAdd: return bitc::BINOP_ADD; 100 case Instruction::Sub: 101 case Instruction::FSub: return bitc::BINOP_SUB; 102 case Instruction::Mul: 103 case Instruction::FMul: return bitc::BINOP_MUL; 104 case Instruction::UDiv: return bitc::BINOP_UDIV; 105 case Instruction::FDiv: 106 case Instruction::SDiv: return bitc::BINOP_SDIV; 107 case Instruction::URem: return bitc::BINOP_UREM; 108 case Instruction::FRem: 109 case Instruction::SRem: return bitc::BINOP_SREM; 110 case Instruction::Shl: return bitc::BINOP_SHL; 111 case Instruction::LShr: return bitc::BINOP_LSHR; 112 case Instruction::AShr: return bitc::BINOP_ASHR; 113 case Instruction::And: return bitc::BINOP_AND; 114 case Instruction::Or: return bitc::BINOP_OR; 115 case Instruction::Xor: return bitc::BINOP_XOR; 116 } 117} 118 119static void WriteStringRecord(unsigned Code, StringRef Str, 120 unsigned AbbrevToUse, BitstreamWriter &Stream) { 121 SmallVector<unsigned, 64> Vals; 122 123 // Code: [strchar x N] 124 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 125 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 126 AbbrevToUse = 0; 127 Vals.push_back(Str[i]); 128 } 129 130 // Emit the finished record. 131 Stream.EmitRecord(Code, Vals, AbbrevToUse); 132} 133 134// Emit information about parameter attributes. 135static void WriteAttributeTable(const ValueEnumerator &VE, 136 BitstreamWriter &Stream) { 137 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 138 if (Attrs.empty()) return; 139 140 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 141 142 SmallVector<uint64_t, 64> Record; 143 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 144 const AttrListPtr &A = Attrs[i]; 145 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 146 const AttributeWithIndex &PAWI = A.getSlot(i); 147 Record.push_back(PAWI.Index); 148 149 // FIXME: remove in LLVM 3.0 150 // Store the alignment in the bitcode as a 16-bit raw value instead of a 151 // 5-bit log2 encoded value. Shift the bits above the alignment up by 152 // 11 bits. 153 uint64_t FauxAttr = PAWI.Attrs.Raw() & 0xffff; 154 if (PAWI.Attrs & Attribute::Alignment) 155 FauxAttr |= (1ull<<16)<< 156 (((PAWI.Attrs & Attribute::Alignment).Raw()-1) >> 16); 157 FauxAttr |= (PAWI.Attrs.Raw() & (0x3FFull << 21)) << 11; 158 159 Record.push_back(FauxAttr); 160 } 161 162 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 163 Record.clear(); 164 } 165 166 Stream.ExitBlock(); 167} 168 169static void WriteTypeSymbolTable(const ValueEnumerator &VE, 170 BitstreamWriter &Stream) { 171 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 172 Stream.EnterSubblock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0, 3); 173 174 // 7-bit fixed width VST_CODE_ENTRY strings. 175 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 176 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 178 Log2_32_Ceil(VE.getTypes().size()+1))); 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 181 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 182 183 SmallVector<unsigned, 64> NameVals; 184 185 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 186 Type *T = TypeList[i]; 187 188 switch (T->getTypeID()) { 189 case Type::StructTyID: { 190 StructType *ST = cast<StructType>(T); 191 if (ST->isLiteral()) { 192 // Skip anonymous struct definitions in type symbol table 193 // FIXME(srhines) 194 break; 195 } 196 197 // TST_ENTRY: [typeid, namechar x N] 198 NameVals.push_back(i); 199 200 const std::string &Str = ST->getName(); 201 bool is7Bit = true; 202 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 203 NameVals.push_back((unsigned char)Str[i]); 204 if (Str[i] & 128) 205 is7Bit = false; 206 } 207 208 // Emit the finished record. 209 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 210 NameVals.clear(); 211 212 break; 213 } 214 default: break; 215 } 216 } 217 218#if 0 219 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 220 TI != TE; ++TI) { 221 // TST_ENTRY: [typeid, namechar x N] 222 NameVals.push_back(VE.getTypeID(TI->second)); 223 224 const std::string &Str = TI->first; 225 bool is7Bit = true; 226 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 227 NameVals.push_back((unsigned char)Str[i]); 228 if (Str[i] & 128) 229 is7Bit = false; 230 } 231 232 // Emit the finished record. 233 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 234 NameVals.clear(); 235 } 236#endif 237 238 Stream.ExitBlock(); 239} 240 241/// WriteTypeTable - Write out the type table for a module. 242static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 243 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 244 245 Stream.EnterSubblock(TYPE_BLOCK_ID_OLD_3_0, 4 /*count from # abbrevs */); 246 SmallVector<uint64_t, 64> TypeVals; 247 248 // Abbrev for TYPE_CODE_POINTER. 249 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 250 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 252 Log2_32_Ceil(VE.getTypes().size()+1))); 253 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 254 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 255 256 // Abbrev for TYPE_CODE_FUNCTION. 257 Abbv = new BitCodeAbbrev(); 258 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD)); 259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 260 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 263 Log2_32_Ceil(VE.getTypes().size()+1))); 264 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 265 266#if 0 267 // Abbrev for TYPE_CODE_STRUCT_ANON. 268 Abbv = new BitCodeAbbrev(); 269 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 273 Log2_32_Ceil(VE.getTypes().size()+1))); 274 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 275 276 // Abbrev for TYPE_CODE_STRUCT_NAME. 277 Abbv = new BitCodeAbbrev(); 278 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 281 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 282 283 // Abbrev for TYPE_CODE_STRUCT_NAMED. 284 Abbv = new BitCodeAbbrev(); 285 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 289 Log2_32_Ceil(VE.getTypes().size()+1))); 290 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 291#endif 292 293 // Abbrev for TYPE_CODE_STRUCT. 294 Abbv = new BitCodeAbbrev(); 295 Abbv->Add(BitCodeAbbrevOp(TYPE_CODE_STRUCT_OLD_3_0)); 296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 299 Log2_32_Ceil(VE.getTypes().size()+1))); 300 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 301 302 // Abbrev for TYPE_CODE_ARRAY. 303 Abbv = new BitCodeAbbrev(); 304 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 307 Log2_32_Ceil(VE.getTypes().size()+1))); 308 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 309 310 // Emit an entry count so the reader can reserve space. 311 TypeVals.push_back(TypeList.size()); 312 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 313 TypeVals.clear(); 314 315 // Loop over all of the types, emitting each in turn. 316 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 317 Type *T = TypeList[i]; 318 int AbbrevToUse = 0; 319 unsigned Code = 0; 320 321 switch (T->getTypeID()) { 322 default: llvm_unreachable("Unknown type!"); 323 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 324 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 325 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 326 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 327 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 328 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 329 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 330 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 331 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 332 case Type::IntegerTyID: 333 // INTEGER: [width] 334 Code = bitc::TYPE_CODE_INTEGER; 335 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 336 break; 337 case Type::PointerTyID: { 338 PointerType *PTy = cast<PointerType>(T); 339 // POINTER: [pointee type, address space] 340 Code = bitc::TYPE_CODE_POINTER; 341 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 342 unsigned AddressSpace = PTy->getAddressSpace(); 343 TypeVals.push_back(AddressSpace); 344 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 345 break; 346 } 347 case Type::FunctionTyID: { 348 FunctionType *FT = cast<FunctionType>(T); 349 // FUNCTION: [isvararg, attrid, retty, paramty x N] 350 Code = bitc::TYPE_CODE_FUNCTION_OLD; 351 TypeVals.push_back(FT->isVarArg()); 352 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 353 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 354 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 355 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 356 AbbrevToUse = FunctionAbbrev; 357 break; 358 } 359 case Type::StructTyID: { 360 StructType *ST = cast<StructType>(T); 361 // STRUCT: [ispacked, eltty x N] 362 TypeVals.push_back(ST->isPacked()); 363 // Output all of the element types. 364 for (StructType::element_iterator I = ST->element_begin(), 365 E = ST->element_end(); I != E; ++I) 366 TypeVals.push_back(VE.getTypeID(*I)); 367 AbbrevToUse = StructAbbrev; 368 break; 369 } 370 case Type::ArrayTyID: { 371 ArrayType *AT = cast<ArrayType>(T); 372 // ARRAY: [numelts, eltty] 373 Code = bitc::TYPE_CODE_ARRAY; 374 TypeVals.push_back(AT->getNumElements()); 375 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 376 AbbrevToUse = ArrayAbbrev; 377 break; 378 } 379 case Type::VectorTyID: { 380 VectorType *VT = cast<VectorType>(T); 381 // VECTOR [numelts, eltty] 382 Code = bitc::TYPE_CODE_VECTOR; 383 TypeVals.push_back(VT->getNumElements()); 384 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 385 break; 386 } 387 } 388 389 // Emit the finished record. 390 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 391 TypeVals.clear(); 392 } 393 394 Stream.ExitBlock(); 395 396 WriteTypeSymbolTable(VE, Stream); 397} 398 399static unsigned getEncodedLinkage(const GlobalValue *GV) { 400 switch (GV->getLinkage()) { 401 default: llvm_unreachable("Invalid linkage!"); 402 case GlobalValue::ExternalLinkage: return 0; 403 case GlobalValue::WeakAnyLinkage: return 1; 404 case GlobalValue::AppendingLinkage: return 2; 405 case GlobalValue::InternalLinkage: return 3; 406 case GlobalValue::LinkOnceAnyLinkage: return 4; 407 case GlobalValue::DLLImportLinkage: return 5; 408 case GlobalValue::DLLExportLinkage: return 6; 409 case GlobalValue::ExternalWeakLinkage: return 7; 410 case GlobalValue::CommonLinkage: return 8; 411 case GlobalValue::PrivateLinkage: return 9; 412 case GlobalValue::WeakODRLinkage: return 10; 413 case GlobalValue::LinkOnceODRLinkage: return 11; 414 case GlobalValue::AvailableExternallyLinkage: return 12; 415 case GlobalValue::LinkerPrivateLinkage: return 13; 416 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 417 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 418 } 419} 420 421static unsigned getEncodedVisibility(const GlobalValue *GV) { 422 switch (GV->getVisibility()) { 423 default: llvm_unreachable("Invalid visibility!"); 424 case GlobalValue::DefaultVisibility: return 0; 425 case GlobalValue::HiddenVisibility: return 1; 426 case GlobalValue::ProtectedVisibility: return 2; 427 } 428} 429 430// Emit top-level description of module, including target triple, inline asm, 431// descriptors for global variables, and function prototype info. 432static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 433 BitstreamWriter &Stream) { 434 // Emit the list of dependent libraries for the Module. 435 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 436 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 437 438 // Emit various pieces of data attached to a module. 439 if (!M->getTargetTriple().empty()) 440 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 441 0/*TODO*/, Stream); 442 if (!M->getDataLayout().empty()) 443 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 444 0/*TODO*/, Stream); 445 if (!M->getModuleInlineAsm().empty()) 446 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 447 0/*TODO*/, Stream); 448 449 // Emit information about sections and GC, computing how many there are. Also 450 // compute the maximum alignment value. 451 std::map<std::string, unsigned> SectionMap; 452 std::map<std::string, unsigned> GCMap; 453 unsigned MaxAlignment = 0; 454 unsigned MaxGlobalType = 0; 455 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 456 GV != E; ++GV) { 457 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 458 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 459 460 if (!GV->hasSection()) continue; 461 // Give section names unique ID's. 462 unsigned &Entry = SectionMap[GV->getSection()]; 463 if (Entry != 0) continue; 464 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 465 0/*TODO*/, Stream); 466 Entry = SectionMap.size(); 467 } 468 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 469 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 470 if (F->hasSection()) { 471 // Give section names unique ID's. 472 unsigned &Entry = SectionMap[F->getSection()]; 473 if (!Entry) { 474 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 475 0/*TODO*/, Stream); 476 Entry = SectionMap.size(); 477 } 478 } 479 if (F->hasGC()) { 480 // Same for GC names. 481 unsigned &Entry = GCMap[F->getGC()]; 482 if (!Entry) { 483 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 484 0/*TODO*/, Stream); 485 Entry = GCMap.size(); 486 } 487 } 488 } 489 490 // Emit abbrev for globals, now that we know # sections and max alignment. 491 unsigned SimpleGVarAbbrev = 0; 492 if (!M->global_empty()) { 493 // Add an abbrev for common globals with no visibility or thread localness. 494 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 495 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 497 Log2_32_Ceil(MaxGlobalType+1))); 498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 501 if (MaxAlignment == 0) // Alignment. 502 Abbv->Add(BitCodeAbbrevOp(0)); 503 else { 504 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 506 Log2_32_Ceil(MaxEncAlignment+1))); 507 } 508 if (SectionMap.empty()) // Section. 509 Abbv->Add(BitCodeAbbrevOp(0)); 510 else 511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 512 Log2_32_Ceil(SectionMap.size()+1))); 513 // Don't bother emitting vis + thread local. 514 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 515 } 516 517 // Emit the global variable information. 518 SmallVector<unsigned, 64> Vals; 519 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 520 GV != E; ++GV) { 521 unsigned AbbrevToUse = 0; 522 523 // GLOBALVAR: [type, isconst, initid, 524 // linkage, alignment, section, visibility, threadlocal, 525 // unnamed_addr] 526 Vals.push_back(VE.getTypeID(GV->getType())); 527 Vals.push_back(GV->isConstant()); 528 Vals.push_back(GV->isDeclaration() ? 0 : 529 (VE.getValueID(GV->getInitializer()) + 1)); 530 Vals.push_back(getEncodedLinkage(GV)); 531 Vals.push_back(Log2_32(GV->getAlignment())+1); 532 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 533 if (GV->isThreadLocal() || 534 GV->getVisibility() != GlobalValue::DefaultVisibility || 535 GV->hasUnnamedAddr()) { 536 Vals.push_back(getEncodedVisibility(GV)); 537 Vals.push_back(GV->isThreadLocal()); 538 Vals.push_back(GV->hasUnnamedAddr()); 539 } else { 540 AbbrevToUse = SimpleGVarAbbrev; 541 } 542 543 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 544 Vals.clear(); 545 } 546 547 // Emit the function proto information. 548 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 549 // FUNCTION: [type, callingconv, isproto, paramattr, 550 // linkage, alignment, section, visibility, gc, unnamed_addr] 551 Vals.push_back(VE.getTypeID(F->getType())); 552 Vals.push_back(F->getCallingConv()); 553 Vals.push_back(F->isDeclaration()); 554 Vals.push_back(getEncodedLinkage(F)); 555 Vals.push_back(VE.getAttributeID(F->getAttributes())); 556 Vals.push_back(Log2_32(F->getAlignment())+1); 557 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 558 Vals.push_back(getEncodedVisibility(F)); 559 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 560 Vals.push_back(F->hasUnnamedAddr()); 561 562 unsigned AbbrevToUse = 0; 563 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 564 Vals.clear(); 565 } 566 567 // Emit the alias information. 568 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 569 AI != E; ++AI) { 570 Vals.push_back(VE.getTypeID(AI->getType())); 571 Vals.push_back(VE.getValueID(AI->getAliasee())); 572 Vals.push_back(getEncodedLinkage(AI)); 573 Vals.push_back(getEncodedVisibility(AI)); 574 unsigned AbbrevToUse = 0; 575 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 576 Vals.clear(); 577 } 578} 579 580static uint64_t GetOptimizationFlags(const Value *V) { 581 uint64_t Flags = 0; 582 583 if (const OverflowingBinaryOperator *OBO = 584 dyn_cast<OverflowingBinaryOperator>(V)) { 585 if (OBO->hasNoSignedWrap()) 586 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 587 if (OBO->hasNoUnsignedWrap()) 588 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 589 } else if (const PossiblyExactOperator *PEO = 590 dyn_cast<PossiblyExactOperator>(V)) { 591 if (PEO->isExact()) 592 Flags |= 1 << bitc::PEO_EXACT; 593 } 594 595 return Flags; 596} 597 598static void WriteMDNode(const MDNode *N, 599 const ValueEnumerator &VE, 600 BitstreamWriter &Stream, 601 SmallVector<uint64_t, 64> &Record) { 602 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 603 if (N->getOperand(i)) { 604 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 605 Record.push_back(VE.getValueID(N->getOperand(i))); 606 } else { 607 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 608 Record.push_back(0); 609 } 610 } 611 unsigned MDCode = N->isFunctionLocal() ? METADATA_FN_NODE_2_7 : 612 METADATA_NODE_2_7; 613 Stream.EmitRecord(MDCode, Record, 0); 614 Record.clear(); 615} 616 617static void WriteModuleMetadata(const Module *M, 618 const ValueEnumerator &VE, 619 BitstreamWriter &Stream) { 620 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 621 bool StartedMetadataBlock = false; 622 unsigned MDSAbbrev = 0; 623 SmallVector<uint64_t, 64> Record; 624 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 625 626 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 627 if (!N->isFunctionLocal() || !N->getFunction()) { 628 if (!StartedMetadataBlock) { 629 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 630 StartedMetadataBlock = true; 631 } 632 WriteMDNode(N, VE, Stream, Record); 633 } 634 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 635 if (!StartedMetadataBlock) { 636 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 637 638 // Abbrev for METADATA_STRING. 639 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 640 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 643 MDSAbbrev = Stream.EmitAbbrev(Abbv); 644 StartedMetadataBlock = true; 645 } 646 647 // Code: [strchar x N] 648 Record.append(MDS->begin(), MDS->end()); 649 650 // Emit the finished record. 651 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 652 Record.clear(); 653 } 654 } 655 656 // Write named metadata. 657 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 658 E = M->named_metadata_end(); I != E; ++I) { 659 const NamedMDNode *NMD = I; 660 if (!StartedMetadataBlock) { 661 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 662 StartedMetadataBlock = true; 663 } 664 665 // Write name. 666 StringRef Str = NMD->getName(); 667 for (unsigned i = 0, e = Str.size(); i != e; ++i) 668 Record.push_back(Str[i]); 669 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 670 Record.clear(); 671 672 // Write named metadata operands. 673 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 674 Record.push_back(VE.getValueID(NMD->getOperand(i))); 675 Stream.EmitRecord(METADATA_NAMED_NODE_2_7, Record, 0); 676 Record.clear(); 677 } 678 679 if (StartedMetadataBlock) 680 Stream.ExitBlock(); 681} 682 683static void WriteFunctionLocalMetadata(const Function &F, 684 const ValueEnumerator &VE, 685 BitstreamWriter &Stream) { 686 bool StartedMetadataBlock = false; 687 SmallVector<uint64_t, 64> Record; 688 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 689 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 690 if (const MDNode *N = Vals[i]) 691 if (N->isFunctionLocal() && N->getFunction() == &F) { 692 if (!StartedMetadataBlock) { 693 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 694 StartedMetadataBlock = true; 695 } 696 WriteMDNode(N, VE, Stream, Record); 697 } 698 699 if (StartedMetadataBlock) 700 Stream.ExitBlock(); 701} 702 703static void WriteMetadataAttachment(const Function &F, 704 const ValueEnumerator &VE, 705 BitstreamWriter &Stream) { 706 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 707 708 SmallVector<uint64_t, 64> Record; 709 710 // Write metadata attachments 711 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 712 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 713 714 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 715 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 716 I != E; ++I) { 717 MDs.clear(); 718 I->getAllMetadataOtherThanDebugLoc(MDs); 719 720 // If no metadata, ignore instruction. 721 if (MDs.empty()) continue; 722 723 Record.push_back(VE.getInstructionID(I)); 724 725 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 726 Record.push_back(MDs[i].first); 727 Record.push_back(VE.getValueID(MDs[i].second)); 728 } 729 Stream.EmitRecord(METADATA_ATTACHMENT_2_7, Record, 0); 730 Record.clear(); 731 } 732 733 Stream.ExitBlock(); 734} 735 736static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 737 SmallVector<uint64_t, 64> Record; 738 739 // Write metadata kinds 740 // METADATA_KIND - [n x [id, name]] 741 SmallVector<StringRef, 4> Names; 742 M->getMDKindNames(Names); 743 744 if (Names.empty()) return; 745 746 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 747 748 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 749 Record.push_back(MDKindID); 750 StringRef KName = Names[MDKindID]; 751 Record.append(KName.begin(), KName.end()); 752 753 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 754 Record.clear(); 755 } 756 757 Stream.ExitBlock(); 758} 759 760static void WriteConstants(unsigned FirstVal, unsigned LastVal, 761 const ValueEnumerator &VE, 762 BitstreamWriter &Stream, bool isGlobal) { 763 if (FirstVal == LastVal) return; 764 765 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 766 767 unsigned AggregateAbbrev = 0; 768 unsigned String8Abbrev = 0; 769 unsigned CString7Abbrev = 0; 770 unsigned CString6Abbrev = 0; 771 // If this is a constant pool for the module, emit module-specific abbrevs. 772 if (isGlobal) { 773 // Abbrev for CST_CODE_AGGREGATE. 774 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 775 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 778 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 779 780 // Abbrev for CST_CODE_STRING. 781 Abbv = new BitCodeAbbrev(); 782 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 785 String8Abbrev = Stream.EmitAbbrev(Abbv); 786 // Abbrev for CST_CODE_CSTRING. 787 Abbv = new BitCodeAbbrev(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 791 CString7Abbrev = Stream.EmitAbbrev(Abbv); 792 // Abbrev for CST_CODE_CSTRING. 793 Abbv = new BitCodeAbbrev(); 794 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 797 CString6Abbrev = Stream.EmitAbbrev(Abbv); 798 } 799 800 SmallVector<uint64_t, 64> Record; 801 802 const ValueEnumerator::ValueList &Vals = VE.getValues(); 803 Type *LastTy = 0; 804 for (unsigned i = FirstVal; i != LastVal; ++i) { 805 const Value *V = Vals[i].first; 806 // If we need to switch types, do so now. 807 if (V->getType() != LastTy) { 808 LastTy = V->getType(); 809 Record.push_back(VE.getTypeID(LastTy)); 810 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 811 CONSTANTS_SETTYPE_ABBREV); 812 Record.clear(); 813 } 814 815 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 816 Record.push_back(unsigned(IA->hasSideEffects()) | 817 unsigned(IA->isAlignStack()) << 1); 818 819 // Add the asm string. 820 const std::string &AsmStr = IA->getAsmString(); 821 Record.push_back(AsmStr.size()); 822 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 823 Record.push_back(AsmStr[i]); 824 825 // Add the constraint string. 826 const std::string &ConstraintStr = IA->getConstraintString(); 827 Record.push_back(ConstraintStr.size()); 828 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 829 Record.push_back(ConstraintStr[i]); 830 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 831 Record.clear(); 832 continue; 833 } 834 const Constant *C = cast<Constant>(V); 835 unsigned Code = -1U; 836 unsigned AbbrevToUse = 0; 837 if (C->isNullValue()) { 838 Code = bitc::CST_CODE_NULL; 839 } else if (isa<UndefValue>(C)) { 840 Code = bitc::CST_CODE_UNDEF; 841 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 842 if (IV->getBitWidth() <= 64) { 843 uint64_t V = IV->getSExtValue(); 844 if ((int64_t)V >= 0) 845 Record.push_back(V << 1); 846 else 847 Record.push_back((-V << 1) | 1); 848 Code = bitc::CST_CODE_INTEGER; 849 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 850 } else { // Wide integers, > 64 bits in size. 851 // We have an arbitrary precision integer value to write whose 852 // bit width is > 64. However, in canonical unsigned integer 853 // format it is likely that the high bits are going to be zero. 854 // So, we only write the number of active words. 855 unsigned NWords = IV->getValue().getActiveWords(); 856 const uint64_t *RawWords = IV->getValue().getRawData(); 857 for (unsigned i = 0; i != NWords; ++i) { 858 int64_t V = RawWords[i]; 859 if (V >= 0) 860 Record.push_back(V << 1); 861 else 862 Record.push_back((-V << 1) | 1); 863 } 864 Code = bitc::CST_CODE_WIDE_INTEGER; 865 } 866 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 867 Code = bitc::CST_CODE_FLOAT; 868 Type *Ty = CFP->getType(); 869 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 870 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 871 } else if (Ty->isX86_FP80Ty()) { 872 // api needed to prevent premature destruction 873 // bits are not in the same order as a normal i80 APInt, compensate. 874 APInt api = CFP->getValueAPF().bitcastToAPInt(); 875 const uint64_t *p = api.getRawData(); 876 Record.push_back((p[1] << 48) | (p[0] >> 16)); 877 Record.push_back(p[0] & 0xffffLL); 878 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 879 APInt api = CFP->getValueAPF().bitcastToAPInt(); 880 const uint64_t *p = api.getRawData(); 881 Record.push_back(p[0]); 882 Record.push_back(p[1]); 883 } else { 884 assert (0 && "Unknown FP type!"); 885 } 886 } else if (isa<ConstantDataSequential>(C) && 887 cast<ConstantDataSequential>(C)->isString()) { 888 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 889 // Emit constant strings specially. 890 unsigned NumElts = Str->getNumElements(); 891 // If this is a null-terminated string, use the denser CSTRING encoding. 892 if (Str->isCString()) { 893 Code = bitc::CST_CODE_CSTRING; 894 --NumElts; // Don't encode the null, which isn't allowed by char6. 895 } else { 896 Code = bitc::CST_CODE_STRING; 897 AbbrevToUse = String8Abbrev; 898 } 899 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 900 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 901 for (unsigned i = 0; i != NumElts; ++i) { 902 unsigned char V = Str->getElementAsInteger(i); 903 Record.push_back(V); 904 isCStr7 &= (V & 128) == 0; 905 if (isCStrChar6) 906 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 907 } 908 909 if (isCStrChar6) 910 AbbrevToUse = CString6Abbrev; 911 else if (isCStr7) 912 AbbrevToUse = CString7Abbrev; 913 } else if (const ConstantDataSequential *CDS = 914 dyn_cast<ConstantDataSequential>(C)) { 915 Code = bitc::CST_CODE_DATA; 916 Type *EltTy = CDS->getType()->getElementType(); 917 if (isa<IntegerType>(EltTy)) { 918 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 919 Record.push_back(CDS->getElementAsInteger(i)); 920 } else if (EltTy->isFloatTy()) { 921 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 922 union { float F; uint32_t I; }; 923 F = CDS->getElementAsFloat(i); 924 Record.push_back(I); 925 } 926 } else { 927 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 928 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 929 union { double F; uint64_t I; }; 930 F = CDS->getElementAsDouble(i); 931 Record.push_back(I); 932 } 933 } 934 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 935 isa<ConstantVector>(C)) { 936 Code = bitc::CST_CODE_AGGREGATE; 937 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 938 Record.push_back(VE.getValueID(C->getOperand(i))); 939 AbbrevToUse = AggregateAbbrev; 940 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 941 switch (CE->getOpcode()) { 942 default: 943 if (Instruction::isCast(CE->getOpcode())) { 944 Code = bitc::CST_CODE_CE_CAST; 945 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 946 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 947 Record.push_back(VE.getValueID(C->getOperand(0))); 948 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 949 } else { 950 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 951 Code = bitc::CST_CODE_CE_BINOP; 952 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 953 Record.push_back(VE.getValueID(C->getOperand(0))); 954 Record.push_back(VE.getValueID(C->getOperand(1))); 955 uint64_t Flags = GetOptimizationFlags(CE); 956 if (Flags != 0) 957 Record.push_back(Flags); 958 } 959 break; 960 case Instruction::GetElementPtr: 961 Code = bitc::CST_CODE_CE_GEP; 962 if (cast<GEPOperator>(C)->isInBounds()) 963 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 964 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 965 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 966 Record.push_back(VE.getValueID(C->getOperand(i))); 967 } 968 break; 969 case Instruction::Select: 970 Code = bitc::CST_CODE_CE_SELECT; 971 Record.push_back(VE.getValueID(C->getOperand(0))); 972 Record.push_back(VE.getValueID(C->getOperand(1))); 973 Record.push_back(VE.getValueID(C->getOperand(2))); 974 break; 975 case Instruction::ExtractElement: 976 Code = bitc::CST_CODE_CE_EXTRACTELT; 977 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 978 Record.push_back(VE.getValueID(C->getOperand(0))); 979 Record.push_back(VE.getValueID(C->getOperand(1))); 980 break; 981 case Instruction::InsertElement: 982 Code = bitc::CST_CODE_CE_INSERTELT; 983 Record.push_back(VE.getValueID(C->getOperand(0))); 984 Record.push_back(VE.getValueID(C->getOperand(1))); 985 Record.push_back(VE.getValueID(C->getOperand(2))); 986 break; 987 case Instruction::ShuffleVector: 988 // If the return type and argument types are the same, this is a 989 // standard shufflevector instruction. If the types are different, 990 // then the shuffle is widening or truncating the input vectors, and 991 // the argument type must also be encoded. 992 if (C->getType() == C->getOperand(0)->getType()) { 993 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 994 } else { 995 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 996 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 997 } 998 Record.push_back(VE.getValueID(C->getOperand(0))); 999 Record.push_back(VE.getValueID(C->getOperand(1))); 1000 Record.push_back(VE.getValueID(C->getOperand(2))); 1001 break; 1002 case Instruction::ICmp: 1003 case Instruction::FCmp: 1004 Code = bitc::CST_CODE_CE_CMP; 1005 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1006 Record.push_back(VE.getValueID(C->getOperand(0))); 1007 Record.push_back(VE.getValueID(C->getOperand(1))); 1008 Record.push_back(CE->getPredicate()); 1009 break; 1010 } 1011 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1012 Code = bitc::CST_CODE_BLOCKADDRESS; 1013 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1014 Record.push_back(VE.getValueID(BA->getFunction())); 1015 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1016 } else { 1017#ifndef NDEBUG 1018 C->dump(); 1019#endif 1020 llvm_unreachable("Unknown constant!"); 1021 } 1022 Stream.EmitRecord(Code, Record, AbbrevToUse); 1023 Record.clear(); 1024 } 1025 1026 Stream.ExitBlock(); 1027} 1028 1029static void WriteModuleConstants(const ValueEnumerator &VE, 1030 BitstreamWriter &Stream) { 1031 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1032 1033 // Find the first constant to emit, which is the first non-globalvalue value. 1034 // We know globalvalues have been emitted by WriteModuleInfo. 1035 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1036 if (!isa<GlobalValue>(Vals[i].first)) { 1037 WriteConstants(i, Vals.size(), VE, Stream, true); 1038 return; 1039 } 1040 } 1041} 1042 1043/// PushValueAndType - The file has to encode both the value and type id for 1044/// many values, because we need to know what type to create for forward 1045/// references. However, most operands are not forward references, so this type 1046/// field is not needed. 1047/// 1048/// This function adds V's value ID to Vals. If the value ID is higher than the 1049/// instruction ID, then it is a forward reference, and it also includes the 1050/// type ID. 1051static bool PushValueAndType(const Value *V, unsigned InstID, 1052 SmallVector<unsigned, 64> &Vals, 1053 ValueEnumerator &VE) { 1054 unsigned ValID = VE.getValueID(V); 1055 Vals.push_back(ValID); 1056 if (ValID >= InstID) { 1057 Vals.push_back(VE.getTypeID(V->getType())); 1058 return true; 1059 } 1060 return false; 1061} 1062 1063/// WriteInstruction - Emit an instruction to the specified stream. 1064static void WriteInstruction(const Instruction &I, unsigned InstID, 1065 ValueEnumerator &VE, BitstreamWriter &Stream, 1066 SmallVector<unsigned, 64> &Vals) { 1067 unsigned Code = 0; 1068 unsigned AbbrevToUse = 0; 1069 VE.setInstructionID(&I); 1070 switch (I.getOpcode()) { 1071 default: 1072 if (Instruction::isCast(I.getOpcode())) { 1073 Code = bitc::FUNC_CODE_INST_CAST; 1074 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1075 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1076 Vals.push_back(VE.getTypeID(I.getType())); 1077 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1078 } else { 1079 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1080 Code = bitc::FUNC_CODE_INST_BINOP; 1081 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1082 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1083 Vals.push_back(VE.getValueID(I.getOperand(1))); 1084 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1085 uint64_t Flags = GetOptimizationFlags(&I); 1086 if (Flags != 0) { 1087 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1088 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1089 Vals.push_back(Flags); 1090 } 1091 } 1092 break; 1093 1094 case Instruction::GetElementPtr: 1095 Code = bitc::FUNC_CODE_INST_GEP; 1096 if (cast<GEPOperator>(&I)->isInBounds()) 1097 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1098 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1099 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1100 break; 1101 case Instruction::ExtractValue: { 1102 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1103 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1104 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1105 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1106 Vals.push_back(*i); 1107 break; 1108 } 1109 case Instruction::InsertValue: { 1110 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1111 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1112 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1113 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1114 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1115 Vals.push_back(*i); 1116 break; 1117 } 1118 case Instruction::Select: 1119 Code = bitc::FUNC_CODE_INST_VSELECT; 1120 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1121 Vals.push_back(VE.getValueID(I.getOperand(2))); 1122 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1123 break; 1124 case Instruction::ExtractElement: 1125 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1126 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1127 Vals.push_back(VE.getValueID(I.getOperand(1))); 1128 break; 1129 case Instruction::InsertElement: 1130 Code = bitc::FUNC_CODE_INST_INSERTELT; 1131 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1132 Vals.push_back(VE.getValueID(I.getOperand(1))); 1133 Vals.push_back(VE.getValueID(I.getOperand(2))); 1134 break; 1135 case Instruction::ShuffleVector: 1136 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1137 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1138 Vals.push_back(VE.getValueID(I.getOperand(1))); 1139 Vals.push_back(VE.getValueID(I.getOperand(2))); 1140 break; 1141 case Instruction::ICmp: 1142 case Instruction::FCmp: 1143 // compare returning Int1Ty or vector of Int1Ty 1144 Code = bitc::FUNC_CODE_INST_CMP2; 1145 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1146 Vals.push_back(VE.getValueID(I.getOperand(1))); 1147 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1148 break; 1149 1150 case Instruction::Ret: 1151 { 1152 Code = bitc::FUNC_CODE_INST_RET; 1153 unsigned NumOperands = I.getNumOperands(); 1154 if (NumOperands == 0) 1155 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1156 else if (NumOperands == 1) { 1157 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1158 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1159 } else { 1160 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1161 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1162 } 1163 } 1164 break; 1165 case Instruction::Br: 1166 { 1167 Code = bitc::FUNC_CODE_INST_BR; 1168 BranchInst &II = cast<BranchInst>(I); 1169 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1170 if (II.isConditional()) { 1171 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1172 Vals.push_back(VE.getValueID(II.getCondition())); 1173 } 1174 } 1175 break; 1176 case Instruction::Switch: 1177 Code = bitc::FUNC_CODE_INST_SWITCH; 1178 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1179 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1180 Vals.push_back(VE.getValueID(I.getOperand(i))); 1181 break; 1182 case Instruction::IndirectBr: 1183 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1184 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1185 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1186 Vals.push_back(VE.getValueID(I.getOperand(i))); 1187 break; 1188 1189 case Instruction::Invoke: { 1190 const InvokeInst *II = cast<InvokeInst>(&I); 1191 const Value *Callee(II->getCalledValue()); 1192 PointerType *PTy = cast<PointerType>(Callee->getType()); 1193 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1194 Code = bitc::FUNC_CODE_INST_INVOKE; 1195 1196 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1197 Vals.push_back(II->getCallingConv()); 1198 Vals.push_back(VE.getValueID(II->getNormalDest())); 1199 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1200 PushValueAndType(Callee, InstID, Vals, VE); 1201 1202 // Emit value #'s for the fixed parameters. 1203 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1204 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1205 1206 // Emit type/value pairs for varargs params. 1207 if (FTy->isVarArg()) { 1208 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1209 i != e; ++i) 1210 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1211 } 1212 break; 1213 } 1214 case Instruction::Unreachable: 1215 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1216 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1217 break; 1218 1219 case Instruction::PHI: { 1220 const PHINode &PN = cast<PHINode>(I); 1221 Code = bitc::FUNC_CODE_INST_PHI; 1222 Vals.push_back(VE.getTypeID(PN.getType())); 1223 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1224 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1225 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1226 } 1227 break; 1228 } 1229 1230 case Instruction::Alloca: 1231 Code = bitc::FUNC_CODE_INST_ALLOCA; 1232 Vals.push_back(VE.getTypeID(I.getType())); 1233 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1234 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1235 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1236 break; 1237 1238 case Instruction::Load: 1239 Code = bitc::FUNC_CODE_INST_LOAD; 1240 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1241 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1242 1243 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1244 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1245 break; 1246 case Instruction::Store: 1247 Code = bitc::FUNC_CODE_INST_STORE; 1248 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1249 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1250 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1251 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1252 break; 1253 case Instruction::Call: { 1254 const CallInst &CI = cast<CallInst>(I); 1255 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1256 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1257 1258 Code = FUNC_CODE_INST_CALL_2_7; 1259 1260 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1261 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1262 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1263 1264 // Emit value #'s for the fixed parameters. 1265 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1266 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1267 1268 // Emit type/value pairs for varargs params. 1269 if (FTy->isVarArg()) { 1270 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1271 i != e; ++i) 1272 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1273 } 1274 break; 1275 } 1276 case Instruction::VAArg: 1277 Code = bitc::FUNC_CODE_INST_VAARG; 1278 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1279 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1280 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1281 break; 1282 } 1283 1284 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1285 Vals.clear(); 1286} 1287 1288// Emit names for globals/functions etc. 1289static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1290 const ValueEnumerator &VE, 1291 BitstreamWriter &Stream) { 1292 if (VST.empty()) return; 1293 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1294 1295 // FIXME: Set up the abbrev, we know how many values there are! 1296 // FIXME: We know if the type names can use 7-bit ascii. 1297 SmallVector<unsigned, 64> NameVals; 1298 1299 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1300 SI != SE; ++SI) { 1301 1302 const ValueName &Name = *SI; 1303 1304 // Figure out the encoding to use for the name. 1305 bool is7Bit = true; 1306 bool isChar6 = true; 1307 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1308 C != E; ++C) { 1309 if (isChar6) 1310 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1311 if ((unsigned char)*C & 128) { 1312 is7Bit = false; 1313 break; // don't bother scanning the rest. 1314 } 1315 } 1316 1317 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1318 1319 // VST_ENTRY: [valueid, namechar x N] 1320 // VST_BBENTRY: [bbid, namechar x N] 1321 unsigned Code; 1322 if (isa<BasicBlock>(SI->getValue())) { 1323 Code = bitc::VST_CODE_BBENTRY; 1324 if (isChar6) 1325 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1326 } else { 1327 Code = bitc::VST_CODE_ENTRY; 1328 if (isChar6) 1329 AbbrevToUse = VST_ENTRY_6_ABBREV; 1330 else if (is7Bit) 1331 AbbrevToUse = VST_ENTRY_7_ABBREV; 1332 } 1333 1334 NameVals.push_back(VE.getValueID(SI->getValue())); 1335 for (const char *P = Name.getKeyData(), 1336 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1337 NameVals.push_back((unsigned char)*P); 1338 1339 // Emit the finished record. 1340 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1341 NameVals.clear(); 1342 } 1343 Stream.ExitBlock(); 1344} 1345 1346/// WriteFunction - Emit a function body to the module stream. 1347static void WriteFunction(const Function &F, ValueEnumerator &VE, 1348 BitstreamWriter &Stream) { 1349 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1350 VE.incorporateFunction(F); 1351 1352 SmallVector<unsigned, 64> Vals; 1353 1354 // Emit the number of basic blocks, so the reader can create them ahead of 1355 // time. 1356 Vals.push_back(VE.getBasicBlocks().size()); 1357 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1358 Vals.clear(); 1359 1360 // If there are function-local constants, emit them now. 1361 unsigned CstStart, CstEnd; 1362 VE.getFunctionConstantRange(CstStart, CstEnd); 1363 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1364 1365 // If there is function-local metadata, emit it now. 1366 WriteFunctionLocalMetadata(F, VE, Stream); 1367 1368 // Keep a running idea of what the instruction ID is. 1369 unsigned InstID = CstEnd; 1370 1371 bool NeedsMetadataAttachment = false; 1372 1373 DebugLoc LastDL; 1374 1375 // Finally, emit all the instructions, in order. 1376 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1377 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1378 I != E; ++I) { 1379 WriteInstruction(*I, InstID, VE, Stream, Vals); 1380 1381 if (!I->getType()->isVoidTy()) 1382 ++InstID; 1383 1384 // If the instruction has metadata, write a metadata attachment later. 1385 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1386 1387 // If the instruction has a debug location, emit it. 1388 DebugLoc DL = I->getDebugLoc(); 1389 if (DL.isUnknown()) { 1390 // nothing todo. 1391 } else if (DL == LastDL) { 1392 // Just repeat the same debug loc as last time. 1393 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1394 } else { 1395 MDNode *Scope, *IA; 1396 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1397 1398 Vals.push_back(DL.getLine()); 1399 Vals.push_back(DL.getCol()); 1400 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1401 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1402 Stream.EmitRecord(FUNC_CODE_DEBUG_LOC_2_7, Vals); 1403 Vals.clear(); 1404 1405 LastDL = DL; 1406 } 1407 } 1408 1409 // Emit names for all the instructions etc. 1410 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1411 1412 if (NeedsMetadataAttachment) 1413 WriteMetadataAttachment(F, VE, Stream); 1414 VE.purgeFunction(); 1415 Stream.ExitBlock(); 1416} 1417 1418// Emit blockinfo, which defines the standard abbreviations etc. 1419static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1420 // We only want to emit block info records for blocks that have multiple 1421 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1422 // blocks can defined their abbrevs inline. 1423 Stream.EnterBlockInfoBlock(2); 1424 1425 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1426 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1431 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1432 Abbv) != VST_ENTRY_8_ABBREV) 1433 llvm_unreachable("Unexpected abbrev ordering!"); 1434 } 1435 1436 { // 7-bit fixed width VST_ENTRY strings. 1437 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1438 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1442 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1443 Abbv) != VST_ENTRY_7_ABBREV) 1444 llvm_unreachable("Unexpected abbrev ordering!"); 1445 } 1446 { // 6-bit char6 VST_ENTRY strings. 1447 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1448 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1452 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1453 Abbv) != VST_ENTRY_6_ABBREV) 1454 llvm_unreachable("Unexpected abbrev ordering!"); 1455 } 1456 { // 6-bit char6 VST_BBENTRY strings. 1457 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1458 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1462 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1463 Abbv) != VST_BBENTRY_6_ABBREV) 1464 llvm_unreachable("Unexpected abbrev ordering!"); 1465 } 1466 1467 1468 1469 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1470 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1471 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1473 Log2_32_Ceil(VE.getTypes().size()+1))); 1474 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1475 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1476 llvm_unreachable("Unexpected abbrev ordering!"); 1477 } 1478 1479 { // INTEGER abbrev for CONSTANTS_BLOCK. 1480 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1481 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1483 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1484 Abbv) != CONSTANTS_INTEGER_ABBREV) 1485 llvm_unreachable("Unexpected abbrev ordering!"); 1486 } 1487 1488 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1489 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1490 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1493 Log2_32_Ceil(VE.getTypes().size()+1))); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1495 1496 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1497 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1498 llvm_unreachable("Unexpected abbrev ordering!"); 1499 } 1500 { // NULL abbrev for CONSTANTS_BLOCK. 1501 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1502 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1503 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1504 Abbv) != CONSTANTS_NULL_Abbrev) 1505 llvm_unreachable("Unexpected abbrev ordering!"); 1506 } 1507 1508 // FIXME: This should only use space for first class types! 1509 1510 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1511 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1512 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1516 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1517 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1518 llvm_unreachable("Unexpected abbrev ordering!"); 1519 } 1520 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1521 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1522 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1526 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1527 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1528 llvm_unreachable("Unexpected abbrev ordering!"); 1529 } 1530 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1531 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1532 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1537 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1538 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1539 llvm_unreachable("Unexpected abbrev ordering!"); 1540 } 1541 { // INST_CAST abbrev for FUNCTION_BLOCK. 1542 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1543 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1546 Log2_32_Ceil(VE.getTypes().size()+1))); 1547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1548 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1549 Abbv) != FUNCTION_INST_CAST_ABBREV) 1550 llvm_unreachable("Unexpected abbrev ordering!"); 1551 } 1552 1553 { // INST_RET abbrev for FUNCTION_BLOCK. 1554 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1555 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1556 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1557 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1558 llvm_unreachable("Unexpected abbrev ordering!"); 1559 } 1560 { // INST_RET abbrev for FUNCTION_BLOCK. 1561 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1562 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1564 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1565 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1566 llvm_unreachable("Unexpected abbrev ordering!"); 1567 } 1568 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1569 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1570 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1571 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1572 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1573 llvm_unreachable("Unexpected abbrev ordering!"); 1574 } 1575 1576 Stream.ExitBlock(); 1577} 1578 1579 1580/// WriteModule - Emit the specified module to the bitstream. 1581static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1582 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1583 1584 // Emit the version number if it is non-zero. 1585 if (CurVersion) { 1586 SmallVector<unsigned, 1> Vals; 1587 Vals.push_back(CurVersion); 1588 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1589 } 1590 1591 // Analyze the module, enumerating globals, functions, etc. 1592 ValueEnumerator VE(M); 1593 1594 // Emit blockinfo, which defines the standard abbreviations etc. 1595 WriteBlockInfo(VE, Stream); 1596 1597 // Emit information about parameter attributes. 1598 WriteAttributeTable(VE, Stream); 1599 1600 // Emit information describing all of the types in the module. 1601 WriteTypeTable(VE, Stream); 1602 1603 // Emit top-level description of module, including target triple, inline asm, 1604 // descriptors for global variables, and function prototype info. 1605 WriteModuleInfo(M, VE, Stream); 1606 1607 // Emit constants. 1608 WriteModuleConstants(VE, Stream); 1609 1610 // Emit metadata. 1611 WriteModuleMetadata(M, VE, Stream); 1612 1613 // Emit function bodies. 1614 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1615 if (!F->isDeclaration()) 1616 WriteFunction(*F, VE, Stream); 1617 1618 // Emit metadata. 1619 WriteModuleMetadataStore(M, Stream); 1620 1621 // Emit names for globals/functions etc. 1622 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1623 1624 Stream.ExitBlock(); 1625} 1626 1627/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1628/// header and trailer to make it compatible with the system archiver. To do 1629/// this we emit the following header, and then emit a trailer that pads the 1630/// file out to be a multiple of 16 bytes. 1631/// 1632/// struct bc_header { 1633/// uint32_t Magic; // 0x0B17C0DE 1634/// uint32_t Version; // Version, currently always 0. 1635/// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1636/// uint32_t BitcodeSize; // Size of traditional bitcode file. 1637/// uint32_t CPUType; // CPU specifier. 1638/// ... potentially more later ... 1639/// }; 1640enum { 1641 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1642 DarwinBCHeaderSize = 5*4 1643}; 1644 1645static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1646 uint32_t &Position) { 1647 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1648 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1649 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1650 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1651 Position += 4; 1652} 1653 1654static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1655 const Triple &TT) { 1656 unsigned CPUType = ~0U; 1657 1658 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1659 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1660 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1661 // specific constants here because they are implicitly part of the Darwin ABI. 1662 enum { 1663 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1664 DARWIN_CPU_TYPE_X86 = 7, 1665 DARWIN_CPU_TYPE_ARM = 12, 1666 DARWIN_CPU_TYPE_POWERPC = 18 1667 }; 1668 1669 Triple::ArchType Arch = TT.getArch(); 1670 if (Arch == Triple::x86_64) 1671 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1672 else if (Arch == Triple::x86) 1673 CPUType = DARWIN_CPU_TYPE_X86; 1674 else if (Arch == Triple::ppc) 1675 CPUType = DARWIN_CPU_TYPE_POWERPC; 1676 else if (Arch == Triple::ppc64) 1677 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1678 else if (Arch == Triple::arm || Arch == Triple::thumb) 1679 CPUType = DARWIN_CPU_TYPE_ARM; 1680 1681 // Traditional Bitcode starts after header. 1682 assert(Buffer.size() >= DarwinBCHeaderSize && 1683 "Expected header size to be reserved"); 1684 unsigned BCOffset = DarwinBCHeaderSize; 1685 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1686 1687 // Write the magic and version. 1688 unsigned Position = 0; 1689 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1690 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1691 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1692 WriteInt32ToBuffer(BCSize , Buffer, Position); 1693 WriteInt32ToBuffer(CPUType , Buffer, Position); 1694 1695 // If the file is not a multiple of 16 bytes, insert dummy padding. 1696 while (Buffer.size() & 15) 1697 Buffer.push_back(0); 1698} 1699 1700/// WriteBitcodeToFile - Write the specified module to the specified output 1701/// stream. 1702void llvm_2_9::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1703 SmallVector<char, 1024> Buffer; 1704 Buffer.reserve(256*1024); 1705 1706 // If this is darwin or another generic macho target, reserve space for the 1707 // header. 1708 Triple TT(M->getTargetTriple()); 1709 if (TT.isOSDarwin()) 1710 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1711 1712 // Emit the module into the buffer. 1713 { 1714 BitstreamWriter Stream(Buffer); 1715 1716 // Emit the file header. 1717 Stream.Emit((unsigned)'B', 8); 1718 Stream.Emit((unsigned)'C', 8); 1719 Stream.Emit(0x0, 4); 1720 Stream.Emit(0xC, 4); 1721 Stream.Emit(0xE, 4); 1722 Stream.Emit(0xD, 4); 1723 1724 // Emit the module. 1725 WriteModule(M, Stream); 1726 } 1727 1728 if (TT.isOSDarwin()) 1729 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1730 1731 // Write the generated bitstream to "Out". 1732 Out.write((char*)&Buffer.front(), Buffer.size()); 1733} 1734