1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitSelect function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/PatternMatch.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18using namespace llvm;
19using namespace PatternMatch;
20
21/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
22/// returning the kind and providing the out parameter results if we
23/// successfully match.
24static SelectPatternFlavor
25MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
26  SelectInst *SI = dyn_cast<SelectInst>(V);
27  if (SI == 0) return SPF_UNKNOWN;
28
29  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
30  if (ICI == 0) return SPF_UNKNOWN;
31
32  LHS = ICI->getOperand(0);
33  RHS = ICI->getOperand(1);
34
35  // (icmp X, Y) ? X : Y
36  if (SI->getTrueValue() == ICI->getOperand(0) &&
37      SI->getFalseValue() == ICI->getOperand(1)) {
38    switch (ICI->getPredicate()) {
39    default: return SPF_UNKNOWN; // Equality.
40    case ICmpInst::ICMP_UGT:
41    case ICmpInst::ICMP_UGE: return SPF_UMAX;
42    case ICmpInst::ICMP_SGT:
43    case ICmpInst::ICMP_SGE: return SPF_SMAX;
44    case ICmpInst::ICMP_ULT:
45    case ICmpInst::ICMP_ULE: return SPF_UMIN;
46    case ICmpInst::ICMP_SLT:
47    case ICmpInst::ICMP_SLE: return SPF_SMIN;
48    }
49  }
50
51  // (icmp X, Y) ? Y : X
52  if (SI->getTrueValue() == ICI->getOperand(1) &&
53      SI->getFalseValue() == ICI->getOperand(0)) {
54    switch (ICI->getPredicate()) {
55      default: return SPF_UNKNOWN; // Equality.
56      case ICmpInst::ICMP_UGT:
57      case ICmpInst::ICMP_UGE: return SPF_UMIN;
58      case ICmpInst::ICMP_SGT:
59      case ICmpInst::ICMP_SGE: return SPF_SMIN;
60      case ICmpInst::ICMP_ULT:
61      case ICmpInst::ICMP_ULE: return SPF_UMAX;
62      case ICmpInst::ICMP_SLT:
63      case ICmpInst::ICMP_SLE: return SPF_SMAX;
64    }
65  }
66
67  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
68
69  return SPF_UNKNOWN;
70}
71
72
73/// GetSelectFoldableOperands - We want to turn code that looks like this:
74///   %C = or %A, %B
75///   %D = select %cond, %C, %A
76/// into:
77///   %C = select %cond, %B, 0
78///   %D = or %A, %C
79///
80/// Assuming that the specified instruction is an operand to the select, return
81/// a bitmask indicating which operands of this instruction are foldable if they
82/// equal the other incoming value of the select.
83///
84static unsigned GetSelectFoldableOperands(Instruction *I) {
85  switch (I->getOpcode()) {
86  case Instruction::Add:
87  case Instruction::Mul:
88  case Instruction::And:
89  case Instruction::Or:
90  case Instruction::Xor:
91    return 3;              // Can fold through either operand.
92  case Instruction::Sub:   // Can only fold on the amount subtracted.
93  case Instruction::Shl:   // Can only fold on the shift amount.
94  case Instruction::LShr:
95  case Instruction::AShr:
96    return 1;
97  default:
98    return 0;              // Cannot fold
99  }
100}
101
102/// GetSelectFoldableConstant - For the same transformation as the previous
103/// function, return the identity constant that goes into the select.
104static Constant *GetSelectFoldableConstant(Instruction *I) {
105  switch (I->getOpcode()) {
106  default: llvm_unreachable("This cannot happen!");
107  case Instruction::Add:
108  case Instruction::Sub:
109  case Instruction::Or:
110  case Instruction::Xor:
111  case Instruction::Shl:
112  case Instruction::LShr:
113  case Instruction::AShr:
114    return Constant::getNullValue(I->getType());
115  case Instruction::And:
116    return Constant::getAllOnesValue(I->getType());
117  case Instruction::Mul:
118    return ConstantInt::get(I->getType(), 1);
119  }
120}
121
122/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
123/// have the same opcode and only one use each.  Try to simplify this.
124Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
125                                          Instruction *FI) {
126  if (TI->getNumOperands() == 1) {
127    // If this is a non-volatile load or a cast from the same type,
128    // merge.
129    if (TI->isCast()) {
130      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
131        return 0;
132    } else {
133      return 0;  // unknown unary op.
134    }
135
136    // Fold this by inserting a select from the input values.
137    Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
138                                         FI->getOperand(0), SI.getName()+".v");
139    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
140                            TI->getType());
141  }
142
143  // Only handle binary operators here.
144  if (!isa<BinaryOperator>(TI))
145    return 0;
146
147  // Figure out if the operations have any operands in common.
148  Value *MatchOp, *OtherOpT, *OtherOpF;
149  bool MatchIsOpZero;
150  if (TI->getOperand(0) == FI->getOperand(0)) {
151    MatchOp  = TI->getOperand(0);
152    OtherOpT = TI->getOperand(1);
153    OtherOpF = FI->getOperand(1);
154    MatchIsOpZero = true;
155  } else if (TI->getOperand(1) == FI->getOperand(1)) {
156    MatchOp  = TI->getOperand(1);
157    OtherOpT = TI->getOperand(0);
158    OtherOpF = FI->getOperand(0);
159    MatchIsOpZero = false;
160  } else if (!TI->isCommutative()) {
161    return 0;
162  } else if (TI->getOperand(0) == FI->getOperand(1)) {
163    MatchOp  = TI->getOperand(0);
164    OtherOpT = TI->getOperand(1);
165    OtherOpF = FI->getOperand(0);
166    MatchIsOpZero = true;
167  } else if (TI->getOperand(1) == FI->getOperand(0)) {
168    MatchOp  = TI->getOperand(1);
169    OtherOpT = TI->getOperand(0);
170    OtherOpF = FI->getOperand(1);
171    MatchIsOpZero = true;
172  } else {
173    return 0;
174  }
175
176  // If we reach here, they do have operations in common.
177  Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
178                                       OtherOpF, SI.getName()+".v");
179
180  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
181    if (MatchIsOpZero)
182      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
183    else
184      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
185  }
186  llvm_unreachable("Shouldn't get here");
187}
188
189static bool isSelect01(Constant *C1, Constant *C2) {
190  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
191  if (!C1I)
192    return false;
193  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
194  if (!C2I)
195    return false;
196  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
197    return false;
198  return C1I->isOne() || C1I->isAllOnesValue() ||
199         C2I->isOne() || C2I->isAllOnesValue();
200}
201
202/// FoldSelectIntoOp - Try fold the select into one of the operands to
203/// facilitate further optimization.
204Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
205                                            Value *FalseVal) {
206  // See the comment above GetSelectFoldableOperands for a description of the
207  // transformation we are doing here.
208  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
209    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
210        !isa<Constant>(FalseVal)) {
211      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
212        unsigned OpToFold = 0;
213        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
214          OpToFold = 1;
215        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
216          OpToFold = 2;
217        }
218
219        if (OpToFold) {
220          Constant *C = GetSelectFoldableConstant(TVI);
221          Value *OOp = TVI->getOperand(2-OpToFold);
222          // Avoid creating select between 2 constants unless it's selecting
223          // between 0, 1 and -1.
224          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
225            Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
226            NewSel->takeName(TVI);
227            BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
228            BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
229                                                        FalseVal, NewSel);
230            if (isa<PossiblyExactOperator>(BO))
231              BO->setIsExact(TVI_BO->isExact());
232            if (isa<OverflowingBinaryOperator>(BO)) {
233              BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
234              BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
235            }
236            return BO;
237          }
238        }
239      }
240    }
241  }
242
243  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
244    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
245        !isa<Constant>(TrueVal)) {
246      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
247        unsigned OpToFold = 0;
248        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
249          OpToFold = 1;
250        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
251          OpToFold = 2;
252        }
253
254        if (OpToFold) {
255          Constant *C = GetSelectFoldableConstant(FVI);
256          Value *OOp = FVI->getOperand(2-OpToFold);
257          // Avoid creating select between 2 constants unless it's selecting
258          // between 0, 1 and -1.
259          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
260            Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
261            NewSel->takeName(FVI);
262            BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
263            BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
264                                                        TrueVal, NewSel);
265            if (isa<PossiblyExactOperator>(BO))
266              BO->setIsExact(FVI_BO->isExact());
267            if (isa<OverflowingBinaryOperator>(BO)) {
268              BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
269              BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
270            }
271            return BO;
272          }
273        }
274      }
275    }
276  }
277
278  return 0;
279}
280
281/// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
282/// replaced with RepOp.
283static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
284                                     const TargetData *TD,
285                                     const TargetLibraryInfo *TLI) {
286  // Trivial replacement.
287  if (V == Op)
288    return RepOp;
289
290  Instruction *I = dyn_cast<Instruction>(V);
291  if (!I)
292    return 0;
293
294  // If this is a binary operator, try to simplify it with the replaced op.
295  if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
296    if (B->getOperand(0) == Op)
297      return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
298    if (B->getOperand(1) == Op)
299      return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
300  }
301
302  // Same for CmpInsts.
303  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
304    if (C->getOperand(0) == Op)
305      return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
306                             TLI);
307    if (C->getOperand(1) == Op)
308      return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
309                             TLI);
310  }
311
312  // TODO: We could hand off more cases to instsimplify here.
313
314  // If all operands are constant after substituting Op for RepOp then we can
315  // constant fold the instruction.
316  if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
317    // Build a list of all constant operands.
318    SmallVector<Constant*, 8> ConstOps;
319    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
320      if (I->getOperand(i) == Op)
321        ConstOps.push_back(CRepOp);
322      else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
323        ConstOps.push_back(COp);
324      else
325        break;
326    }
327
328    // All operands were constants, fold it.
329    if (ConstOps.size() == I->getNumOperands()) {
330      if (LoadInst *LI = dyn_cast<LoadInst>(I))
331        if (!LI->isVolatile())
332          return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
333
334      return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
335                                      ConstOps, TD, TLI);
336    }
337  }
338
339  return 0;
340}
341
342/// visitSelectInstWithICmp - Visit a SelectInst that has an
343/// ICmpInst as its first operand.
344///
345Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
346                                                   ICmpInst *ICI) {
347  bool Changed = false;
348  ICmpInst::Predicate Pred = ICI->getPredicate();
349  Value *CmpLHS = ICI->getOperand(0);
350  Value *CmpRHS = ICI->getOperand(1);
351  Value *TrueVal = SI.getTrueValue();
352  Value *FalseVal = SI.getFalseValue();
353
354  // Check cases where the comparison is with a constant that
355  // can be adjusted to fit the min/max idiom. We may move or edit ICI
356  // here, so make sure the select is the only user.
357  if (ICI->hasOneUse())
358    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
359      // X < MIN ? T : F  -->  F
360      if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
361          && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
362        return ReplaceInstUsesWith(SI, FalseVal);
363      // X > MAX ? T : F  -->  F
364      else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
365               && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
366        return ReplaceInstUsesWith(SI, FalseVal);
367      switch (Pred) {
368      default: break;
369      case ICmpInst::ICMP_ULT:
370      case ICmpInst::ICMP_SLT:
371      case ICmpInst::ICMP_UGT:
372      case ICmpInst::ICMP_SGT: {
373        // These transformations only work for selects over integers.
374        IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
375        if (!SelectTy)
376          break;
377
378        Constant *AdjustedRHS;
379        if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
380          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
381        else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
382          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
383
384        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
385        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
386        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
387            (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
388          ; // Nothing to do here. Values match without any sign/zero extension.
389
390        // Types do not match. Instead of calculating this with mixed types
391        // promote all to the larger type. This enables scalar evolution to
392        // analyze this expression.
393        else if (CmpRHS->getType()->getScalarSizeInBits()
394                 < SelectTy->getBitWidth()) {
395          Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
396
397          // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
398          // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
399          // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
400          // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
401          if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
402                sextRHS == FalseVal) {
403            CmpLHS = TrueVal;
404            AdjustedRHS = sextRHS;
405          } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
406                     sextRHS == TrueVal) {
407            CmpLHS = FalseVal;
408            AdjustedRHS = sextRHS;
409          } else if (ICI->isUnsigned()) {
410            Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
411            // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
412            // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
413            // zext + signed compare cannot be changed:
414            //    0xff <s 0x00, but 0x00ff >s 0x0000
415            if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
416                zextRHS == FalseVal) {
417              CmpLHS = TrueVal;
418              AdjustedRHS = zextRHS;
419            } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
420                       zextRHS == TrueVal) {
421              CmpLHS = FalseVal;
422              AdjustedRHS = zextRHS;
423            } else
424              break;
425          } else
426            break;
427        } else
428          break;
429
430        Pred = ICmpInst::getSwappedPredicate(Pred);
431        CmpRHS = AdjustedRHS;
432        std::swap(FalseVal, TrueVal);
433        ICI->setPredicate(Pred);
434        ICI->setOperand(0, CmpLHS);
435        ICI->setOperand(1, CmpRHS);
436        SI.setOperand(1, TrueVal);
437        SI.setOperand(2, FalseVal);
438
439        // Move ICI instruction right before the select instruction. Otherwise
440        // the sext/zext value may be defined after the ICI instruction uses it.
441        ICI->moveBefore(&SI);
442
443        Changed = true;
444        break;
445      }
446      }
447    }
448
449  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
450  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
451  // FIXME: Type and constness constraints could be lifted, but we have to
452  //        watch code size carefully. We should consider xor instead of
453  //        sub/add when we decide to do that.
454  if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
455    if (TrueVal->getType() == Ty) {
456      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
457        ConstantInt *C1 = NULL, *C2 = NULL;
458        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
459          C1 = dyn_cast<ConstantInt>(TrueVal);
460          C2 = dyn_cast<ConstantInt>(FalseVal);
461        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
462          C1 = dyn_cast<ConstantInt>(FalseVal);
463          C2 = dyn_cast<ConstantInt>(TrueVal);
464        }
465        if (C1 && C2) {
466          // This shift results in either -1 or 0.
467          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
468
469          // Check if we can express the operation with a single or.
470          if (C2->isAllOnesValue())
471            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
472
473          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
474          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
475        }
476      }
477    }
478  }
479
480  // If we have an equality comparison then we know the value in one of the
481  // arms of the select. See if substituting this value into the arm and
482  // simplifying the result yields the same value as the other arm.
483  if (Pred == ICmpInst::ICMP_EQ) {
484    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
485        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
486      return ReplaceInstUsesWith(SI, FalseVal);
487    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
488        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
489      return ReplaceInstUsesWith(SI, FalseVal);
490  } else if (Pred == ICmpInst::ICMP_NE) {
491    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
492        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
493      return ReplaceInstUsesWith(SI, TrueVal);
494    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
495        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
496      return ReplaceInstUsesWith(SI, TrueVal);
497  }
498
499  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
500
501  if (isa<Constant>(CmpRHS)) {
502    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
503      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
504      SI.setOperand(1, CmpRHS);
505      Changed = true;
506    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
507      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
508      SI.setOperand(2, CmpRHS);
509      Changed = true;
510    }
511  }
512
513  return Changed ? &SI : 0;
514}
515
516
517/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
518/// PHI node (but the two may be in different blocks).  See if the true/false
519/// values (V) are live in all of the predecessor blocks of the PHI.  For
520/// example, cases like this cannot be mapped:
521///
522///   X = phi [ C1, BB1], [C2, BB2]
523///   Y = add
524///   Z = select X, Y, 0
525///
526/// because Y is not live in BB1/BB2.
527///
528static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
529                                                   const SelectInst &SI) {
530  // If the value is a non-instruction value like a constant or argument, it
531  // can always be mapped.
532  const Instruction *I = dyn_cast<Instruction>(V);
533  if (I == 0) return true;
534
535  // If V is a PHI node defined in the same block as the condition PHI, we can
536  // map the arguments.
537  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
538
539  if (const PHINode *VP = dyn_cast<PHINode>(I))
540    if (VP->getParent() == CondPHI->getParent())
541      return true;
542
543  // Otherwise, if the PHI and select are defined in the same block and if V is
544  // defined in a different block, then we can transform it.
545  if (SI.getParent() == CondPHI->getParent() &&
546      I->getParent() != CondPHI->getParent())
547    return true;
548
549  // Otherwise we have a 'hard' case and we can't tell without doing more
550  // detailed dominator based analysis, punt.
551  return false;
552}
553
554/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
555///   SPF2(SPF1(A, B), C)
556Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
557                                        SelectPatternFlavor SPF1,
558                                        Value *A, Value *B,
559                                        Instruction &Outer,
560                                        SelectPatternFlavor SPF2, Value *C) {
561  if (C == A || C == B) {
562    // MAX(MAX(A, B), B) -> MAX(A, B)
563    // MIN(MIN(a, b), a) -> MIN(a, b)
564    if (SPF1 == SPF2)
565      return ReplaceInstUsesWith(Outer, Inner);
566
567    // MAX(MIN(a, b), a) -> a
568    // MIN(MAX(a, b), a) -> a
569    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
570        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
571        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
572        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
573      return ReplaceInstUsesWith(Outer, C);
574  }
575
576  // TODO: MIN(MIN(A, 23), 97)
577  return 0;
578}
579
580
581/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
582/// both be) and we have an icmp instruction with zero, and we have an 'and'
583/// with the non-constant value and a power of two we can turn the select
584/// into a shift on the result of the 'and'.
585static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
586                                ConstantInt *FalseVal,
587                                InstCombiner::BuilderTy *Builder) {
588  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
589  if (!IC || !IC->isEquality())
590    return 0;
591
592  if (!match(IC->getOperand(1), m_Zero()))
593    return 0;
594
595  ConstantInt *AndRHS;
596  Value *LHS = IC->getOperand(0);
597  if (LHS->getType() != SI.getType() ||
598      !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
599    return 0;
600
601  // If both select arms are non-zero see if we have a select of the form
602  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
603  // for 'x ? 2^n : 0' and fix the thing up at the end.
604  ConstantInt *Offset = 0;
605  if (!TrueVal->isZero() && !FalseVal->isZero()) {
606    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
607      Offset = FalseVal;
608    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
609      Offset = TrueVal;
610    else
611      return 0;
612
613    // Adjust TrueVal and FalseVal to the offset.
614    TrueVal = ConstantInt::get(Builder->getContext(),
615                               TrueVal->getValue() - Offset->getValue());
616    FalseVal = ConstantInt::get(Builder->getContext(),
617                                FalseVal->getValue() - Offset->getValue());
618  }
619
620  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
621  if (!AndRHS->getValue().isPowerOf2() ||
622      (!TrueVal->getValue().isPowerOf2() &&
623       !FalseVal->getValue().isPowerOf2()))
624    return 0;
625
626  // Determine which shift is needed to transform result of the 'and' into the
627  // desired result.
628  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
629  unsigned ValZeros = ValC->getValue().logBase2();
630  unsigned AndZeros = AndRHS->getValue().logBase2();
631
632  Value *V = LHS;
633  if (ValZeros > AndZeros)
634    V = Builder->CreateShl(V, ValZeros - AndZeros);
635  else if (ValZeros < AndZeros)
636    V = Builder->CreateLShr(V, AndZeros - ValZeros);
637
638  // Okay, now we know that everything is set up, we just don't know whether we
639  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
640  bool ShouldNotVal = !TrueVal->isZero();
641  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
642  if (ShouldNotVal)
643    V = Builder->CreateXor(V, ValC);
644
645  // Apply an offset if needed.
646  if (Offset)
647    V = Builder->CreateAdd(V, Offset);
648  return V;
649}
650
651Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
652  Value *CondVal = SI.getCondition();
653  Value *TrueVal = SI.getTrueValue();
654  Value *FalseVal = SI.getFalseValue();
655
656  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
657    return ReplaceInstUsesWith(SI, V);
658
659  if (SI.getType()->isIntegerTy(1)) {
660    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
661      if (C->getZExtValue()) {
662        // Change: A = select B, true, C --> A = or B, C
663        return BinaryOperator::CreateOr(CondVal, FalseVal);
664      }
665      // Change: A = select B, false, C --> A = and !B, C
666      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
667      return BinaryOperator::CreateAnd(NotCond, FalseVal);
668    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
669      if (C->getZExtValue() == false) {
670        // Change: A = select B, C, false --> A = and B, C
671        return BinaryOperator::CreateAnd(CondVal, TrueVal);
672      }
673      // Change: A = select B, C, true --> A = or !B, C
674      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
675      return BinaryOperator::CreateOr(NotCond, TrueVal);
676    }
677
678    // select a, b, a  -> a&b
679    // select a, a, b  -> a|b
680    if (CondVal == TrueVal)
681      return BinaryOperator::CreateOr(CondVal, FalseVal);
682    else if (CondVal == FalseVal)
683      return BinaryOperator::CreateAnd(CondVal, TrueVal);
684
685    // select a, ~a, b -> (~a)&b
686    // select a, b, ~a -> (~a)|b
687    if (match(TrueVal, m_Not(m_Specific(CondVal))))
688      return BinaryOperator::CreateAnd(TrueVal, FalseVal);
689    else if (match(FalseVal, m_Not(m_Specific(CondVal))))
690      return BinaryOperator::CreateOr(TrueVal, FalseVal);
691  }
692
693  // Selecting between two integer constants?
694  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
695    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
696      // select C, 1, 0 -> zext C to int
697      if (FalseValC->isZero() && TrueValC->getValue() == 1)
698        return new ZExtInst(CondVal, SI.getType());
699
700      // select C, -1, 0 -> sext C to int
701      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
702        return new SExtInst(CondVal, SI.getType());
703
704      // select C, 0, 1 -> zext !C to int
705      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
706        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
707        return new ZExtInst(NotCond, SI.getType());
708      }
709
710      // select C, 0, -1 -> sext !C to int
711      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
712        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
713        return new SExtInst(NotCond, SI.getType());
714      }
715
716      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
717        return ReplaceInstUsesWith(SI, V);
718    }
719
720  // See if we are selecting two values based on a comparison of the two values.
721  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
722    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
723      // Transform (X == Y) ? X : Y  -> Y
724      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
725        // This is not safe in general for floating point:
726        // consider X== -0, Y== +0.
727        // It becomes safe if either operand is a nonzero constant.
728        ConstantFP *CFPt, *CFPf;
729        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
730              !CFPt->getValueAPF().isZero()) ||
731            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
732             !CFPf->getValueAPF().isZero()))
733        return ReplaceInstUsesWith(SI, FalseVal);
734      }
735      // Transform (X une Y) ? X : Y  -> X
736      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
737        // This is not safe in general for floating point:
738        // consider X== -0, Y== +0.
739        // It becomes safe if either operand is a nonzero constant.
740        ConstantFP *CFPt, *CFPf;
741        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
742              !CFPt->getValueAPF().isZero()) ||
743            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
744             !CFPf->getValueAPF().isZero()))
745        return ReplaceInstUsesWith(SI, TrueVal);
746      }
747      // NOTE: if we wanted to, this is where to detect MIN/MAX
748
749    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
750      // Transform (X == Y) ? Y : X  -> X
751      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
752        // This is not safe in general for floating point:
753        // consider X== -0, Y== +0.
754        // It becomes safe if either operand is a nonzero constant.
755        ConstantFP *CFPt, *CFPf;
756        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
757              !CFPt->getValueAPF().isZero()) ||
758            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
759             !CFPf->getValueAPF().isZero()))
760          return ReplaceInstUsesWith(SI, FalseVal);
761      }
762      // Transform (X une Y) ? Y : X  -> Y
763      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
764        // This is not safe in general for floating point:
765        // consider X== -0, Y== +0.
766        // It becomes safe if either operand is a nonzero constant.
767        ConstantFP *CFPt, *CFPf;
768        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
769              !CFPt->getValueAPF().isZero()) ||
770            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
771             !CFPf->getValueAPF().isZero()))
772          return ReplaceInstUsesWith(SI, TrueVal);
773      }
774      // NOTE: if we wanted to, this is where to detect MIN/MAX
775    }
776    // NOTE: if we wanted to, this is where to detect ABS
777  }
778
779  // See if we are selecting two values based on a comparison of the two values.
780  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
781    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
782      return Result;
783
784  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
785    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
786      if (TI->hasOneUse() && FI->hasOneUse()) {
787        Instruction *AddOp = 0, *SubOp = 0;
788
789        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
790        if (TI->getOpcode() == FI->getOpcode())
791          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
792            return IV;
793
794        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
795        // even legal for FP.
796        if ((TI->getOpcode() == Instruction::Sub &&
797             FI->getOpcode() == Instruction::Add) ||
798            (TI->getOpcode() == Instruction::FSub &&
799             FI->getOpcode() == Instruction::FAdd)) {
800          AddOp = FI; SubOp = TI;
801        } else if ((FI->getOpcode() == Instruction::Sub &&
802                    TI->getOpcode() == Instruction::Add) ||
803                   (FI->getOpcode() == Instruction::FSub &&
804                    TI->getOpcode() == Instruction::FAdd)) {
805          AddOp = TI; SubOp = FI;
806        }
807
808        if (AddOp) {
809          Value *OtherAddOp = 0;
810          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
811            OtherAddOp = AddOp->getOperand(1);
812          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
813            OtherAddOp = AddOp->getOperand(0);
814          }
815
816          if (OtherAddOp) {
817            // So at this point we know we have (Y -> OtherAddOp):
818            //        select C, (add X, Y), (sub X, Z)
819            Value *NegVal;  // Compute -Z
820            if (SI.getType()->isFPOrFPVectorTy()) {
821              NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
822            } else {
823              NegVal = Builder->CreateNeg(SubOp->getOperand(1));
824            }
825
826            Value *NewTrueOp = OtherAddOp;
827            Value *NewFalseOp = NegVal;
828            if (AddOp != TI)
829              std::swap(NewTrueOp, NewFalseOp);
830            Value *NewSel =
831              Builder->CreateSelect(CondVal, NewTrueOp,
832                                    NewFalseOp, SI.getName() + ".p");
833
834            if (SI.getType()->isFPOrFPVectorTy())
835              return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
836            else
837              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
838          }
839        }
840      }
841
842  // See if we can fold the select into one of our operands.
843  if (SI.getType()->isIntegerTy()) {
844    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
845      return FoldI;
846
847    // MAX(MAX(a, b), a) -> MAX(a, b)
848    // MIN(MIN(a, b), a) -> MIN(a, b)
849    // MAX(MIN(a, b), a) -> a
850    // MIN(MAX(a, b), a) -> a
851    Value *LHS, *RHS, *LHS2, *RHS2;
852    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
853      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
854        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
855                                          SI, SPF, RHS))
856          return R;
857      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
858        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
859                                          SI, SPF, LHS))
860          return R;
861    }
862
863    // TODO.
864    // ABS(-X) -> ABS(X)
865    // ABS(ABS(X)) -> ABS(X)
866  }
867
868  // See if we can fold the select into a phi node if the condition is a select.
869  if (isa<PHINode>(SI.getCondition()))
870    // The true/false values have to be live in the PHI predecessor's blocks.
871    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
872        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
873      if (Instruction *NV = FoldOpIntoPhi(SI))
874        return NV;
875
876  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
877    if (TrueSI->getCondition() == CondVal) {
878      SI.setOperand(1, TrueSI->getTrueValue());
879      return &SI;
880    }
881  }
882  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
883    if (FalseSI->getCondition() == CondVal) {
884      SI.setOperand(2, FalseSI->getFalseValue());
885      return &SI;
886    }
887  }
888
889  if (BinaryOperator::isNot(CondVal)) {
890    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
891    SI.setOperand(1, FalseVal);
892    SI.setOperand(2, TrueVal);
893    return &SI;
894  }
895
896  return 0;
897}
898