1/*
2 * Copyright © 2008, 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file list.h
26 * \brief Doubly-linked list abstract container type.
27 *
28 * Each doubly-linked list has a sentinel head and tail node.  These nodes
29 * contain no data.  The head sentinel can be identified by its \c prev
30 * pointer being \c NULL.  The tail sentinel can be identified by its
31 * \c next pointer being \c NULL.
32 *
33 * A list is empty if either the head sentinel's \c next pointer points to the
34 * tail sentinel or the tail sentinel's \c prev poiner points to the head
35 * sentinel.
36 *
37 * Instead of tracking two separate \c node structures and a \c list structure
38 * that points to them, the sentinel nodes are in a single structure.  Noting
39 * that each sentinel node always has one \c NULL pointer, the \c NULL
40 * pointers occupy the same memory location.  In the \c list structure
41 * contains a the following:
42 *
43 *   - A \c head pointer that represents the \c next pointer of the
44 *     head sentinel node.
45 *   - A \c tail pointer that represents the \c prev pointer of the head
46 *     sentinel node and the \c next pointer of the tail sentinel node.  This
47 *     pointer is \b always \c NULL.
48 *   - A \c tail_prev pointer that represents the \c prev pointer of the
49 *     tail sentinel node.
50 *
51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
52 * the list is empty.
53 *
54 * To anyone familiar with "exec lists" on the Amiga, this structure should
55 * be immediately recognizable.  See the following link for the original Amiga
56 * operating system documentation on the subject.
57 *
58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
59 *
60 * \author Ian Romanick <ian.d.romanick@intel.com>
61 */
62
63#pragma once
64#ifndef LIST_CONTAINER_H
65#define LIST_CONTAINER_H
66
67#ifndef __cplusplus
68#include <stddef.h>
69#include <hieralloc.h>
70#else
71extern "C" {
72#include <hieralloc.h>
73}
74#endif
75
76#include <assert.h>
77
78struct exec_node {
79   struct exec_node *next;
80   struct exec_node *prev;
81
82#ifdef __cplusplus
83   /* Callers of this hieralloc-based new need not call delete. It's
84    * easier to just hieralloc_free 'ctx' (or any of its ancestors). */
85   static void* operator new(size_t size, void *ctx)
86   {
87      void *node;
88
89      node = hieralloc_size(ctx, size);
90      assert(node != NULL);
91
92      return node;
93   }
94
95   /* If the user *does* call delete, that's OK, we will just
96    * hieralloc_free in that case. */
97   static void operator delete(void *node)
98   {
99      hieralloc_free(node);
100   }
101
102   exec_node() : next(NULL), prev(NULL)
103   {
104      /* empty */
105   }
106
107   const exec_node *get_next() const
108   {
109      return next;
110   }
111
112   exec_node *get_next()
113   {
114      return next;
115   }
116
117   const exec_node *get_prev() const
118   {
119      return prev;
120   }
121
122   exec_node *get_prev()
123   {
124      return prev;
125   }
126
127   void remove()
128   {
129      next->prev = prev;
130      prev->next = next;
131      next = NULL;
132      prev = NULL;
133   }
134
135   /**
136    * Link a node with itself
137    *
138    * This creates a sort of degenerate list that is occasionally useful.
139    */
140   void self_link()
141   {
142      next = this;
143      prev = this;
144   }
145
146   /**
147    * Insert a node in the list after the current node
148    */
149   void insert_after(exec_node *after)
150   {
151      after->next = this->next;
152      after->prev = this;
153
154      this->next->prev = after;
155      this->next = after;
156   }
157   /**
158    * Insert a node in the list before the current node
159    */
160   void insert_before(exec_node *before)
161   {
162      before->next = this;
163      before->prev = this->prev;
164
165      this->prev->next = before;
166      this->prev = before;
167   }
168
169   /**
170    * Insert another list in the list before the current node
171    */
172   void insert_before(struct exec_list *before);
173
174   /**
175    * Replace the current node with the given node.
176    */
177   void replace_with(exec_node *replacement)
178   {
179      replacement->prev = this->prev;
180      replacement->next = this->next;
181
182      this->prev->next = replacement;
183      this->next->prev = replacement;
184   }
185
186   /**
187    * Is this the sentinel at the tail of the list?
188    */
189   bool is_tail_sentinel() const
190   {
191      return this->next == NULL;
192   }
193
194   /**
195    * Is this the sentinel at the head of the list?
196    */
197   bool is_head_sentinel() const
198   {
199      return this->prev == NULL;
200   }
201#endif
202};
203
204
205#ifdef __cplusplus
206/* This macro will not work correctly if `t' uses virtual inheritance.  If you
207 * are using virtual inheritance, you deserve a slow and painful death.  Enjoy!
208 */
209#define exec_list_offsetof(t, f, p) \
210   (((char *) &((t *) p)->f) - ((char *) p))
211#else
212#define exec_list_offsetof(t, f, p) offsetof(t, f)
213#endif
214
215/**
216 * Get a pointer to the structure containing an exec_node
217 *
218 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to
219 * the containing structure.
220 *
221 * \param type  Base type of the structure containing the node
222 * \param node  Pointer to the \c exec_node
223 * \param field Name of the field in \c type that is the embedded \c exec_node
224 */
225#define exec_node_data(type, node, field) \
226   ((type *) (((char *) node) - exec_list_offsetof(type, field, node)))
227
228#ifdef __cplusplus
229struct exec_node;
230
231class iterator {
232public:
233   void next()
234   {
235   }
236
237   void *get()
238   {
239      return NULL;
240   }
241
242   bool has_next() const
243   {
244      return false;
245   }
246};
247
248class exec_list_iterator : public iterator {
249public:
250   exec_list_iterator(exec_node *n) : node(n), _next(n->next)
251   {
252      /* empty */
253   }
254
255   void next()
256   {
257      node = _next;
258      _next = node->next;
259   }
260
261   void remove()
262   {
263      node->remove();
264   }
265
266   exec_node *get()
267   {
268      return node;
269   }
270
271   bool has_next() const
272   {
273      return _next != NULL;
274   }
275
276private:
277   exec_node *node;
278   exec_node *_next;
279};
280
281#define foreach_iter(iter_type, iter, container) \
282   for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
283#endif
284
285
286struct exec_list {
287   struct exec_node *head;
288   struct exec_node *tail;
289   struct exec_node *tail_pred;
290
291#ifdef __cplusplus
292   /* Callers of this hieralloc-based new need not call delete. It's
293    * easier to just hieralloc_free 'ctx' (or any of its ancestors). */
294   static void* operator new(size_t size, void *ctx)
295   {
296      void *node;
297
298      node = hieralloc_size(ctx, size);
299      assert(node != NULL);
300
301      return node;
302   }
303
304   /* If the user *does* call delete, that's OK, we will just
305    * hieralloc_free in that case. */
306   static void operator delete(void *node)
307   {
308      hieralloc_free(node);
309   }
310
311   exec_list()
312   {
313      make_empty();
314   }
315
316   void make_empty()
317   {
318      head = (exec_node *) & tail;
319      tail = NULL;
320      tail_pred = (exec_node *) & head;
321   }
322
323   bool is_empty() const
324   {
325      /* There are three ways to test whether a list is empty or not.
326       *
327       * - Check to see if the \c head points to the \c tail.
328       * - Check to see if the \c tail_pred points to the \c head.
329       * - Check to see if the \c head is the sentinel node by test whether its
330       *   \c next pointer is \c NULL.
331       *
332       * The first two methods tend to generate better code on modern systems
333       * because they save a pointer dereference.
334       */
335      return head == (exec_node *) &tail;
336   }
337
338   const exec_node *get_head() const
339   {
340      return !is_empty() ? head : NULL;
341   }
342
343   exec_node *get_head()
344   {
345      return !is_empty() ? head : NULL;
346   }
347
348   const exec_node *get_tail() const
349   {
350      return !is_empty() ? tail_pred : NULL;
351   }
352
353   exec_node *get_tail()
354   {
355      return !is_empty() ? tail_pred : NULL;
356   }
357
358   void push_head(exec_node *n)
359   {
360      n->next = head;
361      n->prev = (exec_node *) &head;
362
363      n->next->prev = n;
364      head = n;
365   }
366
367   void push_tail(exec_node *n)
368   {
369      n->next = (exec_node *) &tail;
370      n->prev = tail_pred;
371
372      n->prev->next = n;
373      tail_pred = n;
374   }
375
376   void push_degenerate_list_at_head(exec_node *n)
377   {
378      assert(n->prev->next == n);
379
380      n->prev->next = head;
381      head->prev = n->prev;
382      n->prev = (exec_node *) &head;
383      head = n;
384   }
385
386   /**
387    * Remove the first node from a list and return it
388    *
389    * \return
390    * The first node in the list or \c NULL if the list is empty.
391    *
392    * \sa exec_list::get_head
393    */
394   exec_node *pop_head()
395   {
396      exec_node *const n = this->get_head();
397      if (n != NULL)
398	 n->remove();
399
400      return n;
401   }
402
403   /**
404    * Move all of the nodes from this list to the target list
405    */
406   void move_nodes_to(exec_list *target)
407   {
408      if (is_empty()) {
409	 target->make_empty();
410      } else {
411	 target->head = head;
412	 target->tail = NULL;
413	 target->tail_pred = tail_pred;
414
415	 target->head->prev = (exec_node *) &target->head;
416	 target->tail_pred->next = (exec_node *) &target->tail;
417
418	 make_empty();
419      }
420   }
421
422   /**
423    * Append all nodes from the source list to the target list
424    */
425   void
426   append_list(exec_list *source)
427   {
428      if (source->is_empty())
429	 return;
430
431      /* Link the first node of the source with the last node of the target list.
432       */
433      this->tail_pred->next = source->head;
434      source->head->prev = this->tail_pred;
435
436      /* Make the tail of the source list be the tail of the target list.
437       */
438      this->tail_pred = source->tail_pred;
439      this->tail_pred->next = (exec_node *) &this->tail;
440
441      /* Make the source list empty for good measure.
442       */
443      source->make_empty();
444   }
445
446   exec_list_iterator iterator()
447   {
448      return exec_list_iterator(head);
449   }
450
451   exec_list_iterator iterator() const
452   {
453      return exec_list_iterator((exec_node *) head);
454   }
455#endif
456};
457
458
459#ifdef __cplusplus
460inline void exec_node::insert_before(exec_list *before)
461{
462   if (before->is_empty())
463      return;
464
465   before->tail_pred->next = this;
466   before->head->prev = this->prev;
467
468   this->prev->next = before->head;
469   this->prev = before->tail_pred;
470
471   before->make_empty();
472}
473#endif
474
475/**
476 * This version is safe even if the current node is removed.
477 */
478#define foreach_list_safe(__node, __list)			     \
479   for (exec_node * __node = (__list)->head, * __next = __node->next \
480	; __next != NULL					     \
481	; __node = __next, __next = __next->next)
482
483#define foreach_list(__node, __list)			\
484   for (exec_node * __node = (__list)->head		\
485	; (__node)->next != NULL 			\
486	; (__node) = (__node)->next)
487
488#define foreach_list_const(__node, __list)		\
489   for (const exec_node * __node = (__list)->head	\
490	; (__node)->next != NULL 			\
491	; (__node) = (__node)->next)
492
493#define foreach_list_typed(__type, __node, __field, __list)		\
494   for (__type * __node =						\
495	   exec_node_data(__type, (__list)->head, __field);		\
496	(__node)->__field.next != NULL; 				\
497	(__node) = exec_node_data(__type, (__node)->__field.next, __field))
498
499#define foreach_list_typed_const(__type, __node, __field, __list)	\
500   for (const __type * __node =						\
501	   exec_node_data(__type, (__list)->head, __field);		\
502	(__node)->__field.next != NULL; 				\
503	(__node) = exec_node_data(__type, (__node)->__field.next, __field))
504
505#endif /* LIST_CONTAINER_H */
506