1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include "glsl_symbol_table.h"
25#include "ast.h"
26#include "glsl_types.h"
27#include "ir.h"
28#include "main/core.h" /* for MIN2 */
29
30static ir_rvalue *
31convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33bool
34apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35                          struct _mesa_glsl_parse_state *state);
36
37static unsigned
38process_parameters(exec_list *instructions, exec_list *actual_parameters,
39		   exec_list *parameters,
40		   struct _mesa_glsl_parse_state *state)
41{
42   unsigned count = 0;
43
44   foreach_list (n, parameters) {
45      ast_node *const ast = exec_node_data(ast_node, n, link);
46      ir_rvalue *result = ast->hir(instructions, state);
47
48      ir_constant *const constant = result->constant_expression_value();
49      if (constant != NULL)
50	 result = constant;
51
52      actual_parameters->push_tail(result);
53      count++;
54   }
55
56   return count;
57}
58
59
60/**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function.  May be \c NULL.
64 * \param name        Name of the function.
65 * \param parameters  Parameter list for the function.  This may be either a
66 *                    formal or actual parameter list.  Only the type is used.
67 *
68 * \return
69 * A hieralloced string representing the prototype of the function.
70 */
71char *
72prototype_string(const glsl_type *return_type, const char *name,
73		 exec_list *parameters)
74{
75   char *str = NULL;
76
77   if (return_type != NULL)
78      str = hieralloc_asprintf(str, "%s ", return_type->name);
79
80   str = hieralloc_asprintf_append(str, "%s(", name);
81
82   const char *comma = "";
83   foreach_list(node, parameters) {
84      const ir_instruction *const param = (ir_instruction *) node;
85
86      str = hieralloc_asprintf_append(str, "%s%s", comma, param->type->name);
87      comma = ", ";
88   }
89
90   str = hieralloc_strdup_append(str, ")");
91   return str;
92}
93
94
95static ir_rvalue *
96match_function_by_name(exec_list *instructions, const char *name,
97		       YYLTYPE *loc, exec_list *actual_parameters,
98		       struct _mesa_glsl_parse_state *state)
99{
100   void *ctx = state;
101   ir_function *f = state->symbols->get_function(name);
102   ir_function_signature *sig;
103
104   sig = f ? f->matching_signature(actual_parameters) : NULL;
105
106   /* FINISHME: This doesn't handle the case where shader X contains a
107    * FINISHME: matching signature but shader X + N contains an _exact_
108    * FINISHME: matching signature.
109    */
110   if (sig == NULL && (f == NULL || state->es_shader || !f->has_user_signature()) && state->symbols->get_type(name) == NULL && (state->language_version == 110 || state->symbols->get_variable(name) == NULL)) {
111      /* The current shader doesn't contain a matching function or signature.
112       * Before giving up, look for the prototype in the built-in functions.
113       */
114      for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
115	 ir_function *builtin;
116	 builtin = state->builtins_to_link[i]->symbols->get_function(name);
117	 sig = builtin ? builtin->matching_signature(actual_parameters) : NULL;
118	 if (sig != NULL) {
119	    if (f == NULL) {
120	       f = new(ctx) ir_function(name);
121	       state->symbols->add_global_function(f);
122	       emit_function(state, instructions, f);
123	    }
124
125	    f->add_signature(sig->clone_prototype(f, NULL));
126	    break;
127	 }
128      }
129   }
130
131   if (sig != NULL) {
132      /* Verify that 'out' and 'inout' actual parameters are lvalues.  This
133       * isn't done in ir_function::matching_signature because that function
134       * cannot generate the necessary diagnostics.
135       */
136      exec_list_iterator actual_iter = actual_parameters->iterator();
137      exec_list_iterator formal_iter = sig->parameters.iterator();
138
139      while (actual_iter.has_next()) {
140	 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
141	 ir_variable *formal = (ir_variable *) formal_iter.get();
142
143	 assert(actual != NULL);
144	 assert(formal != NULL);
145
146	 if ((formal->mode == ir_var_out)
147	     || (formal->mode == ir_var_inout)) {
148	    if (! actual->is_lvalue()) {
149	       /* FINISHME: Log a better diagnostic here.  There is no way
150		* FINISHME: to tell the user which parameter is invalid.
151		*/
152	       _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
153				(formal->mode == ir_var_out) ? "out" : "inout");
154	    }
155	 }
156
157	 if (formal->type->is_numeric() || formal->type->is_boolean()) {
158	    ir_rvalue *converted = convert_component(actual, formal->type);
159	    actual->replace_with(converted);
160	 }
161
162	 actual_iter.next();
163	 formal_iter.next();
164      }
165
166      /* Always insert the call in the instruction stream, and return a deref
167       * of its return val if it returns a value, since we don't know if
168       * the rvalue is going to be assigned to anything or not.
169       */
170      ir_call *call = new(ctx) ir_call(sig, actual_parameters);
171      if (!sig->return_type->is_void()) {
172	 ir_variable *var;
173	 ir_dereference_variable *deref;
174
175	 var = new(ctx) ir_variable(sig->return_type,
176				    hieralloc_asprintf(ctx, "%s_retval",
177						    sig->function_name()),
178				    ir_var_temporary);
179	 instructions->push_tail(var);
180
181	 deref = new(ctx) ir_dereference_variable(var);
182	 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
183	 instructions->push_tail(assign);
184	 if (state->language_version >= 120)
185	    var->constant_value = call->constant_expression_value();
186
187	 deref = new(ctx) ir_dereference_variable(var);
188	 return deref;
189      } else {
190	 instructions->push_tail(call);
191	 return NULL;
192      }
193   } else {
194      char *str = prototype_string(NULL, name, actual_parameters);
195
196      _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
197		       str);
198      hieralloc_free(str);
199
200      const char *prefix = "candidates are: ";
201
202      for (int i = -1; i < state->num_builtins_to_link; i++) {
203	 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
204					  : state->symbols;
205	 f = syms->get_function(name);
206	 if (f == NULL)
207	    continue;
208
209	 foreach_list (node, &f->signatures) {
210	    ir_function_signature *sig = (ir_function_signature *) node;
211
212	    str = prototype_string(sig->return_type, f->name, &sig->parameters);
213	    _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
214	    hieralloc_free(str);
215
216	    prefix = "                ";
217	 }
218
219      }
220
221      return ir_call::get_error_instruction(ctx);
222   }
223}
224
225
226/**
227 * Perform automatic type conversion of constructor parameters
228 *
229 * This implements the rules in the "Conversion and Scalar Constructors"
230 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
231 */
232static ir_rvalue *
233convert_component(ir_rvalue *src, const glsl_type *desired_type)
234{
235   void *ctx = hieralloc_parent(src);
236   const unsigned a = desired_type->base_type;
237   const unsigned b = src->type->base_type;
238   ir_expression *result = NULL;
239
240   if (src->type->is_error())
241      return src;
242
243   assert(a <= GLSL_TYPE_BOOL);
244   assert(b <= GLSL_TYPE_BOOL);
245
246   if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
247      return src;
248
249   switch (a) {
250   case GLSL_TYPE_UINT:
251   case GLSL_TYPE_INT:
252      if (b == GLSL_TYPE_FLOAT)
253	 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
254      else {
255	 assert(b == GLSL_TYPE_BOOL);
256	 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
257      }
258      break;
259   case GLSL_TYPE_FLOAT:
260      switch (b) {
261      case GLSL_TYPE_UINT:
262	 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
263	 break;
264      case GLSL_TYPE_INT:
265	 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
266	 break;
267      case GLSL_TYPE_BOOL:
268	 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
269	 break;
270      }
271      break;
272   case GLSL_TYPE_BOOL:
273      switch (b) {
274      case GLSL_TYPE_UINT:
275      case GLSL_TYPE_INT:
276	 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
277	 break;
278      case GLSL_TYPE_FLOAT:
279	 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
280	 break;
281      }
282      break;
283   }
284
285   assert(result != NULL);
286
287   /* Try constant folding; it may fold in the conversion we just added. */
288   ir_constant *const constant = result->constant_expression_value();
289   return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
290}
291
292/**
293 * Dereference a specific component from a scalar, vector, or matrix
294 */
295static ir_rvalue *
296dereference_component(ir_rvalue *src, unsigned component)
297{
298   void *ctx = hieralloc_parent(src);
299   assert(component < src->type->components());
300
301   /* If the source is a constant, just create a new constant instead of a
302    * dereference of the existing constant.
303    */
304   ir_constant *constant = src->as_constant();
305   if (constant)
306      return new(ctx) ir_constant(constant, component);
307
308   if (src->type->is_scalar()) {
309      return src;
310   } else if (src->type->is_vector()) {
311      return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
312   } else {
313      assert(src->type->is_matrix());
314
315      /* Dereference a row of the matrix, then call this function again to get
316       * a specific element from that row.
317       */
318      const int c = component / src->type->column_type()->vector_elements;
319      const int r = component % src->type->column_type()->vector_elements;
320      ir_constant *const col_index = new(ctx) ir_constant(c);
321      ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
322
323      col->type = src->type->column_type();
324
325      return dereference_component(col, r);
326   }
327
328   assert(!"Should not get here.");
329   return NULL;
330}
331
332
333static ir_rvalue *
334process_array_constructor(exec_list *instructions,
335			  const glsl_type *constructor_type,
336			  YYLTYPE *loc, exec_list *parameters,
337			  struct _mesa_glsl_parse_state *state)
338{
339   void *ctx = state;
340   /* Array constructors come in two forms: sized and unsized.  Sized array
341    * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
342    * variables.  In this case the number of parameters must exactly match the
343    * specified size of the array.
344    *
345    * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
346    * are vec4 variables.  In this case the size of the array being constructed
347    * is determined by the number of parameters.
348    *
349    * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
350    *
351    *    "There must be exactly the same number of arguments as the size of
352    *    the array being constructed. If no size is present in the
353    *    constructor, then the array is explicitly sized to the number of
354    *    arguments provided. The arguments are assigned in order, starting at
355    *    element 0, to the elements of the constructed array. Each argument
356    *    must be the same type as the element type of the array, or be a type
357    *    that can be converted to the element type of the array according to
358    *    Section 4.1.10 "Implicit Conversions.""
359    */
360   exec_list actual_parameters;
361   const unsigned parameter_count =
362      process_parameters(instructions, &actual_parameters, parameters, state);
363
364   if ((parameter_count == 0)
365       || ((constructor_type->length != 0)
366	   && (constructor_type->length != parameter_count))) {
367      const unsigned min_param = (constructor_type->length == 0)
368	 ? 1 : constructor_type->length;
369
370      _mesa_glsl_error(loc, state, "array constructor must have %s %u "
371		       "parameter%s",
372		       (constructor_type->length != 0) ? "at least" : "exactly",
373		       min_param, (min_param <= 1) ? "" : "s");
374      return ir_call::get_error_instruction(ctx);
375   }
376
377   if (constructor_type->length == 0) {
378      constructor_type =
379	 glsl_type::get_array_instance(constructor_type->element_type(),
380				       parameter_count);
381      assert(constructor_type != NULL);
382      assert(constructor_type->length == parameter_count);
383   }
384
385   bool all_parameters_are_constant = true;
386
387   /* Type cast each parameter and, if possible, fold constants. */
388   foreach_list_safe(n, &actual_parameters) {
389      ir_rvalue *ir = (ir_rvalue *) n;
390      ir_rvalue *result = ir;
391
392      /* Apply implicit conversions (not the scalar constructor rules!) */
393      if (constructor_type->element_type()->is_float()) {
394	 const glsl_type *desired_type =
395	    glsl_type::get_instance(GLSL_TYPE_FLOAT,
396				    ir->type->vector_elements,
397				    ir->type->matrix_columns);
398	 result = convert_component(ir, desired_type);
399      }
400
401      if (result->type != constructor_type->element_type()) {
402	 _mesa_glsl_error(loc, state, "type error in array constructor: "
403			  "expected: %s, found %s",
404			  constructor_type->element_type()->name,
405			  result->type->name);
406      }
407
408      /* Attempt to convert the parameter to a constant valued expression.
409       * After doing so, track whether or not all the parameters to the
410       * constructor are trivially constant valued expressions.
411       */
412      ir_rvalue *const constant = result->constant_expression_value();
413
414      if (constant != NULL)
415         result = constant;
416      else
417         all_parameters_are_constant = false;
418
419      ir->replace_with(result);
420   }
421
422   if (all_parameters_are_constant)
423      return new(ctx) ir_constant(constructor_type, &actual_parameters);
424
425   ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
426					   ir_var_temporary);
427   instructions->push_tail(var);
428
429   int i = 0;
430   foreach_list(node, &actual_parameters) {
431      ir_rvalue *rhs = (ir_rvalue *) node;
432      ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
433						     new(ctx) ir_constant(i));
434
435      ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
436      instructions->push_tail(assignment);
437
438      i++;
439   }
440
441   return new(ctx) ir_dereference_variable(var);
442}
443
444
445/**
446 * Try to convert a record constructor to a constant expression
447 */
448static ir_constant *
449constant_record_constructor(const glsl_type *constructor_type,
450			    exec_list *parameters, void *mem_ctx)
451{
452   foreach_list(node, parameters) {
453      ir_constant *constant = ((ir_instruction *) node)->as_constant();
454      if (constant == NULL)
455	 return NULL;
456      node->replace_with(constant);
457   }
458
459   return new(mem_ctx) ir_constant(constructor_type, parameters);
460}
461
462
463/**
464 * Determine if a list consists of a single scalar r-value
465 */
466bool
467single_scalar_parameter(exec_list *parameters)
468{
469   const ir_rvalue *const p = (ir_rvalue *) parameters->head;
470   assert(((ir_rvalue *)p)->as_rvalue() != NULL);
471
472   return (p->type->is_scalar() && p->next->is_tail_sentinel());
473}
474
475
476/**
477 * Generate inline code for a vector constructor
478 *
479 * The generated constructor code will consist of a temporary variable
480 * declaration of the same type as the constructor.  A sequence of assignments
481 * from constructor parameters to the temporary will follow.
482 *
483 * \return
484 * An \c ir_dereference_variable of the temprorary generated in the constructor
485 * body.
486 */
487ir_rvalue *
488emit_inline_vector_constructor(const glsl_type *type,
489			       exec_list *instructions,
490			       exec_list *parameters,
491			       void *ctx)
492{
493   assert(!parameters->is_empty());
494
495   ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
496   instructions->push_tail(var);
497
498   /* There are two kinds of vector constructors.
499    *
500    *  - Construct a vector from a single scalar by replicating that scalar to
501    *    all components of the vector.
502    *
503    *  - Construct a vector from an arbirary combination of vectors and
504    *    scalars.  The components of the constructor parameters are assigned
505    *    to the vector in order until the vector is full.
506    */
507   const unsigned lhs_components = type->components();
508   if (single_scalar_parameter(parameters)) {
509      ir_rvalue *first_param = (ir_rvalue *)parameters->head;
510      ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
511					   lhs_components);
512      ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
513      const unsigned mask = (1U << lhs_components) - 1;
514
515      assert(rhs->type == lhs->type);
516
517      ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
518      instructions->push_tail(inst);
519   } else {
520      unsigned base_component = 0;
521      unsigned base_lhs_component = 0;
522      ir_constant_data data;
523      unsigned constant_mask = 0, constant_components = 0;
524
525      memset(&data, 0, sizeof(data));
526
527      foreach_list(node, parameters) {
528	 ir_rvalue *param = (ir_rvalue *) node;
529	 unsigned rhs_components = param->type->components();
530
531	 /* Do not try to assign more components to the vector than it has!
532	  */
533	 if ((rhs_components + base_lhs_component) > lhs_components) {
534	    rhs_components = lhs_components - base_lhs_component;
535	 }
536
537	 const ir_constant *const c = param->as_constant();
538	 if (c != NULL) {
539	    for (unsigned i = 0; i < rhs_components; i++) {
540	       switch (c->type->base_type) {
541	       case GLSL_TYPE_UINT:
542		  data.u[i + base_component] = c->get_uint_component(i);
543		  break;
544	       case GLSL_TYPE_INT:
545		  data.i[i + base_component] = c->get_int_component(i);
546		  break;
547	       case GLSL_TYPE_FLOAT:
548		  data.f[i + base_component] = c->get_float_component(i);
549		  break;
550	       case GLSL_TYPE_BOOL:
551		  data.b[i + base_component] = c->get_bool_component(i);
552		  break;
553	       default:
554		  assert(!"Should not get here.");
555		  break;
556	       }
557	    }
558
559	    /* Mask of fields to be written in the assignment.
560	     */
561	    constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
562	    constant_components += rhs_components;
563
564	    base_component += rhs_components;
565	 }
566	 /* Advance the component index by the number of components
567	  * that were just assigned.
568	  */
569	 base_lhs_component += rhs_components;
570      }
571
572      if (constant_mask != 0) {
573	 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
574	 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
575							     constant_components,
576							     1);
577	 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
578
579	 ir_instruction *inst =
580	    new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
581	 instructions->push_tail(inst);
582      }
583
584      base_component = 0;
585      foreach_list(node, parameters) {
586	 ir_rvalue *param = (ir_rvalue *) node;
587	 unsigned rhs_components = param->type->components();
588
589	 /* Do not try to assign more components to the vector than it has!
590	  */
591	 if ((rhs_components + base_component) > lhs_components) {
592	    rhs_components = lhs_components - base_component;
593	 }
594
595	 const ir_constant *const c = param->as_constant();
596	 if (c == NULL) {
597	    /* Mask of fields to be written in the assignment.
598	     */
599	    const unsigned write_mask = ((1U << rhs_components) - 1)
600	       << base_component;
601
602	    ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
603
604	    /* Generate a swizzle so that LHS and RHS sizes match.
605	     */
606	    ir_rvalue *rhs =
607	       new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
608
609	    ir_instruction *inst =
610	       new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
611	    instructions->push_tail(inst);
612	 }
613
614	 /* Advance the component index by the number of components that were
615	  * just assigned.
616	  */
617	 base_component += rhs_components;
618      }
619   }
620   return new(ctx) ir_dereference_variable(var);
621}
622
623
624/**
625 * Generate assignment of a portion of a vector to a portion of a matrix column
626 *
627 * \param src_base  First component of the source to be used in assignment
628 * \param column    Column of destination to be assiged
629 * \param row_base  First component of the destination column to be assigned
630 * \param count     Number of components to be assigned
631 *
632 * \note
633 * \c src_base + \c count must be less than or equal to the number of components
634 * in the source vector.
635 */
636ir_instruction *
637assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
638			ir_rvalue *src, unsigned src_base, unsigned count,
639			void *mem_ctx)
640{
641   ir_constant *col_idx = new(mem_ctx) ir_constant(column);
642   ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
643
644   assert(column_ref->type->components() >= (row_base + count));
645   assert(src->type->components() >= (src_base + count));
646
647   /* Generate a swizzle that extracts the number of components from the source
648    * that are to be assigned to the column of the matrix.
649    */
650   if (count < src->type->vector_elements) {
651      src = new(mem_ctx) ir_swizzle(src,
652				    src_base + 0, src_base + 1,
653				    src_base + 2, src_base + 3,
654				    count);
655   }
656
657   /* Mask of fields to be written in the assignment.
658    */
659   const unsigned write_mask = ((1U << count) - 1) << row_base;
660
661   return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
662}
663
664
665/**
666 * Generate inline code for a matrix constructor
667 *
668 * The generated constructor code will consist of a temporary variable
669 * declaration of the same type as the constructor.  A sequence of assignments
670 * from constructor parameters to the temporary will follow.
671 *
672 * \return
673 * An \c ir_dereference_variable of the temprorary generated in the constructor
674 * body.
675 */
676ir_rvalue *
677emit_inline_matrix_constructor(const glsl_type *type,
678			       exec_list *instructions,
679			       exec_list *parameters,
680			       void *ctx)
681{
682   assert(!parameters->is_empty());
683
684   ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
685   instructions->push_tail(var);
686
687   /* There are three kinds of matrix constructors.
688    *
689    *  - Construct a matrix from a single scalar by replicating that scalar to
690    *    along the diagonal of the matrix and setting all other components to
691    *    zero.
692    *
693    *  - Construct a matrix from an arbirary combination of vectors and
694    *    scalars.  The components of the constructor parameters are assigned
695    *    to the matrix in colum-major order until the matrix is full.
696    *
697    *  - Construct a matrix from a single matrix.  The source matrix is copied
698    *    to the upper left portion of the constructed matrix, and the remaining
699    *    elements take values from the identity matrix.
700    */
701   ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
702   if (single_scalar_parameter(parameters)) {
703      /* Assign the scalar to the X component of a vec4, and fill the remaining
704       * components with zero.
705       */
706      ir_variable *rhs_var =
707	 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
708			      ir_var_temporary);
709      instructions->push_tail(rhs_var);
710
711      ir_constant_data zero;
712      zero.f[0] = 0.0;
713      zero.f[1] = 0.0;
714      zero.f[2] = 0.0;
715      zero.f[3] = 0.0;
716
717      ir_instruction *inst =
718	 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
719				new(ctx) ir_constant(rhs_var->type, &zero),
720				NULL);
721      instructions->push_tail(inst);
722
723      ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
724
725      inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
726      instructions->push_tail(inst);
727
728      /* Assign the temporary vector to each column of the destination matrix
729       * with a swizzle that puts the X component on the diagonal of the
730       * matrix.  In some cases this may mean that the X component does not
731       * get assigned into the column at all (i.e., when the matrix has more
732       * columns than rows).
733       */
734      static const unsigned rhs_swiz[4][4] = {
735	 { 0, 1, 1, 1 },
736	 { 1, 0, 1, 1 },
737	 { 1, 1, 0, 1 },
738	 { 1, 1, 1, 0 }
739      };
740
741      const unsigned cols_to_init = MIN2(type->matrix_columns,
742					 type->vector_elements);
743      for (unsigned i = 0; i < cols_to_init; i++) {
744	 ir_constant *const col_idx = new(ctx) ir_constant(i);
745	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
746
747	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
748	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
749						    type->vector_elements);
750
751	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
752	 instructions->push_tail(inst);
753      }
754
755      for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
756	 ir_constant *const col_idx = new(ctx) ir_constant(i);
757	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
758
759	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
760	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
761						    type->vector_elements);
762
763	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
764	 instructions->push_tail(inst);
765      }
766   } else if (first_param->type->is_matrix()) {
767      /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
768       *
769       *     "If a matrix is constructed from a matrix, then each component
770       *     (column i, row j) in the result that has a corresponding
771       *     component (column i, row j) in the argument will be initialized
772       *     from there. All other components will be initialized to the
773       *     identity matrix. If a matrix argument is given to a matrix
774       *     constructor, it is an error to have any other arguments."
775       */
776      assert(first_param->next->is_tail_sentinel());
777      ir_rvalue *const src_matrix = first_param;
778
779      /* If the source matrix is smaller, pre-initialize the relavent parts of
780       * the destination matrix to the identity matrix.
781       */
782      if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
783	  || (src_matrix->type->vector_elements < var->type->vector_elements)) {
784
785	 /* If the source matrix has fewer rows, every column of the destination
786	  * must be initialized.  Otherwise only the columns in the destination
787	  * that do not exist in the source must be initialized.
788	  */
789	 unsigned col =
790	    (src_matrix->type->vector_elements < var->type->vector_elements)
791	    ? 0 : src_matrix->type->matrix_columns;
792
793	 const glsl_type *const col_type = var->type->column_type();
794	 for (/* empty */; col < var->type->matrix_columns; col++) {
795	    ir_constant_data ident;
796
797	    ident.f[0] = 0.0;
798	    ident.f[1] = 0.0;
799	    ident.f[2] = 0.0;
800	    ident.f[3] = 0.0;
801
802	    ident.f[col] = 1.0;
803
804	    ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
805
806	    ir_rvalue *const lhs =
807	       new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
808
809	    ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
810	    instructions->push_tail(inst);
811	 }
812      }
813
814      /* Assign columns from the source matrix to the destination matrix.
815       *
816       * Since the parameter will be used in the RHS of multiple assignments,
817       * generate a temporary and copy the paramter there.
818       */
819      ir_variable *const rhs_var =
820	 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
821			      ir_var_temporary);
822      instructions->push_tail(rhs_var);
823
824      ir_dereference *const rhs_var_ref =
825	 new(ctx) ir_dereference_variable(rhs_var);
826      ir_instruction *const inst =
827	 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
828      instructions->push_tail(inst);
829
830      const unsigned last_row = MIN2(src_matrix->type->vector_elements,
831				     var->type->vector_elements);
832      const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
833				     var->type->matrix_columns);
834
835      unsigned swiz[4] = { 0, 0, 0, 0 };
836      for (unsigned i = 1; i < last_row; i++)
837	 swiz[i] = i;
838
839      const unsigned write_mask = (1U << last_row) - 1;
840
841      for (unsigned i = 0; i < last_col; i++) {
842	 ir_dereference *const lhs =
843	    new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
844	 ir_rvalue *const rhs_col =
845	    new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
846
847	 /* If one matrix has columns that are smaller than the columns of the
848	  * other matrix, wrap the column access of the larger with a swizzle
849	  * so that the LHS and RHS of the assignment have the same size (and
850	  * therefore have the same type).
851	  *
852	  * It would be perfectly valid to unconditionally generate the
853	  * swizzles, this this will typically result in a more compact IR tree.
854	  */
855	 ir_rvalue *rhs;
856	 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
857	    rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
858	 } else {
859	    rhs = rhs_col;
860	 }
861
862	 ir_instruction *inst =
863	    new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
864	 instructions->push_tail(inst);
865      }
866   } else {
867      const unsigned cols = type->matrix_columns;
868      const unsigned rows = type->vector_elements;
869      unsigned col_idx = 0;
870      unsigned row_idx = 0;
871
872      foreach_list (node, parameters) {
873	 ir_rvalue *const rhs = (ir_rvalue *) node;
874	 const unsigned components_remaining_this_column = rows - row_idx;
875	 unsigned rhs_components = rhs->type->components();
876	 unsigned rhs_base = 0;
877
878	 /* Since the parameter might be used in the RHS of two assignments,
879	  * generate a temporary and copy the paramter there.
880	  */
881	 ir_variable *rhs_var =
882	    new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
883	 instructions->push_tail(rhs_var);
884
885	 ir_dereference *rhs_var_ref =
886	    new(ctx) ir_dereference_variable(rhs_var);
887	 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
888	 instructions->push_tail(inst);
889
890	 /* Assign the current parameter to as many components of the matrix
891	  * as it will fill.
892	  *
893	  * NOTE: A single vector parameter can span two matrix columns.  A
894	  * single vec4, for example, can completely fill a mat2.
895	  */
896	 if (rhs_components >= components_remaining_this_column) {
897	    const unsigned count = MIN2(rhs_components,
898					components_remaining_this_column);
899
900	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
901
902	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
903							   row_idx,
904							   rhs_var_ref, 0,
905							   count, ctx);
906	    instructions->push_tail(inst);
907
908	    rhs_base = count;
909
910	    col_idx++;
911	    row_idx = 0;
912	 }
913
914	 /* If there is data left in the parameter and components left to be
915	  * set in the destination, emit another assignment.  It is possible
916	  * that the assignment could be of a vec4 to the last element of the
917	  * matrix.  In this case col_idx==cols, but there is still data
918	  * left in the source parameter.  Obviously, don't emit an assignment
919	  * to data outside the destination matrix.
920	  */
921	 if ((col_idx < cols) && (rhs_base < rhs_components)) {
922	    const unsigned count = rhs_components - rhs_base;
923
924	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
925
926	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
927							   row_idx,
928							   rhs_var_ref,
929							   rhs_base,
930							   count, ctx);
931	    instructions->push_tail(inst);
932
933	    row_idx += count;
934	 }
935      }
936   }
937
938   return new(ctx) ir_dereference_variable(var);
939}
940
941
942ir_rvalue *
943emit_inline_record_constructor(const glsl_type *type,
944			       exec_list *instructions,
945			       exec_list *parameters,
946			       void *mem_ctx)
947{
948   ir_variable *const var =
949      new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
950   ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
951
952   instructions->push_tail(var);
953
954   exec_node *node = parameters->head;
955   for (unsigned i = 0; i < type->length; i++) {
956      assert(!node->is_tail_sentinel());
957
958      ir_dereference *const lhs =
959	 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
960					    type->fields.structure[i].name);
961
962      ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
963      assert(rhs != NULL);
964
965      ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
966
967      instructions->push_tail(assign);
968      node = node->next;
969   }
970
971   return d;
972}
973
974
975ir_rvalue *
976ast_function_expression::hir(exec_list *instructions,
977			     struct _mesa_glsl_parse_state *state)
978{
979   void *ctx = state;
980   /* There are three sorts of function calls.
981    *
982    * 1. constructors - The first subexpression is an ast_type_specifier.
983    * 2. methods - Only the .length() method of array types.
984    * 3. functions - Calls to regular old functions.
985    *
986    * Method calls are actually detected when the ast_field_selection
987    * expression is handled.
988    */
989   if (is_constructor()) {
990      const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
991      YYLTYPE loc = type->get_location();
992      const char *name;
993
994      const glsl_type *const constructor_type = type->glsl_type(& name, state);
995
996
997      /* Constructors for samplers are illegal.
998       */
999      if (constructor_type->is_sampler()) {
1000	 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1001			  constructor_type->name);
1002	 return ir_call::get_error_instruction(ctx);
1003      }
1004
1005      if (constructor_type->is_array()) {
1006	 if (state->language_version <= 110) {
1007	    _mesa_glsl_error(& loc, state,
1008			     "array constructors forbidden in GLSL 1.10");
1009	    return ir_call::get_error_instruction(ctx);
1010	 }
1011
1012	 return process_array_constructor(instructions, constructor_type,
1013					  & loc, &this->expressions, state);
1014      }
1015
1016
1017      /* There are two kinds of constructor call.  Constructors for built-in
1018       * language types, such as mat4 and vec2, are free form.  The only
1019       * requirement is that the parameters must provide enough values of the
1020       * correct scalar type.  Constructors for arrays and structures must
1021       * have the exact number of parameters with matching types in the
1022       * correct order.  These constructors follow essentially the same type
1023       * matching rules as functions.
1024       */
1025      if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1026	 return ir_call::get_error_instruction(ctx);
1027
1028      /* Total number of components of the type being constructed. */
1029      const unsigned type_components = constructor_type->components();
1030
1031      /* Number of components from parameters that have actually been
1032       * consumed.  This is used to perform several kinds of error checking.
1033       */
1034      unsigned components_used = 0;
1035
1036      unsigned matrix_parameters = 0;
1037      unsigned nonmatrix_parameters = 0;
1038      exec_list actual_parameters;
1039
1040      foreach_list (n, &this->expressions) {
1041	 ast_node *ast = exec_node_data(ast_node, n, link);
1042	 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1043
1044	 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1045	  *
1046	  *    "It is an error to provide extra arguments beyond this
1047	  *    last used argument."
1048	  */
1049	 if (components_used >= type_components) {
1050	    _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1051			     "constructor",
1052			     constructor_type->name);
1053	    return ir_call::get_error_instruction(ctx);
1054	 }
1055
1056	 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1057	    _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1058			     "non-numeric data type",
1059			     constructor_type->name);
1060	    return ir_call::get_error_instruction(ctx);
1061	 }
1062
1063	 /* Count the number of matrix and nonmatrix parameters.  This
1064	  * is used below to enforce some of the constructor rules.
1065	  */
1066	 if (result->type->is_matrix())
1067	    matrix_parameters++;
1068	 else
1069	    nonmatrix_parameters++;
1070
1071	 actual_parameters.push_tail(result);
1072	 components_used += result->type->components();
1073      }
1074
1075      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1076       *
1077       *    "It is an error to construct matrices from other matrices. This
1078       *    is reserved for future use."
1079       */
1080      if (state->language_version == 110 && matrix_parameters > 0
1081	  && constructor_type->is_matrix()) {
1082	 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1083			  "matrix in GLSL 1.10",
1084			  constructor_type->name);
1085	 return ir_call::get_error_instruction(ctx);
1086      }
1087
1088      /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1089       *
1090       *    "If a matrix argument is given to a matrix constructor, it is
1091       *    an error to have any other arguments."
1092       */
1093      if ((matrix_parameters > 0)
1094	  && ((matrix_parameters + nonmatrix_parameters) > 1)
1095	  && constructor_type->is_matrix()) {
1096	 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1097			  "matrix must be only parameter",
1098			  constructor_type->name);
1099	 return ir_call::get_error_instruction(ctx);
1100      }
1101
1102      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1103       *
1104       *    "In these cases, there must be enough components provided in the
1105       *    arguments to provide an initializer for every component in the
1106       *    constructed value."
1107       */
1108      if (components_used < type_components && components_used != 1
1109	  && matrix_parameters == 0) {
1110	 _mesa_glsl_error(& loc, state, "too few components to construct "
1111			  "`%s'",
1112			  constructor_type->name);
1113	 return ir_call::get_error_instruction(ctx);
1114      }
1115
1116      /* Later, we cast each parameter to the same base type as the
1117       * constructor.  Since there are no non-floating point matrices, we
1118       * need to break them up into a series of column vectors.
1119       */
1120      if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1121	 foreach_list_safe(n, &actual_parameters) {
1122	    ir_rvalue *matrix = (ir_rvalue *) n;
1123
1124	    if (!matrix->type->is_matrix())
1125	       continue;
1126
1127	    /* Create a temporary containing the matrix. */
1128	    ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1129						    ir_var_temporary);
1130	    instructions->push_tail(var);
1131	    instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1132	       ir_dereference_variable(var), matrix, NULL));
1133	    var->constant_value = matrix->constant_expression_value();
1134
1135	    /* Replace the matrix with dereferences of its columns. */
1136	    for (int i = 0; i < matrix->type->matrix_columns; i++) {
1137	       matrix->insert_before(new (ctx) ir_dereference_array(var,
1138		  new(ctx) ir_constant(i)));
1139	    }
1140	    matrix->remove();
1141	 }
1142      }
1143
1144      bool all_parameters_are_constant = true;
1145
1146      /* Type cast each parameter and, if possible, fold constants.*/
1147      foreach_list_safe(n, &actual_parameters) {
1148	 ir_rvalue *ir = (ir_rvalue *) n;
1149
1150	 const glsl_type *desired_type =
1151	    glsl_type::get_instance(constructor_type->base_type,
1152				    ir->type->vector_elements,
1153				    ir->type->matrix_columns);
1154	 ir_rvalue *result = convert_component(ir, desired_type);
1155
1156	 /* Attempt to convert the parameter to a constant valued expression.
1157	  * After doing so, track whether or not all the parameters to the
1158	  * constructor are trivially constant valued expressions.
1159	  */
1160	 ir_rvalue *const constant = result->constant_expression_value();
1161
1162	 if (constant != NULL)
1163	    result = constant;
1164	 else
1165	    all_parameters_are_constant = false;
1166
1167	 if (result != ir) {
1168	    ir->replace_with(result);
1169	 }
1170      }
1171
1172      /* If all of the parameters are trivially constant, create a
1173       * constant representing the complete collection of parameters.
1174       */
1175      if (all_parameters_are_constant) {
1176	 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1177      } else if (constructor_type->is_scalar()) {
1178	 return dereference_component((ir_rvalue *) actual_parameters.head,
1179				      0);
1180      } else if (constructor_type->is_vector()) {
1181	 return emit_inline_vector_constructor(constructor_type,
1182					       instructions,
1183					       &actual_parameters,
1184					       ctx);
1185      } else {
1186	 assert(constructor_type->is_matrix());
1187	 return emit_inline_matrix_constructor(constructor_type,
1188					       instructions,
1189					       &actual_parameters,
1190					       ctx);
1191      }
1192   } else {
1193      const ast_expression *id = subexpressions[0];
1194      YYLTYPE loc = id->get_location();
1195      exec_list actual_parameters;
1196
1197      process_parameters(instructions, &actual_parameters, &this->expressions,
1198			 state);
1199
1200      const glsl_type *const type =
1201	 state->symbols->get_type(id->primary_expression.identifier);
1202
1203      if ((type != NULL) && type->is_record()) {
1204	 exec_node *node = actual_parameters.head;
1205	 for (unsigned i = 0; i < type->length; i++) {
1206	    ir_rvalue *ir = (ir_rvalue *) node;
1207
1208	    if (node->is_tail_sentinel()) {
1209	       _mesa_glsl_error(&loc, state,
1210				"insufficient parameters to constructor "
1211				"for `%s'",
1212				type->name);
1213	       return ir_call::get_error_instruction(ctx);
1214	    }
1215
1216	    if (apply_implicit_conversion(type->fields.structure[i].type, ir,
1217					  state)) {
1218	       node->replace_with(ir);
1219	    } else {
1220	       _mesa_glsl_error(&loc, state,
1221				"parameter type mismatch in constructor "
1222				"for `%s.%s' (%s vs %s)",
1223				type->name,
1224				type->fields.structure[i].name,
1225				ir->type->name,
1226				type->fields.structure[i].type->name);
1227	       return ir_call::get_error_instruction(ctx);;
1228	    }
1229
1230	    node = node->next;
1231	 }
1232
1233	 if (!node->is_tail_sentinel()) {
1234	    _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1235			     "for `%s'", type->name);
1236	    return ir_call::get_error_instruction(ctx);
1237	 }
1238
1239	 ir_rvalue *const constant =
1240	    constant_record_constructor(type, &actual_parameters, state);
1241
1242	 return (constant != NULL)
1243	    ? constant
1244	    : emit_inline_record_constructor(type, instructions,
1245					     &actual_parameters, state);
1246      }
1247
1248      return match_function_by_name(instructions,
1249				    id->primary_expression.identifier, & loc,
1250				    &actual_parameters, state);
1251   }
1252
1253   return ir_call::get_error_instruction(ctx);
1254}
1255