1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm/IntrinsicInst.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/MemoryBuiltins.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetLibraryInfo.h"
45#include "llvm/Transforms/Utils/Local.h"
46#include "llvm/Support/CFG.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/GetElementPtrTypeIterator.h"
49#include "llvm/Support/PatternMatch.h"
50#include "llvm/Support/ValueHandle.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/Statistic.h"
53#include "llvm/ADT/StringSwitch.h"
54#include "llvm-c/Initialization.h"
55#include <algorithm>
56#include <climits>
57using namespace llvm;
58using namespace llvm::PatternMatch;
59
60STATISTIC(NumCombined , "Number of insts combined");
61STATISTIC(NumConstProp, "Number of constant folds");
62STATISTIC(NumDeadInst , "Number of dead inst eliminated");
63STATISTIC(NumSunkInst , "Number of instructions sunk");
64STATISTIC(NumExpand,    "Number of expansions");
65STATISTIC(NumFactor   , "Number of factorizations");
66STATISTIC(NumReassoc  , "Number of reassociations");
67
68// Initialization Routines
69void llvm::initializeInstCombine(PassRegistry &Registry) {
70  initializeInstCombinerPass(Registry);
71}
72
73void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
74  initializeInstCombine(*unwrap(R));
75}
76
77char InstCombiner::ID = 0;
78INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
79                "Combine redundant instructions", false, false)
80INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
81INITIALIZE_PASS_END(InstCombiner, "instcombine",
82                "Combine redundant instructions", false, false)
83
84void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
85  AU.setPreservesCFG();
86  AU.addRequired<TargetLibraryInfo>();
87}
88
89
90/// ShouldChangeType - Return true if it is desirable to convert a computation
91/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
92/// type for example, or from a smaller to a larger illegal type.
93bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
94  assert(From->isIntegerTy() && To->isIntegerTy());
95
96  // If we don't have TD, we don't know if the source/dest are legal.
97  if (!TD) return false;
98
99  unsigned FromWidth = From->getPrimitiveSizeInBits();
100  unsigned ToWidth = To->getPrimitiveSizeInBits();
101  bool FromLegal = TD->isLegalInteger(FromWidth);
102  bool ToLegal = TD->isLegalInteger(ToWidth);
103
104  // If this is a legal integer from type, and the result would be an illegal
105  // type, don't do the transformation.
106  if (FromLegal && !ToLegal)
107    return false;
108
109  // Otherwise, if both are illegal, do not increase the size of the result. We
110  // do allow things like i160 -> i64, but not i64 -> i160.
111  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
112    return false;
113
114  return true;
115}
116
117// Return true, if No Signed Wrap should be maintained for I.
118// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
119// where both B and C should be ConstantInts, results in a constant that does
120// not overflow. This function only handles the Add and Sub opcodes. For
121// all other opcodes, the function conservatively returns false.
122static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
123  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
124  if (!OBO || !OBO->hasNoSignedWrap()) {
125    return false;
126  }
127
128  // We reason about Add and Sub Only.
129  Instruction::BinaryOps Opcode = I.getOpcode();
130  if (Opcode != Instruction::Add &&
131      Opcode != Instruction::Sub) {
132    return false;
133  }
134
135  ConstantInt *CB = dyn_cast<ConstantInt>(B);
136  ConstantInt *CC = dyn_cast<ConstantInt>(C);
137
138  if (!CB || !CC) {
139    return false;
140  }
141
142  const APInt &BVal = CB->getValue();
143  const APInt &CVal = CC->getValue();
144  bool Overflow = false;
145
146  if (Opcode == Instruction::Add) {
147    BVal.sadd_ov(CVal, Overflow);
148  } else {
149    BVal.ssub_ov(CVal, Overflow);
150  }
151
152  return !Overflow;
153}
154
155/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
156/// operators which are associative or commutative:
157//
158//  Commutative operators:
159//
160//  1. Order operands such that they are listed from right (least complex) to
161//     left (most complex).  This puts constants before unary operators before
162//     binary operators.
163//
164//  Associative operators:
165//
166//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
167//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
168//
169//  Associative and commutative operators:
170//
171//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
172//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
173//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
174//     if C1 and C2 are constants.
175//
176bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
177  Instruction::BinaryOps Opcode = I.getOpcode();
178  bool Changed = false;
179
180  do {
181    // Order operands such that they are listed from right (least complex) to
182    // left (most complex).  This puts constants before unary operators before
183    // binary operators.
184    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
185        getComplexity(I.getOperand(1)))
186      Changed = !I.swapOperands();
187
188    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
189    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
190
191    if (I.isAssociative()) {
192      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
193      if (Op0 && Op0->getOpcode() == Opcode) {
194        Value *A = Op0->getOperand(0);
195        Value *B = Op0->getOperand(1);
196        Value *C = I.getOperand(1);
197
198        // Does "B op C" simplify?
199        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
200          // It simplifies to V.  Form "A op V".
201          I.setOperand(0, A);
202          I.setOperand(1, V);
203          // Conservatively clear the optional flags, since they may not be
204          // preserved by the reassociation.
205          if (MaintainNoSignedWrap(I, B, C) &&
206	      (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
207            // Note: this is only valid because SimplifyBinOp doesn't look at
208            // the operands to Op0.
209            I.clearSubclassOptionalData();
210            I.setHasNoSignedWrap(true);
211          } else {
212            I.clearSubclassOptionalData();
213          }
214
215          Changed = true;
216          ++NumReassoc;
217          continue;
218        }
219      }
220
221      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
222      if (Op1 && Op1->getOpcode() == Opcode) {
223        Value *A = I.getOperand(0);
224        Value *B = Op1->getOperand(0);
225        Value *C = Op1->getOperand(1);
226
227        // Does "A op B" simplify?
228        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
229          // It simplifies to V.  Form "V op C".
230          I.setOperand(0, V);
231          I.setOperand(1, C);
232          // Conservatively clear the optional flags, since they may not be
233          // preserved by the reassociation.
234          I.clearSubclassOptionalData();
235          Changed = true;
236          ++NumReassoc;
237          continue;
238        }
239      }
240    }
241
242    if (I.isAssociative() && I.isCommutative()) {
243      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
244      if (Op0 && Op0->getOpcode() == Opcode) {
245        Value *A = Op0->getOperand(0);
246        Value *B = Op0->getOperand(1);
247        Value *C = I.getOperand(1);
248
249        // Does "C op A" simplify?
250        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
251          // It simplifies to V.  Form "V op B".
252          I.setOperand(0, V);
253          I.setOperand(1, B);
254          // Conservatively clear the optional flags, since they may not be
255          // preserved by the reassociation.
256          I.clearSubclassOptionalData();
257          Changed = true;
258          ++NumReassoc;
259          continue;
260        }
261      }
262
263      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
264      if (Op1 && Op1->getOpcode() == Opcode) {
265        Value *A = I.getOperand(0);
266        Value *B = Op1->getOperand(0);
267        Value *C = Op1->getOperand(1);
268
269        // Does "C op A" simplify?
270        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
271          // It simplifies to V.  Form "B op V".
272          I.setOperand(0, B);
273          I.setOperand(1, V);
274          // Conservatively clear the optional flags, since they may not be
275          // preserved by the reassociation.
276          I.clearSubclassOptionalData();
277          Changed = true;
278          ++NumReassoc;
279          continue;
280        }
281      }
282
283      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
284      // if C1 and C2 are constants.
285      if (Op0 && Op1 &&
286          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
287          isa<Constant>(Op0->getOperand(1)) &&
288          isa<Constant>(Op1->getOperand(1)) &&
289          Op0->hasOneUse() && Op1->hasOneUse()) {
290        Value *A = Op0->getOperand(0);
291        Constant *C1 = cast<Constant>(Op0->getOperand(1));
292        Value *B = Op1->getOperand(0);
293        Constant *C2 = cast<Constant>(Op1->getOperand(1));
294
295        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
296        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
297        InsertNewInstWith(New, I);
298        New->takeName(Op1);
299        I.setOperand(0, New);
300        I.setOperand(1, Folded);
301        // Conservatively clear the optional flags, since they may not be
302        // preserved by the reassociation.
303        I.clearSubclassOptionalData();
304
305        Changed = true;
306        continue;
307      }
308    }
309
310    // No further simplifications.
311    return Changed;
312  } while (1);
313}
314
315/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
316/// "(X LOp Y) ROp (X LOp Z)".
317static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
318                                     Instruction::BinaryOps ROp) {
319  switch (LOp) {
320  default:
321    return false;
322
323  case Instruction::And:
324    // And distributes over Or and Xor.
325    switch (ROp) {
326    default:
327      return false;
328    case Instruction::Or:
329    case Instruction::Xor:
330      return true;
331    }
332
333  case Instruction::Mul:
334    // Multiplication distributes over addition and subtraction.
335    switch (ROp) {
336    default:
337      return false;
338    case Instruction::Add:
339    case Instruction::Sub:
340      return true;
341    }
342
343  case Instruction::Or:
344    // Or distributes over And.
345    switch (ROp) {
346    default:
347      return false;
348    case Instruction::And:
349      return true;
350    }
351  }
352}
353
354/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
355/// "(X ROp Z) LOp (Y ROp Z)".
356static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
357                                     Instruction::BinaryOps ROp) {
358  if (Instruction::isCommutative(ROp))
359    return LeftDistributesOverRight(ROp, LOp);
360  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
361  // but this requires knowing that the addition does not overflow and other
362  // such subtleties.
363  return false;
364}
365
366/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
367/// which some other binary operation distributes over either by factorizing
368/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
369/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
370/// a win).  Returns the simplified value, or null if it didn't simplify.
371Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
372  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
373  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
374  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
375  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
376
377  // Factorization.
378  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
379    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
380    // a common term.
381    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
382    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
383    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
384
385    // Does "X op' Y" always equal "Y op' X"?
386    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
387
388    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
389    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
390      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
391      // commutative case, "(A op' B) op (C op' A)"?
392      if (A == C || (InnerCommutative && A == D)) {
393        if (A != C)
394          std::swap(C, D);
395        // Consider forming "A op' (B op D)".
396        // If "B op D" simplifies then it can be formed with no cost.
397        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
398        // If "B op D" doesn't simplify then only go on if both of the existing
399        // operations "A op' B" and "C op' D" will be zapped as no longer used.
400        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
401          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
402        if (V) {
403          ++NumFactor;
404          V = Builder->CreateBinOp(InnerOpcode, A, V);
405          V->takeName(&I);
406          return V;
407        }
408      }
409
410    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
411    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
412      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
413      // commutative case, "(A op' B) op (B op' D)"?
414      if (B == D || (InnerCommutative && B == C)) {
415        if (B != D)
416          std::swap(C, D);
417        // Consider forming "(A op C) op' B".
418        // If "A op C" simplifies then it can be formed with no cost.
419        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
420        // If "A op C" doesn't simplify then only go on if both of the existing
421        // operations "A op' B" and "C op' D" will be zapped as no longer used.
422        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
423          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
424        if (V) {
425          ++NumFactor;
426          V = Builder->CreateBinOp(InnerOpcode, V, B);
427          V->takeName(&I);
428          return V;
429        }
430      }
431  }
432
433  // Expansion.
434  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
435    // The instruction has the form "(A op' B) op C".  See if expanding it out
436    // to "(A op C) op' (B op C)" results in simplifications.
437    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
438    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
439
440    // Do "A op C" and "B op C" both simplify?
441    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
442      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
443        // They do! Return "L op' R".
444        ++NumExpand;
445        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
446        if ((L == A && R == B) ||
447            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
448          return Op0;
449        // Otherwise return "L op' R" if it simplifies.
450        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
451          return V;
452        // Otherwise, create a new instruction.
453        C = Builder->CreateBinOp(InnerOpcode, L, R);
454        C->takeName(&I);
455        return C;
456      }
457  }
458
459  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
460    // The instruction has the form "A op (B op' C)".  See if expanding it out
461    // to "(A op B) op' (A op C)" results in simplifications.
462    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
463    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
464
465    // Do "A op B" and "A op C" both simplify?
466    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
467      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
468        // They do! Return "L op' R".
469        ++NumExpand;
470        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
471        if ((L == B && R == C) ||
472            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
473          return Op1;
474        // Otherwise return "L op' R" if it simplifies.
475        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
476          return V;
477        // Otherwise, create a new instruction.
478        A = Builder->CreateBinOp(InnerOpcode, L, R);
479        A->takeName(&I);
480        return A;
481      }
482  }
483
484  return 0;
485}
486
487// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
488// if the LHS is a constant zero (which is the 'negate' form).
489//
490Value *InstCombiner::dyn_castNegVal(Value *V) const {
491  if (BinaryOperator::isNeg(V))
492    return BinaryOperator::getNegArgument(V);
493
494  // Constants can be considered to be negated values if they can be folded.
495  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
496    return ConstantExpr::getNeg(C);
497
498  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
499    if (C->getType()->getElementType()->isIntegerTy())
500      return ConstantExpr::getNeg(C);
501
502  return 0;
503}
504
505// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
506// instruction if the LHS is a constant negative zero (which is the 'negate'
507// form).
508//
509Value *InstCombiner::dyn_castFNegVal(Value *V) const {
510  if (BinaryOperator::isFNeg(V))
511    return BinaryOperator::getFNegArgument(V);
512
513  // Constants can be considered to be negated values if they can be folded.
514  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
515    return ConstantExpr::getFNeg(C);
516
517  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
518    if (C->getType()->getElementType()->isFloatingPointTy())
519      return ConstantExpr::getFNeg(C);
520
521  return 0;
522}
523
524static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
525                                             InstCombiner *IC) {
526  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
527    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
528  }
529
530  // Figure out if the constant is the left or the right argument.
531  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
532  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
533
534  if (Constant *SOC = dyn_cast<Constant>(SO)) {
535    if (ConstIsRHS)
536      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
537    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
538  }
539
540  Value *Op0 = SO, *Op1 = ConstOperand;
541  if (!ConstIsRHS)
542    std::swap(Op0, Op1);
543
544  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
545    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
546                                    SO->getName()+".op");
547  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
548    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
549                                   SO->getName()+".cmp");
550  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
551    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
552                                   SO->getName()+".cmp");
553  llvm_unreachable("Unknown binary instruction type!");
554}
555
556// FoldOpIntoSelect - Given an instruction with a select as one operand and a
557// constant as the other operand, try to fold the binary operator into the
558// select arguments.  This also works for Cast instructions, which obviously do
559// not have a second operand.
560Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
561  // Don't modify shared select instructions
562  if (!SI->hasOneUse()) return 0;
563  Value *TV = SI->getOperand(1);
564  Value *FV = SI->getOperand(2);
565
566  if (isa<Constant>(TV) || isa<Constant>(FV)) {
567    // Bool selects with constant operands can be folded to logical ops.
568    if (SI->getType()->isIntegerTy(1)) return 0;
569
570    // If it's a bitcast involving vectors, make sure it has the same number of
571    // elements on both sides.
572    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
573      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
574      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
575
576      // Verify that either both or neither are vectors.
577      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
578      // If vectors, verify that they have the same number of elements.
579      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
580        return 0;
581    }
582
583    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
584    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
585
586    return SelectInst::Create(SI->getCondition(),
587                              SelectTrueVal, SelectFalseVal);
588  }
589  return 0;
590}
591
592
593/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
594/// has a PHI node as operand #0, see if we can fold the instruction into the
595/// PHI (which is only possible if all operands to the PHI are constants).
596///
597Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
598  PHINode *PN = cast<PHINode>(I.getOperand(0));
599  unsigned NumPHIValues = PN->getNumIncomingValues();
600  if (NumPHIValues == 0)
601    return 0;
602
603  // We normally only transform phis with a single use.  However, if a PHI has
604  // multiple uses and they are all the same operation, we can fold *all* of the
605  // uses into the PHI.
606  if (!PN->hasOneUse()) {
607    // Walk the use list for the instruction, comparing them to I.
608    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
609         UI != E; ++UI) {
610      Instruction *User = cast<Instruction>(*UI);
611      if (User != &I && !I.isIdenticalTo(User))
612        return 0;
613    }
614    // Otherwise, we can replace *all* users with the new PHI we form.
615  }
616
617  // Check to see if all of the operands of the PHI are simple constants
618  // (constantint/constantfp/undef).  If there is one non-constant value,
619  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
620  // bail out.  We don't do arbitrary constant expressions here because moving
621  // their computation can be expensive without a cost model.
622  BasicBlock *NonConstBB = 0;
623  for (unsigned i = 0; i != NumPHIValues; ++i) {
624    Value *InVal = PN->getIncomingValue(i);
625    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
626      continue;
627
628    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
629    if (NonConstBB) return 0;  // More than one non-const value.
630
631    NonConstBB = PN->getIncomingBlock(i);
632
633    // If the InVal is an invoke at the end of the pred block, then we can't
634    // insert a computation after it without breaking the edge.
635    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
636      if (II->getParent() == NonConstBB)
637        return 0;
638
639    // If the incoming non-constant value is in I's block, we will remove one
640    // instruction, but insert another equivalent one, leading to infinite
641    // instcombine.
642    if (NonConstBB == I.getParent())
643      return 0;
644  }
645
646  // If there is exactly one non-constant value, we can insert a copy of the
647  // operation in that block.  However, if this is a critical edge, we would be
648  // inserting the computation one some other paths (e.g. inside a loop).  Only
649  // do this if the pred block is unconditionally branching into the phi block.
650  if (NonConstBB != 0) {
651    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
652    if (!BI || !BI->isUnconditional()) return 0;
653  }
654
655  // Okay, we can do the transformation: create the new PHI node.
656  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
657  InsertNewInstBefore(NewPN, *PN);
658  NewPN->takeName(PN);
659
660  // If we are going to have to insert a new computation, do so right before the
661  // predecessors terminator.
662  if (NonConstBB)
663    Builder->SetInsertPoint(NonConstBB->getTerminator());
664
665  // Next, add all of the operands to the PHI.
666  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
667    // We only currently try to fold the condition of a select when it is a phi,
668    // not the true/false values.
669    Value *TrueV = SI->getTrueValue();
670    Value *FalseV = SI->getFalseValue();
671    BasicBlock *PhiTransBB = PN->getParent();
672    for (unsigned i = 0; i != NumPHIValues; ++i) {
673      BasicBlock *ThisBB = PN->getIncomingBlock(i);
674      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
675      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
676      Value *InV = 0;
677      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
678        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
679      else
680        InV = Builder->CreateSelect(PN->getIncomingValue(i),
681                                    TrueVInPred, FalseVInPred, "phitmp");
682      NewPN->addIncoming(InV, ThisBB);
683    }
684  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
685    Constant *C = cast<Constant>(I.getOperand(1));
686    for (unsigned i = 0; i != NumPHIValues; ++i) {
687      Value *InV = 0;
688      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
689        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
690      else if (isa<ICmpInst>(CI))
691        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
692                                  C, "phitmp");
693      else
694        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
695                                  C, "phitmp");
696      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
697    }
698  } else if (I.getNumOperands() == 2) {
699    Constant *C = cast<Constant>(I.getOperand(1));
700    for (unsigned i = 0; i != NumPHIValues; ++i) {
701      Value *InV = 0;
702      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
703        InV = ConstantExpr::get(I.getOpcode(), InC, C);
704      else
705        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
706                                   PN->getIncomingValue(i), C, "phitmp");
707      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
708    }
709  } else {
710    CastInst *CI = cast<CastInst>(&I);
711    Type *RetTy = CI->getType();
712    for (unsigned i = 0; i != NumPHIValues; ++i) {
713      Value *InV;
714      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
715        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
716      else
717        InV = Builder->CreateCast(CI->getOpcode(),
718                                PN->getIncomingValue(i), I.getType(), "phitmp");
719      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
720    }
721  }
722
723  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
724       UI != E; ) {
725    Instruction *User = cast<Instruction>(*UI++);
726    if (User == &I) continue;
727    ReplaceInstUsesWith(*User, NewPN);
728    EraseInstFromFunction(*User);
729  }
730  return ReplaceInstUsesWith(I, NewPN);
731}
732
733/// FindElementAtOffset - Given a type and a constant offset, determine whether
734/// or not there is a sequence of GEP indices into the type that will land us at
735/// the specified offset.  If so, fill them into NewIndices and return the
736/// resultant element type, otherwise return null.
737Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
738                                          SmallVectorImpl<Value*> &NewIndices) {
739  if (!TD) return 0;
740  if (!Ty->isSized()) return 0;
741
742  // Start with the index over the outer type.  Note that the type size
743  // might be zero (even if the offset isn't zero) if the indexed type
744  // is something like [0 x {int, int}]
745  Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
746  int64_t FirstIdx = 0;
747  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
748    FirstIdx = Offset/TySize;
749    Offset -= FirstIdx*TySize;
750
751    // Handle hosts where % returns negative instead of values [0..TySize).
752    if (Offset < 0) {
753      --FirstIdx;
754      Offset += TySize;
755      assert(Offset >= 0);
756    }
757    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
758  }
759
760  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
761
762  // Index into the types.  If we fail, set OrigBase to null.
763  while (Offset) {
764    // Indexing into tail padding between struct/array elements.
765    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
766      return 0;
767
768    if (StructType *STy = dyn_cast<StructType>(Ty)) {
769      const StructLayout *SL = TD->getStructLayout(STy);
770      assert(Offset < (int64_t)SL->getSizeInBytes() &&
771             "Offset must stay within the indexed type");
772
773      unsigned Elt = SL->getElementContainingOffset(Offset);
774      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
775                                            Elt));
776
777      Offset -= SL->getElementOffset(Elt);
778      Ty = STy->getElementType(Elt);
779    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
780      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
781      assert(EltSize && "Cannot index into a zero-sized array");
782      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
783      Offset %= EltSize;
784      Ty = AT->getElementType();
785    } else {
786      // Otherwise, we can't index into the middle of this atomic type, bail.
787      return 0;
788    }
789  }
790
791  return Ty;
792}
793
794static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
795  // If this GEP has only 0 indices, it is the same pointer as
796  // Src. If Src is not a trivial GEP too, don't combine
797  // the indices.
798  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
799      !Src.hasOneUse())
800    return false;
801  return true;
802}
803
804Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
805  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
806
807  if (Value *V = SimplifyGEPInst(Ops, TD))
808    return ReplaceInstUsesWith(GEP, V);
809
810  Value *PtrOp = GEP.getOperand(0);
811
812  // Eliminate unneeded casts for indices, and replace indices which displace
813  // by multiples of a zero size type with zero.
814  if (TD) {
815    bool MadeChange = false;
816    Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
817
818    gep_type_iterator GTI = gep_type_begin(GEP);
819    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
820         I != E; ++I, ++GTI) {
821      // Skip indices into struct types.
822      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
823      if (!SeqTy) continue;
824
825      // If the element type has zero size then any index over it is equivalent
826      // to an index of zero, so replace it with zero if it is not zero already.
827      if (SeqTy->getElementType()->isSized() &&
828          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
829        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
830          *I = Constant::getNullValue(IntPtrTy);
831          MadeChange = true;
832        }
833
834      Type *IndexTy = (*I)->getType();
835      if (IndexTy != IntPtrTy && !IndexTy->isVectorTy()) {
836        // If we are using a wider index than needed for this platform, shrink
837        // it to what we need.  If narrower, sign-extend it to what we need.
838        // This explicit cast can make subsequent optimizations more obvious.
839        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
840        MadeChange = true;
841      }
842    }
843    if (MadeChange) return &GEP;
844  }
845
846  // Combine Indices - If the source pointer to this getelementptr instruction
847  // is a getelementptr instruction, combine the indices of the two
848  // getelementptr instructions into a single instruction.
849  //
850  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
851    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
852      return 0;
853
854    // Note that if our source is a gep chain itself that we wait for that
855    // chain to be resolved before we perform this transformation.  This
856    // avoids us creating a TON of code in some cases.
857    if (GEPOperator *SrcGEP =
858          dyn_cast<GEPOperator>(Src->getOperand(0)))
859      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
860        return 0;   // Wait until our source is folded to completion.
861
862    SmallVector<Value*, 8> Indices;
863
864    // Find out whether the last index in the source GEP is a sequential idx.
865    bool EndsWithSequential = false;
866    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
867         I != E; ++I)
868      EndsWithSequential = !(*I)->isStructTy();
869
870    // Can we combine the two pointer arithmetics offsets?
871    if (EndsWithSequential) {
872      // Replace: gep (gep %P, long B), long A, ...
873      // With:    T = long A+B; gep %P, T, ...
874      //
875      Value *Sum;
876      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
877      Value *GO1 = GEP.getOperand(1);
878      if (SO1 == Constant::getNullValue(SO1->getType())) {
879        Sum = GO1;
880      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
881        Sum = SO1;
882      } else {
883        // If they aren't the same type, then the input hasn't been processed
884        // by the loop above yet (which canonicalizes sequential index types to
885        // intptr_t).  Just avoid transforming this until the input has been
886        // normalized.
887        if (SO1->getType() != GO1->getType())
888          return 0;
889        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
890      }
891
892      // Update the GEP in place if possible.
893      if (Src->getNumOperands() == 2) {
894        GEP.setOperand(0, Src->getOperand(0));
895        GEP.setOperand(1, Sum);
896        return &GEP;
897      }
898      Indices.append(Src->op_begin()+1, Src->op_end()-1);
899      Indices.push_back(Sum);
900      Indices.append(GEP.op_begin()+2, GEP.op_end());
901    } else if (isa<Constant>(*GEP.idx_begin()) &&
902               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
903               Src->getNumOperands() != 1) {
904      // Otherwise we can do the fold if the first index of the GEP is a zero
905      Indices.append(Src->op_begin()+1, Src->op_end());
906      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
907    }
908
909    if (!Indices.empty())
910      return (GEP.isInBounds() && Src->isInBounds()) ?
911        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
912                                          GEP.getName()) :
913        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
914  }
915
916  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
917  Value *StrippedPtr = PtrOp->stripPointerCasts();
918  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
919
920  // We do not handle pointer-vector geps here.
921  if (!StrippedPtrTy)
922    return 0;
923
924  if (StrippedPtr != PtrOp &&
925    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
926
927    bool HasZeroPointerIndex = false;
928    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
929      HasZeroPointerIndex = C->isZero();
930
931    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
932    // into     : GEP [10 x i8]* X, i32 0, ...
933    //
934    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
935    //           into     : GEP i8* X, ...
936    //
937    // This occurs when the program declares an array extern like "int X[];"
938    if (HasZeroPointerIndex) {
939      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
940      if (ArrayType *CATy =
941          dyn_cast<ArrayType>(CPTy->getElementType())) {
942        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
943        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
944          // -> GEP i8* X, ...
945          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
946          GetElementPtrInst *Res =
947            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
948          Res->setIsInBounds(GEP.isInBounds());
949          return Res;
950        }
951
952        if (ArrayType *XATy =
953              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
954          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
955          if (CATy->getElementType() == XATy->getElementType()) {
956            // -> GEP [10 x i8]* X, i32 0, ...
957            // At this point, we know that the cast source type is a pointer
958            // to an array of the same type as the destination pointer
959            // array.  Because the array type is never stepped over (there
960            // is a leading zero) we can fold the cast into this GEP.
961            GEP.setOperand(0, StrippedPtr);
962            return &GEP;
963          }
964        }
965      }
966    } else if (GEP.getNumOperands() == 2) {
967      // Transform things like:
968      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
969      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
970      Type *SrcElTy = StrippedPtrTy->getElementType();
971      Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
972      if (TD && SrcElTy->isArrayTy() &&
973          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
974          TD->getTypeAllocSize(ResElTy)) {
975        Value *Idx[2];
976        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
977        Idx[1] = GEP.getOperand(1);
978        Value *NewGEP = GEP.isInBounds() ?
979          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
980          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
981        // V and GEP are both pointer types --> BitCast
982        return new BitCastInst(NewGEP, GEP.getType());
983      }
984
985      // Transform things like:
986      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
987      //   (where tmp = 8*tmp2) into:
988      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
989
990      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
991        uint64_t ArrayEltSize =
992            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
993
994        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
995        // allow either a mul, shift, or constant here.
996        Value *NewIdx = 0;
997        ConstantInt *Scale = 0;
998        if (ArrayEltSize == 1) {
999          NewIdx = GEP.getOperand(1);
1000          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
1001        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
1002          NewIdx = ConstantInt::get(CI->getType(), 1);
1003          Scale = CI;
1004        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
1005          if (Inst->getOpcode() == Instruction::Shl &&
1006              isa<ConstantInt>(Inst->getOperand(1))) {
1007            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
1008            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
1009            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
1010                                     1ULL << ShAmtVal);
1011            NewIdx = Inst->getOperand(0);
1012          } else if (Inst->getOpcode() == Instruction::Mul &&
1013                     isa<ConstantInt>(Inst->getOperand(1))) {
1014            Scale = cast<ConstantInt>(Inst->getOperand(1));
1015            NewIdx = Inst->getOperand(0);
1016          }
1017        }
1018
1019        // If the index will be to exactly the right offset with the scale taken
1020        // out, perform the transformation. Note, we don't know whether Scale is
1021        // signed or not. We'll use unsigned version of division/modulo
1022        // operation after making sure Scale doesn't have the sign bit set.
1023        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
1024            Scale->getZExtValue() % ArrayEltSize == 0) {
1025          Scale = ConstantInt::get(Scale->getType(),
1026                                   Scale->getZExtValue() / ArrayEltSize);
1027          if (Scale->getZExtValue() != 1) {
1028            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
1029                                                       false /*ZExt*/);
1030            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
1031          }
1032
1033          // Insert the new GEP instruction.
1034          Value *Idx[2];
1035          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1036          Idx[1] = NewIdx;
1037          Value *NewGEP = GEP.isInBounds() ?
1038            Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
1039            Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1040          // The NewGEP must be pointer typed, so must the old one -> BitCast
1041          return new BitCastInst(NewGEP, GEP.getType());
1042        }
1043      }
1044    }
1045  }
1046
1047  /// See if we can simplify:
1048  ///   X = bitcast A* to B*
1049  ///   Y = gep X, <...constant indices...>
1050  /// into a gep of the original struct.  This is important for SROA and alias
1051  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1052  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1053    if (TD &&
1054        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
1055        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1056
1057      // Determine how much the GEP moves the pointer.  We are guaranteed to get
1058      // a constant back from EmitGEPOffset.
1059      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
1060      int64_t Offset = OffsetV->getSExtValue();
1061
1062      // If this GEP instruction doesn't move the pointer, just replace the GEP
1063      // with a bitcast of the real input to the dest type.
1064      if (Offset == 0) {
1065        // If the bitcast is of an allocation, and the allocation will be
1066        // converted to match the type of the cast, don't touch this.
1067        if (isa<AllocaInst>(BCI->getOperand(0)) ||
1068            isMalloc(BCI->getOperand(0))) {
1069          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1070          if (Instruction *I = visitBitCast(*BCI)) {
1071            if (I != BCI) {
1072              I->takeName(BCI);
1073              BCI->getParent()->getInstList().insert(BCI, I);
1074              ReplaceInstUsesWith(*BCI, I);
1075            }
1076            return &GEP;
1077          }
1078        }
1079        return new BitCastInst(BCI->getOperand(0), GEP.getType());
1080      }
1081
1082      // Otherwise, if the offset is non-zero, we need to find out if there is a
1083      // field at Offset in 'A's type.  If so, we can pull the cast through the
1084      // GEP.
1085      SmallVector<Value*, 8> NewIndices;
1086      Type *InTy =
1087        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1088      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
1089        Value *NGEP = GEP.isInBounds() ?
1090          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1091          Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1092
1093        if (NGEP->getType() == GEP.getType())
1094          return ReplaceInstUsesWith(GEP, NGEP);
1095        NGEP->takeName(&GEP);
1096        return new BitCastInst(NGEP, GEP.getType());
1097      }
1098    }
1099  }
1100
1101  return 0;
1102}
1103
1104
1105
1106static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users,
1107                                       int Depth = 0) {
1108  if (Depth == 8)
1109    return false;
1110
1111  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
1112       UI != UE; ++UI) {
1113    User *U = *UI;
1114    if (isFreeCall(U)) {
1115      Users.push_back(U);
1116      continue;
1117    }
1118    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
1119      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) {
1120        Users.push_back(ICI);
1121        continue;
1122      }
1123    }
1124    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1125      if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) {
1126        Users.push_back(BCI);
1127        continue;
1128      }
1129    }
1130    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1131      if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) {
1132        Users.push_back(GEPI);
1133        continue;
1134      }
1135    }
1136    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1137      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1138          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1139        Users.push_back(II);
1140        continue;
1141      }
1142    }
1143    return false;
1144  }
1145  return true;
1146}
1147
1148Instruction *InstCombiner::visitMalloc(Instruction &MI) {
1149  // If we have a malloc call which is only used in any amount of comparisons
1150  // to null and free calls, delete the calls and replace the comparisons with
1151  // true or false as appropriate.
1152  SmallVector<WeakVH, 64> Users;
1153  if (IsOnlyNullComparedAndFreed(&MI, Users)) {
1154    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1155      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1156      if (!I) continue;
1157
1158      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1159        ReplaceInstUsesWith(*C,
1160                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1161                                             C->isFalseWhenEqual()));
1162      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1163        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1164      }
1165      EraseInstFromFunction(*I);
1166    }
1167    return EraseInstFromFunction(MI);
1168  }
1169  return 0;
1170}
1171
1172
1173
1174Instruction *InstCombiner::visitFree(CallInst &FI) {
1175  Value *Op = FI.getArgOperand(0);
1176
1177  // free undef -> unreachable.
1178  if (isa<UndefValue>(Op)) {
1179    // Insert a new store to null because we cannot modify the CFG here.
1180    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1181                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1182    return EraseInstFromFunction(FI);
1183  }
1184
1185  // If we have 'free null' delete the instruction.  This can happen in stl code
1186  // when lots of inlining happens.
1187  if (isa<ConstantPointerNull>(Op))
1188    return EraseInstFromFunction(FI);
1189
1190  return 0;
1191}
1192
1193
1194
1195Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1196  // Change br (not X), label True, label False to: br X, label False, True
1197  Value *X = 0;
1198  BasicBlock *TrueDest;
1199  BasicBlock *FalseDest;
1200  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1201      !isa<Constant>(X)) {
1202    // Swap Destinations and condition...
1203    BI.setCondition(X);
1204    BI.swapSuccessors();
1205    return &BI;
1206  }
1207
1208  // Cannonicalize fcmp_one -> fcmp_oeq
1209  FCmpInst::Predicate FPred; Value *Y;
1210  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1211                             TrueDest, FalseDest)) &&
1212      BI.getCondition()->hasOneUse())
1213    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1214        FPred == FCmpInst::FCMP_OGE) {
1215      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1216      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1217
1218      // Swap Destinations and condition.
1219      BI.swapSuccessors();
1220      Worklist.Add(Cond);
1221      return &BI;
1222    }
1223
1224  // Cannonicalize icmp_ne -> icmp_eq
1225  ICmpInst::Predicate IPred;
1226  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1227                      TrueDest, FalseDest)) &&
1228      BI.getCondition()->hasOneUse())
1229    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1230        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1231        IPred == ICmpInst::ICMP_SGE) {
1232      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1233      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1234      // Swap Destinations and condition.
1235      BI.swapSuccessors();
1236      Worklist.Add(Cond);
1237      return &BI;
1238    }
1239
1240  return 0;
1241}
1242
1243Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1244  Value *Cond = SI.getCondition();
1245  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1246    if (I->getOpcode() == Instruction::Add)
1247      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1248        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1249        // Skip the first item since that's the default case.
1250        for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1251             i != e; ++i) {
1252          ConstantInt* CaseVal = i.getCaseValue();
1253          Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1254                                                      AddRHS);
1255          assert(isa<ConstantInt>(NewCaseVal) &&
1256                 "Result of expression should be constant");
1257          i.setValue(cast<ConstantInt>(NewCaseVal));
1258        }
1259        SI.setCondition(I->getOperand(0));
1260        Worklist.Add(I);
1261        return &SI;
1262      }
1263  }
1264  return 0;
1265}
1266
1267Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1268  Value *Agg = EV.getAggregateOperand();
1269
1270  if (!EV.hasIndices())
1271    return ReplaceInstUsesWith(EV, Agg);
1272
1273  if (Constant *C = dyn_cast<Constant>(Agg)) {
1274    if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1275      if (EV.getNumIndices() == 0)
1276        return ReplaceInstUsesWith(EV, C2);
1277      // Extract the remaining indices out of the constant indexed by the
1278      // first index
1279      return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1280    }
1281    return 0; // Can't handle other constants
1282  }
1283
1284  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1285    // We're extracting from an insertvalue instruction, compare the indices
1286    const unsigned *exti, *exte, *insi, *inse;
1287    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1288         exte = EV.idx_end(), inse = IV->idx_end();
1289         exti != exte && insi != inse;
1290         ++exti, ++insi) {
1291      if (*insi != *exti)
1292        // The insert and extract both reference distinctly different elements.
1293        // This means the extract is not influenced by the insert, and we can
1294        // replace the aggregate operand of the extract with the aggregate
1295        // operand of the insert. i.e., replace
1296        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1297        // %E = extractvalue { i32, { i32 } } %I, 0
1298        // with
1299        // %E = extractvalue { i32, { i32 } } %A, 0
1300        return ExtractValueInst::Create(IV->getAggregateOperand(),
1301                                        EV.getIndices());
1302    }
1303    if (exti == exte && insi == inse)
1304      // Both iterators are at the end: Index lists are identical. Replace
1305      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1306      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1307      // with "i32 42"
1308      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1309    if (exti == exte) {
1310      // The extract list is a prefix of the insert list. i.e. replace
1311      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1312      // %E = extractvalue { i32, { i32 } } %I, 1
1313      // with
1314      // %X = extractvalue { i32, { i32 } } %A, 1
1315      // %E = insertvalue { i32 } %X, i32 42, 0
1316      // by switching the order of the insert and extract (though the
1317      // insertvalue should be left in, since it may have other uses).
1318      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1319                                                 EV.getIndices());
1320      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1321                                     makeArrayRef(insi, inse));
1322    }
1323    if (insi == inse)
1324      // The insert list is a prefix of the extract list
1325      // We can simply remove the common indices from the extract and make it
1326      // operate on the inserted value instead of the insertvalue result.
1327      // i.e., replace
1328      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1329      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1330      // with
1331      // %E extractvalue { i32 } { i32 42 }, 0
1332      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1333                                      makeArrayRef(exti, exte));
1334  }
1335  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1336    // We're extracting from an intrinsic, see if we're the only user, which
1337    // allows us to simplify multiple result intrinsics to simpler things that
1338    // just get one value.
1339    if (II->hasOneUse()) {
1340      // Check if we're grabbing the overflow bit or the result of a 'with
1341      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1342      // and replace it with a traditional binary instruction.
1343      switch (II->getIntrinsicID()) {
1344      case Intrinsic::uadd_with_overflow:
1345      case Intrinsic::sadd_with_overflow:
1346        if (*EV.idx_begin() == 0) {  // Normal result.
1347          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1348          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1349          EraseInstFromFunction(*II);
1350          return BinaryOperator::CreateAdd(LHS, RHS);
1351        }
1352
1353        // If the normal result of the add is dead, and the RHS is a constant,
1354        // we can transform this into a range comparison.
1355        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1356        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1357          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1358            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1359                                ConstantExpr::getNot(CI));
1360        break;
1361      case Intrinsic::usub_with_overflow:
1362      case Intrinsic::ssub_with_overflow:
1363        if (*EV.idx_begin() == 0) {  // Normal result.
1364          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1365          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1366          EraseInstFromFunction(*II);
1367          return BinaryOperator::CreateSub(LHS, RHS);
1368        }
1369        break;
1370      case Intrinsic::umul_with_overflow:
1371      case Intrinsic::smul_with_overflow:
1372        if (*EV.idx_begin() == 0) {  // Normal result.
1373          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1374          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1375          EraseInstFromFunction(*II);
1376          return BinaryOperator::CreateMul(LHS, RHS);
1377        }
1378        break;
1379      default:
1380        break;
1381      }
1382    }
1383  }
1384  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1385    // If the (non-volatile) load only has one use, we can rewrite this to a
1386    // load from a GEP. This reduces the size of the load.
1387    // FIXME: If a load is used only by extractvalue instructions then this
1388    //        could be done regardless of having multiple uses.
1389    if (L->isSimple() && L->hasOneUse()) {
1390      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1391      SmallVector<Value*, 4> Indices;
1392      // Prefix an i32 0 since we need the first element.
1393      Indices.push_back(Builder->getInt32(0));
1394      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1395            I != E; ++I)
1396        Indices.push_back(Builder->getInt32(*I));
1397
1398      // We need to insert these at the location of the old load, not at that of
1399      // the extractvalue.
1400      Builder->SetInsertPoint(L->getParent(), L);
1401      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1402      // Returning the load directly will cause the main loop to insert it in
1403      // the wrong spot, so use ReplaceInstUsesWith().
1404      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1405    }
1406  // We could simplify extracts from other values. Note that nested extracts may
1407  // already be simplified implicitly by the above: extract (extract (insert) )
1408  // will be translated into extract ( insert ( extract ) ) first and then just
1409  // the value inserted, if appropriate. Similarly for extracts from single-use
1410  // loads: extract (extract (load)) will be translated to extract (load (gep))
1411  // and if again single-use then via load (gep (gep)) to load (gep).
1412  // However, double extracts from e.g. function arguments or return values
1413  // aren't handled yet.
1414  return 0;
1415}
1416
1417enum Personality_Type {
1418  Unknown_Personality,
1419  GNU_Ada_Personality,
1420  GNU_CXX_Personality,
1421  GNU_ObjC_Personality
1422};
1423
1424/// RecognizePersonality - See if the given exception handling personality
1425/// function is one that we understand.  If so, return a description of it;
1426/// otherwise return Unknown_Personality.
1427static Personality_Type RecognizePersonality(Value *Pers) {
1428  Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1429  if (!F)
1430    return Unknown_Personality;
1431  return StringSwitch<Personality_Type>(F->getName())
1432    .Case("__gnat_eh_personality", GNU_Ada_Personality)
1433    .Case("__gxx_personality_v0",  GNU_CXX_Personality)
1434    .Case("__objc_personality_v0", GNU_ObjC_Personality)
1435    .Default(Unknown_Personality);
1436}
1437
1438/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1439static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1440  switch (Personality) {
1441  case Unknown_Personality:
1442    return false;
1443  case GNU_Ada_Personality:
1444    // While __gnat_all_others_value will match any Ada exception, it doesn't
1445    // match foreign exceptions (or didn't, before gcc-4.7).
1446    return false;
1447  case GNU_CXX_Personality:
1448  case GNU_ObjC_Personality:
1449    return TypeInfo->isNullValue();
1450  }
1451  llvm_unreachable("Unknown personality!");
1452}
1453
1454static bool shorter_filter(const Value *LHS, const Value *RHS) {
1455  return
1456    cast<ArrayType>(LHS->getType())->getNumElements()
1457  <
1458    cast<ArrayType>(RHS->getType())->getNumElements();
1459}
1460
1461Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1462  // The logic here should be correct for any real-world personality function.
1463  // However if that turns out not to be true, the offending logic can always
1464  // be conditioned on the personality function, like the catch-all logic is.
1465  Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1466
1467  // Simplify the list of clauses, eg by removing repeated catch clauses
1468  // (these are often created by inlining).
1469  bool MakeNewInstruction = false; // If true, recreate using the following:
1470  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1471  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
1472
1473  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1474  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1475    bool isLastClause = i + 1 == e;
1476    if (LI.isCatch(i)) {
1477      // A catch clause.
1478      Value *CatchClause = LI.getClause(i);
1479      Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1480
1481      // If we already saw this clause, there is no point in having a second
1482      // copy of it.
1483      if (AlreadyCaught.insert(TypeInfo)) {
1484        // This catch clause was not already seen.
1485        NewClauses.push_back(CatchClause);
1486      } else {
1487        // Repeated catch clause - drop the redundant copy.
1488        MakeNewInstruction = true;
1489      }
1490
1491      // If this is a catch-all then there is no point in keeping any following
1492      // clauses or marking the landingpad as having a cleanup.
1493      if (isCatchAll(Personality, TypeInfo)) {
1494        if (!isLastClause)
1495          MakeNewInstruction = true;
1496        CleanupFlag = false;
1497        break;
1498      }
1499    } else {
1500      // A filter clause.  If any of the filter elements were already caught
1501      // then they can be dropped from the filter.  It is tempting to try to
1502      // exploit the filter further by saying that any typeinfo that does not
1503      // occur in the filter can't be caught later (and thus can be dropped).
1504      // However this would be wrong, since typeinfos can match without being
1505      // equal (for example if one represents a C++ class, and the other some
1506      // class derived from it).
1507      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1508      Value *FilterClause = LI.getClause(i);
1509      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1510      unsigned NumTypeInfos = FilterType->getNumElements();
1511
1512      // An empty filter catches everything, so there is no point in keeping any
1513      // following clauses or marking the landingpad as having a cleanup.  By
1514      // dealing with this case here the following code is made a bit simpler.
1515      if (!NumTypeInfos) {
1516        NewClauses.push_back(FilterClause);
1517        if (!isLastClause)
1518          MakeNewInstruction = true;
1519        CleanupFlag = false;
1520        break;
1521      }
1522
1523      bool MakeNewFilter = false; // If true, make a new filter.
1524      SmallVector<Constant *, 16> NewFilterElts; // New elements.
1525      if (isa<ConstantAggregateZero>(FilterClause)) {
1526        // Not an empty filter - it contains at least one null typeinfo.
1527        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1528        Constant *TypeInfo =
1529          Constant::getNullValue(FilterType->getElementType());
1530        // If this typeinfo is a catch-all then the filter can never match.
1531        if (isCatchAll(Personality, TypeInfo)) {
1532          // Throw the filter away.
1533          MakeNewInstruction = true;
1534          continue;
1535        }
1536
1537        // There is no point in having multiple copies of this typeinfo, so
1538        // discard all but the first copy if there is more than one.
1539        NewFilterElts.push_back(TypeInfo);
1540        if (NumTypeInfos > 1)
1541          MakeNewFilter = true;
1542      } else {
1543        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1544        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1545        NewFilterElts.reserve(NumTypeInfos);
1546
1547        // Remove any filter elements that were already caught or that already
1548        // occurred in the filter.  While there, see if any of the elements are
1549        // catch-alls.  If so, the filter can be discarded.
1550        bool SawCatchAll = false;
1551        for (unsigned j = 0; j != NumTypeInfos; ++j) {
1552          Value *Elt = Filter->getOperand(j);
1553          Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1554          if (isCatchAll(Personality, TypeInfo)) {
1555            // This element is a catch-all.  Bail out, noting this fact.
1556            SawCatchAll = true;
1557            break;
1558          }
1559          if (AlreadyCaught.count(TypeInfo))
1560            // Already caught by an earlier clause, so having it in the filter
1561            // is pointless.
1562            continue;
1563          // There is no point in having multiple copies of the same typeinfo in
1564          // a filter, so only add it if we didn't already.
1565          if (SeenInFilter.insert(TypeInfo))
1566            NewFilterElts.push_back(cast<Constant>(Elt));
1567        }
1568        // A filter containing a catch-all cannot match anything by definition.
1569        if (SawCatchAll) {
1570          // Throw the filter away.
1571          MakeNewInstruction = true;
1572          continue;
1573        }
1574
1575        // If we dropped something from the filter, make a new one.
1576        if (NewFilterElts.size() < NumTypeInfos)
1577          MakeNewFilter = true;
1578      }
1579      if (MakeNewFilter) {
1580        FilterType = ArrayType::get(FilterType->getElementType(),
1581                                    NewFilterElts.size());
1582        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1583        MakeNewInstruction = true;
1584      }
1585
1586      NewClauses.push_back(FilterClause);
1587
1588      // If the new filter is empty then it will catch everything so there is
1589      // no point in keeping any following clauses or marking the landingpad
1590      // as having a cleanup.  The case of the original filter being empty was
1591      // already handled above.
1592      if (MakeNewFilter && !NewFilterElts.size()) {
1593        assert(MakeNewInstruction && "New filter but not a new instruction!");
1594        CleanupFlag = false;
1595        break;
1596      }
1597    }
1598  }
1599
1600  // If several filters occur in a row then reorder them so that the shortest
1601  // filters come first (those with the smallest number of elements).  This is
1602  // advantageous because shorter filters are more likely to match, speeding up
1603  // unwinding, but mostly because it increases the effectiveness of the other
1604  // filter optimizations below.
1605  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1606    unsigned j;
1607    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1608    for (j = i; j != e; ++j)
1609      if (!isa<ArrayType>(NewClauses[j]->getType()))
1610        break;
1611
1612    // Check whether the filters are already sorted by length.  We need to know
1613    // if sorting them is actually going to do anything so that we only make a
1614    // new landingpad instruction if it does.
1615    for (unsigned k = i; k + 1 < j; ++k)
1616      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
1617        // Not sorted, so sort the filters now.  Doing an unstable sort would be
1618        // correct too but reordering filters pointlessly might confuse users.
1619        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
1620                         shorter_filter);
1621        MakeNewInstruction = true;
1622        break;
1623      }
1624
1625    // Look for the next batch of filters.
1626    i = j + 1;
1627  }
1628
1629  // If typeinfos matched if and only if equal, then the elements of a filter L
1630  // that occurs later than a filter F could be replaced by the intersection of
1631  // the elements of F and L.  In reality two typeinfos can match without being
1632  // equal (for example if one represents a C++ class, and the other some class
1633  // derived from it) so it would be wrong to perform this transform in general.
1634  // However the transform is correct and useful if F is a subset of L.  In that
1635  // case L can be replaced by F, and thus removed altogether since repeating a
1636  // filter is pointless.  So here we look at all pairs of filters F and L where
1637  // L follows F in the list of clauses, and remove L if every element of F is
1638  // an element of L.  This can occur when inlining C++ functions with exception
1639  // specifications.
1640  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
1641    // Examine each filter in turn.
1642    Value *Filter = NewClauses[i];
1643    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
1644    if (!FTy)
1645      // Not a filter - skip it.
1646      continue;
1647    unsigned FElts = FTy->getNumElements();
1648    // Examine each filter following this one.  Doing this backwards means that
1649    // we don't have to worry about filters disappearing under us when removed.
1650    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
1651      Value *LFilter = NewClauses[j];
1652      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
1653      if (!LTy)
1654        // Not a filter - skip it.
1655        continue;
1656      // If Filter is a subset of LFilter, i.e. every element of Filter is also
1657      // an element of LFilter, then discard LFilter.
1658      SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
1659      // If Filter is empty then it is a subset of LFilter.
1660      if (!FElts) {
1661        // Discard LFilter.
1662        NewClauses.erase(J);
1663        MakeNewInstruction = true;
1664        // Move on to the next filter.
1665        continue;
1666      }
1667      unsigned LElts = LTy->getNumElements();
1668      // If Filter is longer than LFilter then it cannot be a subset of it.
1669      if (FElts > LElts)
1670        // Move on to the next filter.
1671        continue;
1672      // At this point we know that LFilter has at least one element.
1673      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
1674        // Filter is a subset of LFilter iff Filter contains only zeros (as we
1675        // already know that Filter is not longer than LFilter).
1676        if (isa<ConstantAggregateZero>(Filter)) {
1677          assert(FElts <= LElts && "Should have handled this case earlier!");
1678          // Discard LFilter.
1679          NewClauses.erase(J);
1680          MakeNewInstruction = true;
1681        }
1682        // Move on to the next filter.
1683        continue;
1684      }
1685      ConstantArray *LArray = cast<ConstantArray>(LFilter);
1686      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
1687        // Since Filter is non-empty and contains only zeros, it is a subset of
1688        // LFilter iff LFilter contains a zero.
1689        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
1690        for (unsigned l = 0; l != LElts; ++l)
1691          if (LArray->getOperand(l)->isNullValue()) {
1692            // LFilter contains a zero - discard it.
1693            NewClauses.erase(J);
1694            MakeNewInstruction = true;
1695            break;
1696          }
1697        // Move on to the next filter.
1698        continue;
1699      }
1700      // At this point we know that both filters are ConstantArrays.  Loop over
1701      // operands to see whether every element of Filter is also an element of
1702      // LFilter.  Since filters tend to be short this is probably faster than
1703      // using a method that scales nicely.
1704      ConstantArray *FArray = cast<ConstantArray>(Filter);
1705      bool AllFound = true;
1706      for (unsigned f = 0; f != FElts; ++f) {
1707        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
1708        AllFound = false;
1709        for (unsigned l = 0; l != LElts; ++l) {
1710          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
1711          if (LTypeInfo == FTypeInfo) {
1712            AllFound = true;
1713            break;
1714          }
1715        }
1716        if (!AllFound)
1717          break;
1718      }
1719      if (AllFound) {
1720        // Discard LFilter.
1721        NewClauses.erase(J);
1722        MakeNewInstruction = true;
1723      }
1724      // Move on to the next filter.
1725    }
1726  }
1727
1728  // If we changed any of the clauses, replace the old landingpad instruction
1729  // with a new one.
1730  if (MakeNewInstruction) {
1731    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
1732                                                 LI.getPersonalityFn(),
1733                                                 NewClauses.size());
1734    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
1735      NLI->addClause(NewClauses[i]);
1736    // A landing pad with no clauses must have the cleanup flag set.  It is
1737    // theoretically possible, though highly unlikely, that we eliminated all
1738    // clauses.  If so, force the cleanup flag to true.
1739    if (NewClauses.empty())
1740      CleanupFlag = true;
1741    NLI->setCleanup(CleanupFlag);
1742    return NLI;
1743  }
1744
1745  // Even if none of the clauses changed, we may nonetheless have understood
1746  // that the cleanup flag is pointless.  Clear it if so.
1747  if (LI.isCleanup() != CleanupFlag) {
1748    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
1749    LI.setCleanup(CleanupFlag);
1750    return &LI;
1751  }
1752
1753  return 0;
1754}
1755
1756
1757
1758
1759/// TryToSinkInstruction - Try to move the specified instruction from its
1760/// current block into the beginning of DestBlock, which can only happen if it's
1761/// safe to move the instruction past all of the instructions between it and the
1762/// end of its block.
1763static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1764  assert(I->hasOneUse() && "Invariants didn't hold!");
1765
1766  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1767  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
1768      isa<TerminatorInst>(I))
1769    return false;
1770
1771  // Do not sink alloca instructions out of the entry block.
1772  if (isa<AllocaInst>(I) && I->getParent() ==
1773        &DestBlock->getParent()->getEntryBlock())
1774    return false;
1775
1776  // We can only sink load instructions if there is nothing between the load and
1777  // the end of block that could change the value.
1778  if (I->mayReadFromMemory()) {
1779    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1780         Scan != E; ++Scan)
1781      if (Scan->mayWriteToMemory())
1782        return false;
1783  }
1784
1785  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
1786  I->moveBefore(InsertPos);
1787  ++NumSunkInst;
1788  return true;
1789}
1790
1791
1792/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1793/// all reachable code to the worklist.
1794///
1795/// This has a couple of tricks to make the code faster and more powerful.  In
1796/// particular, we constant fold and DCE instructions as we go, to avoid adding
1797/// them to the worklist (this significantly speeds up instcombine on code where
1798/// many instructions are dead or constant).  Additionally, if we find a branch
1799/// whose condition is a known constant, we only visit the reachable successors.
1800///
1801static bool AddReachableCodeToWorklist(BasicBlock *BB,
1802                                       SmallPtrSet<BasicBlock*, 64> &Visited,
1803                                       InstCombiner &IC,
1804                                       const TargetData *TD,
1805                                       const TargetLibraryInfo *TLI) {
1806  bool MadeIRChange = false;
1807  SmallVector<BasicBlock*, 256> Worklist;
1808  Worklist.push_back(BB);
1809
1810  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1811  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
1812
1813  do {
1814    BB = Worklist.pop_back_val();
1815
1816    // We have now visited this block!  If we've already been here, ignore it.
1817    if (!Visited.insert(BB)) continue;
1818
1819    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1820      Instruction *Inst = BBI++;
1821
1822      // DCE instruction if trivially dead.
1823      if (isInstructionTriviallyDead(Inst)) {
1824        ++NumDeadInst;
1825        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1826        Inst->eraseFromParent();
1827        continue;
1828      }
1829
1830      // ConstantProp instruction if trivially constant.
1831      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1832        if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
1833          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1834                       << *Inst << '\n');
1835          Inst->replaceAllUsesWith(C);
1836          ++NumConstProp;
1837          Inst->eraseFromParent();
1838          continue;
1839        }
1840
1841      if (TD) {
1842        // See if we can constant fold its operands.
1843        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1844             i != e; ++i) {
1845          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1846          if (CE == 0) continue;
1847
1848          Constant*& FoldRes = FoldedConstants[CE];
1849          if (!FoldRes)
1850            FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
1851          if (!FoldRes)
1852            FoldRes = CE;
1853
1854          if (FoldRes != CE) {
1855            *i = FoldRes;
1856            MadeIRChange = true;
1857          }
1858        }
1859      }
1860
1861      InstrsForInstCombineWorklist.push_back(Inst);
1862    }
1863
1864    // Recursively visit successors.  If this is a branch or switch on a
1865    // constant, only visit the reachable successor.
1866    TerminatorInst *TI = BB->getTerminator();
1867    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1868      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1869        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1870        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1871        Worklist.push_back(ReachableBB);
1872        continue;
1873      }
1874    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1875      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1876        // See if this is an explicit destination.
1877        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1878             i != e; ++i)
1879          if (i.getCaseValue() == Cond) {
1880            BasicBlock *ReachableBB = i.getCaseSuccessor();
1881            Worklist.push_back(ReachableBB);
1882            continue;
1883          }
1884
1885        // Otherwise it is the default destination.
1886        Worklist.push_back(SI->getDefaultDest());
1887        continue;
1888      }
1889    }
1890
1891    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1892      Worklist.push_back(TI->getSuccessor(i));
1893  } while (!Worklist.empty());
1894
1895  // Once we've found all of the instructions to add to instcombine's worklist,
1896  // add them in reverse order.  This way instcombine will visit from the top
1897  // of the function down.  This jives well with the way that it adds all uses
1898  // of instructions to the worklist after doing a transformation, thus avoiding
1899  // some N^2 behavior in pathological cases.
1900  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1901                              InstrsForInstCombineWorklist.size());
1902
1903  return MadeIRChange;
1904}
1905
1906bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1907  MadeIRChange = false;
1908
1909  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1910               << F.getName() << "\n");
1911
1912  {
1913    // Do a depth-first traversal of the function, populate the worklist with
1914    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1915    // track of which blocks we visit.
1916    SmallPtrSet<BasicBlock*, 64> Visited;
1917    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
1918                                               TLI);
1919
1920    // Do a quick scan over the function.  If we find any blocks that are
1921    // unreachable, remove any instructions inside of them.  This prevents
1922    // the instcombine code from having to deal with some bad special cases.
1923    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1924      if (Visited.count(BB)) continue;
1925
1926      // Delete the instructions backwards, as it has a reduced likelihood of
1927      // having to update as many def-use and use-def chains.
1928      Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1929      while (EndInst != BB->begin()) {
1930        // Delete the next to last instruction.
1931        BasicBlock::iterator I = EndInst;
1932        Instruction *Inst = --I;
1933        if (!Inst->use_empty())
1934          Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1935        if (isa<LandingPadInst>(Inst)) {
1936          EndInst = Inst;
1937          continue;
1938        }
1939        if (!isa<DbgInfoIntrinsic>(Inst)) {
1940          ++NumDeadInst;
1941          MadeIRChange = true;
1942        }
1943        Inst->eraseFromParent();
1944      }
1945    }
1946  }
1947
1948  while (!Worklist.isEmpty()) {
1949    Instruction *I = Worklist.RemoveOne();
1950    if (I == 0) continue;  // skip null values.
1951
1952    // Check to see if we can DCE the instruction.
1953    if (isInstructionTriviallyDead(I)) {
1954      DEBUG(errs() << "IC: DCE: " << *I << '\n');
1955      EraseInstFromFunction(*I);
1956      ++NumDeadInst;
1957      MadeIRChange = true;
1958      continue;
1959    }
1960
1961    // Instruction isn't dead, see if we can constant propagate it.
1962    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
1963      if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
1964        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
1965
1966        // Add operands to the worklist.
1967        ReplaceInstUsesWith(*I, C);
1968        ++NumConstProp;
1969        EraseInstFromFunction(*I);
1970        MadeIRChange = true;
1971        continue;
1972      }
1973
1974    // See if we can trivially sink this instruction to a successor basic block.
1975    if (I->hasOneUse()) {
1976      BasicBlock *BB = I->getParent();
1977      Instruction *UserInst = cast<Instruction>(I->use_back());
1978      BasicBlock *UserParent;
1979
1980      // Get the block the use occurs in.
1981      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
1982        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
1983      else
1984        UserParent = UserInst->getParent();
1985
1986      if (UserParent != BB) {
1987        bool UserIsSuccessor = false;
1988        // See if the user is one of our successors.
1989        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1990          if (*SI == UserParent) {
1991            UserIsSuccessor = true;
1992            break;
1993          }
1994
1995        // If the user is one of our immediate successors, and if that successor
1996        // only has us as a predecessors (we'd have to split the critical edge
1997        // otherwise), we can keep going.
1998        if (UserIsSuccessor && UserParent->getSinglePredecessor())
1999          // Okay, the CFG is simple enough, try to sink this instruction.
2000          MadeIRChange |= TryToSinkInstruction(I, UserParent);
2001      }
2002    }
2003
2004    // Now that we have an instruction, try combining it to simplify it.
2005    Builder->SetInsertPoint(I->getParent(), I);
2006    Builder->SetCurrentDebugLocation(I->getDebugLoc());
2007
2008#ifndef NDEBUG
2009    std::string OrigI;
2010#endif
2011    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2012    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2013
2014    if (Instruction *Result = visit(*I)) {
2015      ++NumCombined;
2016      // Should we replace the old instruction with a new one?
2017      if (Result != I) {
2018        DEBUG(errs() << "IC: Old = " << *I << '\n'
2019                     << "    New = " << *Result << '\n');
2020
2021        if (!I->getDebugLoc().isUnknown())
2022          Result->setDebugLoc(I->getDebugLoc());
2023        // Everything uses the new instruction now.
2024        I->replaceAllUsesWith(Result);
2025
2026        // Move the name to the new instruction first.
2027        Result->takeName(I);
2028
2029        // Push the new instruction and any users onto the worklist.
2030        Worklist.Add(Result);
2031        Worklist.AddUsersToWorkList(*Result);
2032
2033        // Insert the new instruction into the basic block...
2034        BasicBlock *InstParent = I->getParent();
2035        BasicBlock::iterator InsertPos = I;
2036
2037        // If we replace a PHI with something that isn't a PHI, fix up the
2038        // insertion point.
2039        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2040          InsertPos = InstParent->getFirstInsertionPt();
2041
2042        InstParent->getInstList().insert(InsertPos, Result);
2043
2044        EraseInstFromFunction(*I);
2045      } else {
2046#ifndef NDEBUG
2047        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2048                     << "    New = " << *I << '\n');
2049#endif
2050
2051        // If the instruction was modified, it's possible that it is now dead.
2052        // if so, remove it.
2053        if (isInstructionTriviallyDead(I)) {
2054          EraseInstFromFunction(*I);
2055        } else {
2056          Worklist.Add(I);
2057          Worklist.AddUsersToWorkList(*I);
2058        }
2059      }
2060      MadeIRChange = true;
2061    }
2062  }
2063
2064  Worklist.Zap();
2065  return MadeIRChange;
2066}
2067
2068
2069bool InstCombiner::runOnFunction(Function &F) {
2070  TD = getAnalysisIfAvailable<TargetData>();
2071  TLI = &getAnalysis<TargetLibraryInfo>();
2072
2073  /// Builder - This is an IRBuilder that automatically inserts new
2074  /// instructions into the worklist when they are created.
2075  IRBuilder<true, TargetFolder, InstCombineIRInserter>
2076    TheBuilder(F.getContext(), TargetFolder(TD),
2077               InstCombineIRInserter(Worklist));
2078  Builder = &TheBuilder;
2079
2080  bool EverMadeChange = false;
2081
2082  // Lower dbg.declare intrinsics otherwise their value may be clobbered
2083  // by instcombiner.
2084  EverMadeChange = LowerDbgDeclare(F);
2085
2086  // Iterate while there is work to do.
2087  unsigned Iteration = 0;
2088  while (DoOneIteration(F, Iteration++))
2089    EverMadeChange = true;
2090
2091  Builder = 0;
2092  return EverMadeChange;
2093}
2094
2095FunctionPass *llvm::createInstructionCombiningPass() {
2096  return new InstCombiner();
2097}
2098