1// Copyright 2008 The RE2 Authors.  All Rights Reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// A DFA (deterministic finite automaton)-based regular expression search.
6//
7// The DFA search has two main parts: the construction of the automaton,
8// which is represented by a graph of State structures, and the execution
9// of the automaton over a given input string.
10//
11// The basic idea is that the State graph is constructed so that the
12// execution can simply start with a state s, and then for each byte c in
13// the input string, execute "s = s->next[c]", checking at each point whether
14// the current s represents a matching state.
15//
16// The simple explanation just given does convey the essence of this code,
17// but it omits the details of how the State graph gets constructed as well
18// as some performance-driven optimizations to the execution of the automaton.
19// All these details are explained in the comments for the code following
20// the definition of class DFA.
21//
22// See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
23
24#include "re2/prog.h"
25#include "re2/stringpiece.h"
26#include "util/atomicops.h"
27#include "util/flags.h"
28#include "util/sparse_set.h"
29
30DEFINE_bool(re2_dfa_bail_when_slow, true,
31            "Whether the RE2 DFA should bail out early "
32            "if the NFA would be faster (for testing).");
33
34namespace re2 {
35
36#if !defined(__linux__)  /* only Linux seems to have memrchr */
37static void* memrchr(const void* s, int c, size_t n) {
38  const unsigned char* p = (const unsigned char*)s;
39  for (p += n; n > 0; n--)
40    if (*--p == c)
41      return (void*)p;
42
43  return NULL;
44}
45#endif
46
47// Changing this to true compiles in prints that trace execution of the DFA.
48// Generates a lot of output -- only useful for debugging.
49static const bool DebugDFA = false;
50
51// A DFA implementation of a regular expression program.
52// Since this is entirely a forward declaration mandated by C++,
53// some of the comments here are better understood after reading
54// the comments in the sections that follow the DFA definition.
55class DFA {
56 public:
57  DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem);
58  ~DFA();
59  bool ok() const { return !init_failed_; }
60  Prog::MatchKind kind() { return kind_; }
61
62  // Searches for the regular expression in text, which is considered
63  // as a subsection of context for the purposes of interpreting flags
64  // like ^ and $ and \A and \z.
65  // Returns whether a match was found.
66  // If a match is found, sets *ep to the end point of the best match in text.
67  // If "anchored", the match must begin at the start of text.
68  // If "want_earliest_match", the match that ends first is used, not
69  //   necessarily the best one.
70  // If "run_forward" is true, the DFA runs from text.begin() to text.end().
71  //   If it is false, the DFA runs from text.end() to text.begin(),
72  //   returning the leftmost end of the match instead of the rightmost one.
73  // If the DFA cannot complete the search (for example, if it is out of
74  //   memory), it sets *failed and returns false.
75  bool Search(const StringPiece& text, const StringPiece& context,
76              bool anchored, bool want_earliest_match, bool run_forward,
77              bool* failed, const char** ep, vector<int>* matches);
78
79  // Builds out all states for the entire DFA.  FOR TESTING ONLY
80  // Returns number of states.
81  int BuildAllStates();
82
83  // Computes min and max for matching strings.  Won't return strings
84  // bigger than maxlen.
85  bool PossibleMatchRange(string* min, string* max, int maxlen);
86
87  // These data structures are logically private, but C++ makes it too
88  // difficult to mark them as such.
89  class Workq;
90  class RWLocker;
91  class StateSaver;
92
93  // A single DFA state.  The DFA is represented as a graph of these
94  // States, linked by the next_ pointers.  If in state s and reading
95  // byte c, the next state should be s->next_[c].
96  struct State {
97    inline bool IsMatch() const { return flag_ & kFlagMatch; }
98    void SaveMatch(vector<int>* v);
99
100    int* inst_;         // Instruction pointers in the state.
101    int ninst_;         // # of inst_ pointers.
102    uint flag_;         // Empty string bitfield flags in effect on the way
103                        // into this state, along with kFlagMatch if this
104                        // is a matching state.
105    State** next_;      // Outgoing arrows from State,
106                        // one per input byte class
107  };
108
109  enum {
110    kByteEndText = 256,         // imaginary byte at end of text
111
112    kFlagEmptyMask = 0xFFF,     // State.flag_: bits holding kEmptyXXX flags
113    kFlagMatch = 0x1000,        // State.flag_: this is a matching state
114    kFlagLastWord = 0x2000,     // State.flag_: last byte was a word char
115    kFlagNeedShift = 16,        // needed kEmpty bits are or'ed in shifted left
116  };
117
118  // STL function structures for use with unordered_set.
119  struct StateEqual {
120    bool operator()(const State* a, const State* b) const {
121      if (a == b)
122        return true;
123      if (a == NULL || b == NULL)
124        return false;
125      if (a->ninst_ != b->ninst_)
126        return false;
127      if (a->flag_ != b->flag_)
128        return false;
129      for (int i = 0; i < a->ninst_; i++)
130        if (a->inst_[i] != b->inst_[i])
131          return false;
132      return true;  // they're equal
133    }
134  };
135  struct StateHash {
136    size_t operator()(const State* a) const {
137      if (a == NULL)
138        return 0;
139      const char* s = reinterpret_cast<const char*>(a->inst_);
140      int len = a->ninst_ * sizeof a->inst_[0];
141      if (sizeof(size_t) == sizeof(uint32))
142        return Hash32StringWithSeed(s, len, a->flag_);
143      else
144        return Hash64StringWithSeed(s, len, a->flag_);
145    }
146  };
147
148  typedef unordered_set<State*, StateHash, StateEqual> StateSet;
149
150
151 private:
152  // Special "firstbyte" values for a state.  (Values >= 0 denote actual bytes.)
153  enum {
154    kFbUnknown = -1,   // No analysis has been performed.
155    kFbMany = -2,      // Many bytes will lead out of this state.
156    kFbNone = -3,      // No bytes lead out of this state.
157  };
158
159  enum {
160    // Indices into start_ for unanchored searches.
161    // Add kStartAnchored for anchored searches.
162    kStartBeginText = 0,          // text at beginning of context
163    kStartBeginLine = 2,          // text at beginning of line
164    kStartAfterWordChar = 4,      // text follows a word character
165    kStartAfterNonWordChar = 6,   // text follows non-word character
166    kMaxStart = 8,
167
168    kStartAnchored = 1,
169  };
170
171  // Resets the DFA State cache, flushing all saved State* information.
172  // Releases and reacquires cache_mutex_ via cache_lock, so any
173  // State* existing before the call are not valid after the call.
174  // Use a StateSaver to preserve important states across the call.
175  // cache_mutex_.r <= L < mutex_
176  // After: cache_mutex_.w <= L < mutex_
177  void ResetCache(RWLocker* cache_lock);
178
179  // Looks up and returns the State corresponding to a Workq.
180  // L >= mutex_
181  State* WorkqToCachedState(Workq* q, uint flag);
182
183  // Looks up and returns a State matching the inst, ninst, and flag.
184  // L >= mutex_
185  State* CachedState(int* inst, int ninst, uint flag);
186
187  // Clear the cache entirely.
188  // Must hold cache_mutex_.w or be in destructor.
189  void ClearCache();
190
191  // Converts a State into a Workq: the opposite of WorkqToCachedState.
192  // L >= mutex_
193  static void StateToWorkq(State* s, Workq* q);
194
195  // Runs a State on a given byte, returning the next state.
196  State* RunStateOnByteUnlocked(State*, int);  // cache_mutex_.r <= L < mutex_
197  State* RunStateOnByte(State*, int);          // L >= mutex_
198
199  // Runs a Workq on a given byte followed by a set of empty-string flags,
200  // producing a new Workq in nq.  If a match instruction is encountered,
201  // sets *ismatch to true.
202  // L >= mutex_
203  void RunWorkqOnByte(Workq* q, Workq* nq,
204                             int c, uint flag, bool* ismatch,
205                             Prog::MatchKind kind,
206                             int new_byte_loop);
207
208  // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
209  // L >= mutex_
210  void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag);
211
212  // Adds the instruction id to the Workq, following empty arrows
213  // according to flag.
214  // L >= mutex_
215  void AddToQueue(Workq* q, int id, uint flag);
216
217  // For debugging, returns a text representation of State.
218  static string DumpState(State* state);
219
220  // For debugging, returns a text representation of a Workq.
221  static string DumpWorkq(Workq* q);
222
223  // Search parameters
224  struct SearchParams {
225    SearchParams(const StringPiece& text, const StringPiece& context,
226                 RWLocker* cache_lock)
227      : text(text), context(context),
228        anchored(false),
229        want_earliest_match(false),
230        run_forward(false),
231        start(NULL),
232        firstbyte(kFbUnknown),
233        cache_lock(cache_lock),
234        failed(false),
235        ep(NULL),
236        matches(NULL) { }
237
238    StringPiece text;
239    StringPiece context;
240    bool anchored;
241    bool want_earliest_match;
242    bool run_forward;
243    State* start;
244    int firstbyte;
245    RWLocker *cache_lock;
246    bool failed;     // "out" parameter: whether search gave up
247    const char* ep;  // "out" parameter: end pointer for match
248    vector<int>* matches;
249
250   private:
251    DISALLOW_EVIL_CONSTRUCTORS(SearchParams);
252  };
253
254  // Before each search, the parameters to Search are analyzed by
255  // AnalyzeSearch to determine the state in which to start and the
256  // "firstbyte" for that state, if any.
257  struct StartInfo {
258    StartInfo() : start(NULL), firstbyte(kFbUnknown) { }
259    State* start;
260    volatile int firstbyte;
261  };
262
263  // Fills in params->start and params->firstbyte using
264  // the other search parameters.  Returns true on success,
265  // false on failure.
266  // cache_mutex_.r <= L < mutex_
267  bool AnalyzeSearch(SearchParams* params);
268  bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags);
269
270  // The generic search loop, inlined to create specialized versions.
271  // cache_mutex_.r <= L < mutex_
272  // Might unlock and relock cache_mutex_ via params->cache_lock.
273  inline bool InlinedSearchLoop(SearchParams* params,
274                                bool have_firstbyte,
275                                bool want_earliest_match,
276                                bool run_forward);
277
278  // The specialized versions of InlinedSearchLoop.  The three letters
279  // at the ends of the name denote the true/false values used as the
280  // last three parameters of InlinedSearchLoop.
281  // cache_mutex_.r <= L < mutex_
282  // Might unlock and relock cache_mutex_ via params->cache_lock.
283  bool SearchFFF(SearchParams* params);
284  bool SearchFFT(SearchParams* params);
285  bool SearchFTF(SearchParams* params);
286  bool SearchFTT(SearchParams* params);
287  bool SearchTFF(SearchParams* params);
288  bool SearchTFT(SearchParams* params);
289  bool SearchTTF(SearchParams* params);
290  bool SearchTTT(SearchParams* params);
291
292  // The main search loop: calls an appropriate specialized version of
293  // InlinedSearchLoop.
294  // cache_mutex_.r <= L < mutex_
295  // Might unlock and relock cache_mutex_ via params->cache_lock.
296  bool FastSearchLoop(SearchParams* params);
297
298  // For debugging, a slow search loop that calls InlinedSearchLoop
299  // directly -- because the booleans passed are not constants, the
300  // loop is not specialized like the SearchFFF etc. versions, so it
301  // runs much more slowly.  Useful only for debugging.
302  // cache_mutex_.r <= L < mutex_
303  // Might unlock and relock cache_mutex_ via params->cache_lock.
304  bool SlowSearchLoop(SearchParams* params);
305
306  // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
307  int ByteMap(int c) {
308    if (c == kByteEndText)
309      return prog_->bytemap_range();
310    return prog_->bytemap()[c];
311  }
312
313  // Constant after initialization.
314  Prog* prog_;              // The regular expression program to run.
315  Prog::MatchKind kind_;    // The kind of DFA.
316  int start_unanchored_;  // start of unanchored program
317  bool init_failed_;        // initialization failed (out of memory)
318
319  Mutex mutex_;  // mutex_ >= cache_mutex_.r
320
321  // Scratch areas, protected by mutex_.
322  Workq* q0_;             // Two pre-allocated work queues.
323  Workq* q1_;
324  int* astack_;         // Pre-allocated stack for AddToQueue
325  int nastack_;
326
327  // State* cache.  Many threads use and add to the cache simultaneously,
328  // holding cache_mutex_ for reading and mutex_ (above) when adding.
329  // If the cache fills and needs to be discarded, the discarding is done
330  // while holding cache_mutex_ for writing, to avoid interrupting other
331  // readers.  Any State* pointers are only valid while cache_mutex_
332  // is held.
333  Mutex cache_mutex_;
334  int64 mem_budget_;       // Total memory budget for all States.
335  int64 state_budget_;     // Amount of memory remaining for new States.
336  StateSet state_cache_;   // All States computed so far.
337  StartInfo start_[kMaxStart];
338  bool cache_warned_;      // have printed to LOG(INFO) about the cache
339};
340
341// Shorthand for casting to uint8*.
342static inline const uint8* BytePtr(const void* v) {
343  return reinterpret_cast<const uint8*>(v);
344}
345
346// Work queues
347
348// Marks separate thread groups of different priority
349// in the work queue when in leftmost-longest matching mode.
350#define Mark (-1)
351
352// Internally, the DFA uses a sparse array of
353// program instruction pointers as a work queue.
354// In leftmost longest mode, marks separate sections
355// of workq that started executing at different
356// locations in the string (earlier locations first).
357class DFA::Workq : public SparseSet {
358 public:
359  // Constructor: n is number of normal slots, maxmark number of mark slots.
360  Workq(int n, int maxmark) :
361    SparseSet(n+maxmark),
362    n_(n),
363    maxmark_(maxmark),
364    nextmark_(n),
365    last_was_mark_(true) {
366  }
367
368  bool is_mark(int i) { return i >= n_; }
369
370  int maxmark() { return maxmark_; }
371
372  void clear() {
373    SparseSet::clear();
374    nextmark_ = n_;
375  }
376
377  void mark() {
378    if (last_was_mark_)
379      return;
380    last_was_mark_ = false;
381    SparseSet::insert_new(nextmark_++);
382  }
383
384  int size() {
385    return n_ + maxmark_;
386  }
387
388  void insert(int id) {
389    if (contains(id))
390      return;
391    insert_new(id);
392  }
393
394  void insert_new(int id) {
395    last_was_mark_ = false;
396    SparseSet::insert_new(id);
397  }
398
399 private:
400  int n_;                // size excluding marks
401  int maxmark_;          // maximum number of marks
402  int nextmark_;         // id of next mark
403  bool last_was_mark_;   // last inserted was mark
404  DISALLOW_EVIL_CONSTRUCTORS(Workq);
405};
406
407DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem)
408  : prog_(prog),
409    kind_(kind),
410    init_failed_(false),
411    q0_(NULL),
412    q1_(NULL),
413    astack_(NULL),
414    mem_budget_(max_mem),
415    cache_warned_(false) {
416  if (DebugDFA)
417    fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str());
418  int nmark = 0;
419  start_unanchored_ = 0;
420  if (kind_ == Prog::kLongestMatch) {
421    nmark = prog->size();
422    start_unanchored_ = prog->start_unanchored();
423  }
424  nastack_ = 2 * prog->size() + nmark;
425
426  // Account for space needed for DFA, q0, q1, astack.
427  mem_budget_ -= sizeof(DFA);
428  mem_budget_ -= (prog_->size() + nmark) *
429                 (sizeof(int)+sizeof(int)) * 2;  // q0, q1
430  mem_budget_ -= nastack_ * sizeof(int);  // astack
431  if (mem_budget_ < 0) {
432    LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
433                              prog_->size(), max_mem);
434    init_failed_ = true;
435    return;
436  }
437
438  state_budget_ = mem_budget_;
439
440  // Make sure there is a reasonable amount of working room left.
441  // At minimum, the search requires room for two states in order
442  // to limp along, restarting frequently.  We'll get better performance
443  // if there is room for a larger number of states, say 20.
444  int one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) +
445                  (prog_->bytemap_range()+1)*sizeof(State*);
446  if (state_budget_ < 20*one_state) {
447    LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
448                              prog_->size(), max_mem);
449    init_failed_ = true;
450    return;
451  }
452
453  q0_ = new Workq(prog->size(), nmark);
454  q1_ = new Workq(prog->size(), nmark);
455  astack_ = new int[nastack_];
456}
457
458DFA::~DFA() {
459  delete q0_;
460  delete q1_;
461  delete[] astack_;
462  ClearCache();
463}
464
465// In the DFA state graph, s->next[c] == NULL means that the
466// state has not yet been computed and needs to be.  We need
467// a different special value to signal that s->next[c] is a
468// state that can never lead to a match (and thus the search
469// can be called off).  Hence DeadState.
470#define DeadState reinterpret_cast<State*>(1)
471
472// Signals that the rest of the string matches no matter what it is.
473#define FullMatchState reinterpret_cast<State*>(2)
474
475#define SpecialStateMax FullMatchState
476
477// Debugging printouts
478
479// For debugging, returns a string representation of the work queue.
480string DFA::DumpWorkq(Workq* q) {
481  string s;
482  const char* sep = "";
483  for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) {
484    if (q->is_mark(*it)) {
485      StringAppendF(&s, "|");
486      sep = "";
487    } else {
488      StringAppendF(&s, "%s%d", sep, *it);
489      sep = ",";
490    }
491  }
492  return s;
493}
494
495// For debugging, returns a string representation of the state.
496string DFA::DumpState(State* state) {
497  if (state == NULL)
498    return "_";
499  if (state == DeadState)
500    return "X";
501  if (state == FullMatchState)
502    return "*";
503  string s;
504  const char* sep = "";
505  StringAppendF(&s, "(%p)", state);
506  for (int i = 0; i < state->ninst_; i++) {
507    if (state->inst_[i] == Mark) {
508      StringAppendF(&s, "|");
509      sep = "";
510    } else {
511      StringAppendF(&s, "%s%d", sep, state->inst_[i]);
512      sep = ",";
513    }
514  }
515  StringAppendF(&s, " flag=%#x", state->flag_);
516  return s;
517}
518
519//////////////////////////////////////////////////////////////////////
520//
521// DFA state graph construction.
522//
523// The DFA state graph is a heavily-linked collection of State* structures.
524// The state_cache_ is a set of all the State structures ever allocated,
525// so that if the same state is reached by two different paths,
526// the same State structure can be used.  This reduces allocation
527// requirements and also avoids duplication of effort across the two
528// identical states.
529//
530// A State is defined by an ordered list of instruction ids and a flag word.
531//
532// The choice of an ordered list of instructions differs from a typical
533// textbook DFA implementation, which would use an unordered set.
534// Textbook descriptions, however, only care about whether
535// the DFA matches, not where it matches in the text.  To decide where the
536// DFA matches, we need to mimic the behavior of the dominant backtracking
537// implementations like PCRE, which try one possible regular expression
538// execution, then another, then another, stopping when one of them succeeds.
539// The DFA execution tries these many executions in parallel, representing
540// each by an instruction id.  These pointers are ordered in the State.inst_
541// list in the same order that the executions would happen in a backtracking
542// search: if a match is found during execution of inst_[2], inst_[i] for i>=3
543// can be discarded.
544//
545// Textbooks also typically do not consider context-aware empty string operators
546// like ^ or $.  These are handled by the flag word, which specifies the set
547// of empty-string operators that should be matched when executing at the
548// current text position.  These flag bits are defined in prog.h.
549// The flag word also contains two DFA-specific bits: kFlagMatch if the state
550// is a matching state (one that reached a kInstMatch in the program)
551// and kFlagLastWord if the last processed byte was a word character, for the
552// implementation of \B and \b.
553//
554// The flag word also contains, shifted up 16 bits, the bits looked for by
555// any kInstEmptyWidth instructions in the state.  These provide a useful
556// summary indicating when new flags might be useful.
557//
558// The permanent representation of a State's instruction ids is just an array,
559// but while a state is being analyzed, these instruction ids are represented
560// as a Workq, which is an array that allows iteration in insertion order.
561
562// NOTE(rsc): The choice of State construction determines whether the DFA
563// mimics backtracking implementations (so-called leftmost first matching) or
564// traditional DFA implementations (so-called leftmost longest matching as
565// prescribed by POSIX).  This implementation chooses to mimic the
566// backtracking implementations, because we want to replace PCRE.  To get
567// POSIX behavior, the states would need to be considered not as a simple
568// ordered list of instruction ids, but as a list of unordered sets of instruction
569// ids.  A match by a state in one set would inhibit the running of sets
570// farther down the list but not other instruction ids in the same set.  Each
571// set would correspond to matches beginning at a given point in the string.
572// This is implemented by separating different sets with Mark pointers.
573
574// Looks in the State cache for a State matching q, flag.
575// If one is found, returns it.  If one is not found, allocates one,
576// inserts it in the cache, and returns it.
577DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) {
578  if (DEBUG_MODE)
579    mutex_.AssertHeld();
580
581  // Construct array of instruction ids for the new state.
582  // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
583  // those are the only operators with any effect in
584  // RunWorkqOnEmptyString or RunWorkqOnByte.
585  int* inst = new int[q->size()];
586  int n = 0;
587  uint needflags = 0;     // flags needed by kInstEmptyWidth instructions
588  bool sawmatch = false;  // whether queue contains guaranteed kInstMatch
589  bool sawmark = false;  // whether queue contains a Mark
590  if (DebugDFA)
591    fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
592  for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
593    int id = *it;
594    if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
595      break;
596    if (q->is_mark(id)) {
597      if (n > 0 && inst[n-1] != Mark) {
598        sawmark = true;
599        inst[n++] = Mark;
600      }
601      continue;
602    }
603    Prog::Inst* ip = prog_->inst(id);
604    switch (ip->opcode()) {
605      case kInstAltMatch:
606        // This state will continue to a match no matter what
607        // the rest of the input is.  If it is the highest priority match
608        // being considered, return the special FullMatchState
609        // to indicate that it's all matches from here out.
610        if (kind_ != Prog::kManyMatch &&
611            (kind_ != Prog::kFirstMatch ||
612             (it == q->begin() && ip->greedy(prog_))) &&
613            (kind_ != Prog::kLongestMatch || !sawmark) &&
614            (flag & kFlagMatch)) {
615          delete[] inst;
616          if (DebugDFA)
617            fprintf(stderr, " -> FullMatchState\n");
618          return FullMatchState;
619        }
620        // Fall through.
621      case kInstByteRange:    // These are useful.
622      case kInstEmptyWidth:
623      case kInstMatch:
624      case kInstAlt:          // Not useful, but necessary [*]
625        inst[n++] = *it;
626        if (ip->opcode() == kInstEmptyWidth)
627          needflags |= ip->empty();
628        if (ip->opcode() == kInstMatch && !prog_->anchor_end())
629          sawmatch = true;
630        break;
631
632      default:                // The rest are not.
633        break;
634    }
635
636    // [*] kInstAlt would seem useless to record in a state, since
637    // we've already followed both its arrows and saved all the
638    // interesting states we can reach from there.  The problem
639    // is that one of the empty-width instructions might lead
640    // back to the same kInstAlt (if an empty-width operator is starred),
641    // producing a different evaluation order depending on whether
642    // we keep the kInstAlt to begin with.  Sigh.
643    // A specific case that this affects is /(^|a)+/ matching "a".
644    // If we don't save the kInstAlt, we will match the whole "a" (0,1)
645    // but in fact the correct leftmost-first match is the leading "" (0,0).
646  }
647  DCHECK_LE(n, q->size());
648  if (n > 0 && inst[n-1] == Mark)
649    n--;
650
651  // If there are no empty-width instructions waiting to execute,
652  // then the extra flag bits will not be used, so there is no
653  // point in saving them.  (Discarding them reduces the number
654  // of distinct states.)
655  if (needflags == 0)
656    flag &= kFlagMatch;
657
658  // NOTE(rsc): The code above cannot do flag &= needflags,
659  // because if the right flags were present to pass the current
660  // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
661  // might be reached that in turn need different flags.
662  // The only sure thing is that if there are no kInstEmptyWidth
663  // instructions at all, no flags will be needed.
664  // We could do the extra work to figure out the full set of
665  // possibly needed flags by exploring past the kInstEmptyWidth
666  // instructions, but the check above -- are any flags needed
667  // at all? -- handles the most common case.  More fine-grained
668  // analysis can only be justified by measurements showing that
669  // too many redundant states are being allocated.
670
671  // If there are no Insts in the list, it's a dead state,
672  // which is useful to signal with a special pointer so that
673  // the execution loop can stop early.  This is only okay
674  // if the state is *not* a matching state.
675  if (n == 0 && flag == 0) {
676    delete[] inst;
677    if (DebugDFA)
678      fprintf(stderr, " -> DeadState\n");
679    return DeadState;
680  }
681
682  // If we're in longest match mode, the state is a sequence of
683  // unordered state sets separated by Marks.  Sort each set
684  // to canonicalize, to reduce the number of distinct sets stored.
685  if (kind_ == Prog::kLongestMatch) {
686    int* ip = inst;
687    int* ep = ip + n;
688    while (ip < ep) {
689      int* markp = ip;
690      while (markp < ep && *markp != Mark)
691        markp++;
692      sort(ip, markp);
693      if (markp < ep)
694        markp++;
695      ip = markp;
696    }
697  }
698
699  // Save the needed empty-width flags in the top bits for use later.
700  flag |= needflags << kFlagNeedShift;
701
702  State* state = CachedState(inst, n, flag);
703  delete[] inst;
704  return state;
705}
706
707// Looks in the State cache for a State matching inst, ninst, flag.
708// If one is found, returns it.  If one is not found, allocates one,
709// inserts it in the cache, and returns it.
710DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) {
711  if (DEBUG_MODE)
712    mutex_.AssertHeld();
713
714  // Look in the cache for a pre-existing state.
715  State state = { inst, ninst, flag, NULL };
716  StateSet::iterator it = state_cache_.find(&state);
717  if (it != state_cache_.end()) {
718    if (DebugDFA)
719      fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
720    return *it;
721  }
722
723  // Must have enough memory for new state.
724  // In addition to what we're going to allocate,
725  // the state cache hash table seems to incur about 32 bytes per
726  // State*, empirically.
727  const int kStateCacheOverhead = 32;
728  int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
729  int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int);
730  if (mem_budget_ < mem + kStateCacheOverhead) {
731    mem_budget_ = -1;
732    return NULL;
733  }
734  mem_budget_ -= mem + kStateCacheOverhead;
735
736  // Allocate new state, along with room for next and inst.
737  char* space = new char[mem];
738  State* s = reinterpret_cast<State*>(space);
739  s->next_ = reinterpret_cast<State**>(s + 1);
740  s->inst_ = reinterpret_cast<int*>(s->next_ + nnext);
741  memset(s->next_, 0, nnext*sizeof s->next_[0]);
742  memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
743  s->ninst_ = ninst;
744  s->flag_ = flag;
745  if (DebugDFA)
746    fprintf(stderr, " -> %s\n", DumpState(s).c_str());
747
748  // Put state in cache and return it.
749  state_cache_.insert(s);
750  return s;
751}
752
753// Clear the cache.  Must hold cache_mutex_.w or be in destructor.
754void DFA::ClearCache() {
755  // In case state_cache_ doesn't support deleting entries
756  // during iteration, copy into a vector and then delete.
757  vector<State*> v;
758  v.reserve(state_cache_.size());
759  for (StateSet::iterator it = state_cache_.begin();
760       it != state_cache_.end(); ++it)
761    v.push_back(*it);
762  state_cache_.clear();
763  for (int i = 0; i < v.size(); i++)
764    delete[] reinterpret_cast<const char*>(v[i]);
765}
766
767// Copies insts in state s to the work queue q.
768void DFA::StateToWorkq(State* s, Workq* q) {
769  q->clear();
770  for (int i = 0; i < s->ninst_; i++) {
771    if (s->inst_[i] == Mark)
772      q->mark();
773    else
774      q->insert_new(s->inst_[i]);
775  }
776}
777
778// Adds ip to the work queue, following empty arrows according to flag
779// and expanding kInstAlt instructions (two-target gotos).
780void DFA::AddToQueue(Workq* q, int id, uint flag) {
781
782  // Use astack_ to hold our stack of states yet to process.
783  // It is sized to have room for nastack_ == 2*prog->size() + nmark
784  // instructions, which is enough: each instruction can be
785  // processed by the switch below only once, and the processing
786  // pushes at most two instructions plus maybe a mark.
787  // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.)
788  int* stk = astack_;
789  int nstk = 0;
790
791  stk[nstk++] = id;
792  while (nstk > 0) {
793    DCHECK_LE(nstk, nastack_);
794    id = stk[--nstk];
795
796    if (id == Mark) {
797      q->mark();
798      continue;
799    }
800
801    if (id == 0)
802      continue;
803
804    // If ip is already on the queue, nothing to do.
805    // Otherwise add it.  We don't actually keep all the ones
806    // that get added -- for example, kInstAlt is ignored
807    // when on a work queue -- but adding all ip's here
808    // increases the likelihood of q->contains(id),
809    // reducing the amount of duplicated work.
810    if (q->contains(id))
811      continue;
812    q->insert_new(id);
813
814    // Process instruction.
815    Prog::Inst* ip = prog_->inst(id);
816    switch (ip->opcode()) {
817      case kInstFail:       // can't happen: discarded above
818        break;
819
820      case kInstByteRange:  // just save these on the queue
821      case kInstMatch:
822        break;
823
824      case kInstCapture:    // DFA treats captures as no-ops.
825      case kInstNop:
826        stk[nstk++] = ip->out();
827        break;
828
829      case kInstAlt:        // two choices: expand both, in order
830      case kInstAltMatch:
831        // Want to visit out then out1, so push on stack in reverse order.
832        // This instruction is the [00-FF]* loop at the beginning of
833        // a leftmost-longest unanchored search, separate out from out1
834        // with a Mark, so that out1's threads (which will start farther
835        // to the right in the string being searched) are lower priority
836        // than the current ones.
837        stk[nstk++] = ip->out1();
838        if (q->maxmark() > 0 &&
839            id == prog_->start_unanchored() && id != prog_->start())
840          stk[nstk++] = Mark;
841        stk[nstk++] = ip->out();
842        break;
843
844      case kInstEmptyWidth:
845        if ((ip->empty() & flag) == ip->empty())
846          stk[nstk++] = ip->out();
847        break;
848    }
849  }
850}
851
852// Running of work queues.  In the work queue, order matters:
853// the queue is sorted in priority order.  If instruction i comes before j,
854// then the instructions that i produces during the run must come before
855// the ones that j produces.  In order to keep this invariant, all the
856// work queue runners have to take an old queue to process and then
857// also a new queue to fill in.  It's not acceptable to add to the end of
858// an existing queue, because new instructions will not end up in the
859// correct position.
860
861// Runs the work queue, processing the empty strings indicated by flag.
862// For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
863// both ^ and $.  It is important that callers pass all flags at once:
864// processing both ^ and $ is not the same as first processing only ^
865// and then processing only $.  Doing the two-step sequence won't match
866// ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
867// exhibited by existing implementations).
868void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) {
869  newq->clear();
870  for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
871    if (oldq->is_mark(*i))
872      AddToQueue(newq, Mark, flag);
873    else
874      AddToQueue(newq, *i, flag);
875  }
876}
877
878// Runs the work queue, processing the single byte c followed by any empty
879// strings indicated by flag.  For example, c == 'a' and flag == kEmptyEndLine,
880// means to match c$.  Sets the bool *ismatch to true if the end of the
881// regular expression program has been reached (the regexp has matched).
882void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
883                         int c, uint flag, bool* ismatch,
884                         Prog::MatchKind kind,
885                         int new_byte_loop) {
886  if (DEBUG_MODE)
887    mutex_.AssertHeld();
888
889  newq->clear();
890  for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
891    if (oldq->is_mark(*i)) {
892      if (*ismatch)
893        return;
894      newq->mark();
895      continue;
896    }
897    int id = *i;
898    Prog::Inst* ip = prog_->inst(id);
899    switch (ip->opcode()) {
900      case kInstFail:        // never succeeds
901      case kInstCapture:     // already followed
902      case kInstNop:         // already followed
903      case kInstAlt:         // already followed
904      case kInstAltMatch:    // already followed
905      case kInstEmptyWidth:  // already followed
906        break;
907
908      case kInstByteRange:   // can follow if c is in range
909        if (ip->Matches(c))
910          AddToQueue(newq, ip->out(), flag);
911        break;
912
913      case kInstMatch:
914        if (prog_->anchor_end() && c != kByteEndText)
915          break;
916        *ismatch = true;
917        if (kind == Prog::kFirstMatch) {
918          // Can stop processing work queue since we found a match.
919          return;
920        }
921        break;
922    }
923  }
924
925  if (DebugDFA)
926    fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(),
927            c, flag, DumpWorkq(newq).c_str(), *ismatch);
928}
929
930// Processes input byte c in state, returning new state.
931// Caller does not hold mutex.
932DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
933  // Keep only one RunStateOnByte going
934  // even if the DFA is being run by multiple threads.
935  MutexLock l(&mutex_);
936  return RunStateOnByte(state, c);
937}
938
939// Processes input byte c in state, returning new state.
940DFA::State* DFA::RunStateOnByte(State* state, int c) {
941  if (DEBUG_MODE)
942    mutex_.AssertHeld();
943  if (state <= SpecialStateMax) {
944    if (state == FullMatchState) {
945      // It is convenient for routines like PossibleMatchRange
946      // if we implement RunStateOnByte for FullMatchState:
947      // once you get into this state you never get out,
948      // so it's pretty easy.
949      return FullMatchState;
950    }
951    if (state == DeadState) {
952      LOG(DFATAL) << "DeadState in RunStateOnByte";
953      return NULL;
954    }
955    if (state == NULL) {
956      LOG(DFATAL) << "NULL state in RunStateOnByte";
957      return NULL;
958    }
959    LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
960    return NULL;
961  }
962
963  // If someone else already computed this, return it.
964  MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
965  if (state->next_[ByteMap(c)])
966    return state->next_[ByteMap(c)];
967
968  // Convert state into Workq.
969  StateToWorkq(state, q0_);
970
971  // Flags marking the kinds of empty-width things (^ $ etc)
972  // around this byte.  Before the byte we have the flags recorded
973  // in the State structure itself.  After the byte we have
974  // nothing yet (but that will change: read on).
975  uint needflag = state->flag_ >> kFlagNeedShift;
976  uint beforeflag = state->flag_ & kFlagEmptyMask;
977  uint oldbeforeflag = beforeflag;
978  uint afterflag = 0;
979
980  if (c == '\n') {
981    // Insert implicit $ and ^ around \n
982    beforeflag |= kEmptyEndLine;
983    afterflag |= kEmptyBeginLine;
984  }
985
986  if (c == kByteEndText) {
987    // Insert implicit $ and \z before the fake "end text" byte.
988    beforeflag |= kEmptyEndLine | kEmptyEndText;
989  }
990
991  // The state flag kFlagLastWord says whether the last
992  // byte processed was a word character.  Use that info to
993  // insert empty-width (non-)word boundaries.
994  bool islastword = state->flag_ & kFlagLastWord;
995  bool isword = (c != kByteEndText && Prog::IsWordChar(c));
996  if (isword == islastword)
997    beforeflag |= kEmptyNonWordBoundary;
998  else
999    beforeflag |= kEmptyWordBoundary;
1000
1001  // Okay, finally ready to run.
1002  // Only useful to rerun on empty string if there are new, useful flags.
1003  if (beforeflag & ~oldbeforeflag & needflag) {
1004    RunWorkqOnEmptyString(q0_, q1_, beforeflag);
1005    swap(q0_, q1_);
1006  }
1007  bool ismatch = false;
1008  RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_);
1009  swap(q0_, q1_);
1010
1011  // Save afterflag along with ismatch and isword in new state.
1012  uint flag = afterflag;
1013  if (ismatch)
1014    flag |= kFlagMatch;
1015  if (isword)
1016    flag |= kFlagLastWord;
1017
1018  State* ns = WorkqToCachedState(q0_, flag);
1019
1020  // Write barrier before updating state->next_ so that the
1021  // main search loop can proceed without any locking, for speed.
1022  // (Otherwise it would need one mutex operation per input byte.)
1023  // The annotations below tell race detectors that:
1024  //   a) the access to next_ should be ignored,
1025  //   b) 'ns' is properly published.
1026  WriteMemoryBarrier();  // Flush ns before linking to it.
1027  ANNOTATE_PUBLISH_MEMORY_RANGE(ns, sizeof(*ns));
1028
1029  ANNOTATE_IGNORE_WRITES_BEGIN();
1030  state->next_[ByteMap(c)] = ns;
1031  ANNOTATE_IGNORE_WRITES_END();
1032  return ns;
1033}
1034
1035
1036//////////////////////////////////////////////////////////////////////
1037// DFA cache reset.
1038
1039// Reader-writer lock helper.
1040//
1041// The DFA uses a reader-writer mutex to protect the state graph itself.
1042// Traversing the state graph requires holding the mutex for reading,
1043// and discarding the state graph and starting over requires holding the
1044// lock for writing.  If a search needs to expand the graph but is out
1045// of memory, it will need to drop its read lock and then acquire the
1046// write lock.  Since it cannot then atomically downgrade from write lock
1047// to read lock, it runs the rest of the search holding the write lock.
1048// (This probably helps avoid repeated contention, but really the decision
1049// is forced by the Mutex interface.)  It's a bit complicated to keep
1050// track of whether the lock is held for reading or writing and thread
1051// that through the search, so instead we encapsulate it in the RWLocker
1052// and pass that around.
1053
1054class DFA::RWLocker {
1055 public:
1056  explicit RWLocker(Mutex* mu);
1057  ~RWLocker();
1058
1059  // If the lock is only held for reading right now,
1060  // drop the read lock and re-acquire for writing.
1061  // Subsequent calls to LockForWriting are no-ops.
1062  // Notice that the lock is *released* temporarily.
1063  void LockForWriting();
1064
1065  // Returns whether the lock is already held for writing.
1066  bool IsLockedForWriting() {
1067    return writing_;
1068  }
1069
1070 private:
1071  Mutex* mu_;
1072  bool writing_;
1073
1074  DISALLOW_EVIL_CONSTRUCTORS(RWLocker);
1075};
1076
1077DFA::RWLocker::RWLocker(Mutex* mu)
1078  : mu_(mu), writing_(false) {
1079
1080  mu_->ReaderLock();
1081}
1082
1083// This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations
1084// does not support lock upgrade.
1085void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
1086  if (!writing_) {
1087    mu_->ReaderUnlock();
1088    mu_->Lock();
1089    writing_ = true;
1090  }
1091}
1092
1093DFA::RWLocker::~RWLocker() {
1094  if (writing_)
1095    mu_->WriterUnlock();
1096  else
1097    mu_->ReaderUnlock();
1098}
1099
1100
1101// When the DFA's State cache fills, we discard all the states in the
1102// cache and start over.  Many threads can be using and adding to the
1103// cache at the same time, so we synchronize using the cache_mutex_
1104// to keep from stepping on other threads.  Specifically, all the
1105// threads using the current cache hold cache_mutex_ for reading.
1106// When a thread decides to flush the cache, it drops cache_mutex_
1107// and then re-acquires it for writing.  That ensures there are no
1108// other threads accessing the cache anymore.  The rest of the search
1109// runs holding cache_mutex_ for writing, avoiding any contention
1110// with or cache pollution caused by other threads.
1111
1112void DFA::ResetCache(RWLocker* cache_lock) {
1113  // Re-acquire the cache_mutex_ for writing (exclusive use).
1114  bool was_writing = cache_lock->IsLockedForWriting();
1115  cache_lock->LockForWriting();
1116
1117  // If we already held cache_mutex_ for writing, it means
1118  // this invocation of Search() has already reset the
1119  // cache once already.  That's a pretty clear indication
1120  // that the cache is too small.  Warn about that, once.
1121  // TODO(rsc): Only warn if state_cache_.size() < some threshold.
1122  if (was_writing && !cache_warned_) {
1123    LOG(INFO) << "DFA memory cache could be too small: "
1124              << "only room for " << state_cache_.size() << " states.";
1125    cache_warned_ = true;
1126  }
1127
1128  // Clear the cache, reset the memory budget.
1129  for (int i = 0; i < kMaxStart; i++) {
1130    start_[i].start = NULL;
1131    start_[i].firstbyte = kFbUnknown;
1132  }
1133  ClearCache();
1134  mem_budget_ = state_budget_;
1135}
1136
1137// Typically, a couple States do need to be preserved across a cache
1138// reset, like the State at the current point in the search.
1139// The StateSaver class helps keep States across cache resets.
1140// It makes a copy of the state's guts outside the cache (before the reset)
1141// and then can be asked, after the reset, to recreate the State
1142// in the new cache.  For example, in a DFA method ("this" is a DFA):
1143//
1144//   StateSaver saver(this, s);
1145//   ResetCache(cache_lock);
1146//   s = saver.Restore();
1147//
1148// The saver should always have room in the cache to re-create the state,
1149// because resetting the cache locks out all other threads, and the cache
1150// is known to have room for at least a couple states (otherwise the DFA
1151// constructor fails).
1152
1153class DFA::StateSaver {
1154 public:
1155  explicit StateSaver(DFA* dfa, State* state);
1156  ~StateSaver();
1157
1158  // Recreates and returns a state equivalent to the
1159  // original state passed to the constructor.
1160  // Returns NULL if the cache has filled, but
1161  // since the DFA guarantees to have room in the cache
1162  // for a couple states, should never return NULL
1163  // if used right after ResetCache.
1164  State* Restore();
1165
1166 private:
1167  DFA* dfa_;         // the DFA to use
1168  int* inst_;        // saved info from State
1169  int ninst_;
1170  uint flag_;
1171  bool is_special_;  // whether original state was special
1172  State* special_;   // if is_special_, the original state
1173
1174  DISALLOW_EVIL_CONSTRUCTORS(StateSaver);
1175};
1176
1177DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
1178  dfa_ = dfa;
1179  if (state <= SpecialStateMax) {
1180    inst_ = NULL;
1181    ninst_ = 0;
1182    flag_ = 0;
1183    is_special_ = true;
1184    special_ = state;
1185    return;
1186  }
1187  is_special_ = false;
1188  special_ = NULL;
1189  flag_ = state->flag_;
1190  ninst_ = state->ninst_;
1191  inst_ = new int[ninst_];
1192  memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
1193}
1194
1195DFA::StateSaver::~StateSaver() {
1196  if (!is_special_)
1197    delete[] inst_;
1198}
1199
1200DFA::State* DFA::StateSaver::Restore() {
1201  if (is_special_)
1202    return special_;
1203  MutexLock l(&dfa_->mutex_);
1204  State* s = dfa_->CachedState(inst_, ninst_, flag_);
1205  if (s == NULL)
1206    LOG(DFATAL) << "StateSaver failed to restore state.";
1207  return s;
1208}
1209
1210
1211//////////////////////////////////////////////////////////////////////
1212//
1213// DFA execution.
1214//
1215// The basic search loop is easy: start in a state s and then for each
1216// byte c in the input, s = s->next[c].
1217//
1218// This simple description omits a few efficiency-driven complications.
1219//
1220// First, the State graph is constructed incrementally: it is possible
1221// that s->next[c] is null, indicating that that state has not been
1222// fully explored.  In this case, RunStateOnByte must be invoked to
1223// determine the next state, which is cached in s->next[c] to save
1224// future effort.  An alternative reason for s->next[c] to be null is
1225// that the DFA has reached a so-called "dead state", in which any match
1226// is no longer possible.  In this case RunStateOnByte will return NULL
1227// and the processing of the string can stop early.
1228//
1229// Second, a 256-element pointer array for s->next_ makes each State
1230// quite large (2kB on 64-bit machines).  Instead, dfa->bytemap_[]
1231// maps from bytes to "byte classes" and then next_ only needs to have
1232// as many pointers as there are byte classes.  A byte class is simply a
1233// range of bytes that the regexp never distinguishes between.
1234// A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
1235// 'a', 'b' to 'c', and 'c' to 0xFF.  The bytemap slows us a little bit
1236// but in exchange we typically cut the size of a State (and thus our
1237// memory footprint) by about 5-10x.  The comments still refer to
1238// s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
1239//
1240// Third, it is common for a DFA for an unanchored match to begin in a
1241// state in which only one particular byte value can take the DFA to a
1242// different state.  That is, s->next[c] != s for only one c.  In this
1243// situation, the DFA can do better than executing the simple loop.
1244// Instead, it can call memchr to search very quickly for the byte c.
1245// Whether the start state has this property is determined during a
1246// pre-compilation pass, and if so, the byte b is passed to the search
1247// loop as the "firstbyte" argument, along with a boolean "have_firstbyte".
1248//
1249// Fourth, the desired behavior is to search for the leftmost-best match
1250// (approximately, the same one that Perl would find), which is not
1251// necessarily the match ending earliest in the string.  Each time a
1252// match is found, it must be noted, but the DFA must continue on in
1253// hope of finding a higher-priority match.  In some cases, the caller only
1254// cares whether there is any match at all, not which one is found.
1255// The "want_earliest_match" flag causes the search to stop at the first
1256// match found.
1257//
1258// Fifth, one algorithm that uses the DFA needs it to run over the
1259// input string backward, beginning at the end and ending at the beginning.
1260// Passing false for the "run_forward" flag causes the DFA to run backward.
1261//
1262// The checks for these last three cases, which in a naive implementation
1263// would be performed once per input byte, slow the general loop enough
1264// to merit specialized versions of the search loop for each of the
1265// eight possible settings of the three booleans.  Rather than write
1266// eight different functions, we write one general implementation and then
1267// inline it to create the specialized ones.
1268//
1269// Note that matches are delayed by one byte, to make it easier to
1270// accomodate match conditions depending on the next input byte (like $ and \b).
1271// When s->next[c]->IsMatch(), it means that there is a match ending just
1272// *before* byte c.
1273
1274// The generic search loop.  Searches text for a match, returning
1275// the pointer to the end of the chosen match, or NULL if no match.
1276// The bools are equal to the same-named variables in params, but
1277// making them function arguments lets the inliner specialize
1278// this function to each combination (see two paragraphs above).
1279inline bool DFA::InlinedSearchLoop(SearchParams* params,
1280                                   bool have_firstbyte,
1281                                   bool want_earliest_match,
1282                                   bool run_forward) {
1283  State* start = params->start;
1284  const uint8* bp = BytePtr(params->text.begin());  // start of text
1285  const uint8* p = bp;                              // text scanning point
1286  const uint8* ep = BytePtr(params->text.end());    // end of text
1287  const uint8* resetp = NULL;                       // p at last cache reset
1288  if (!run_forward)
1289    swap(p, ep);
1290
1291  const uint8* bytemap = prog_->bytemap();
1292  const uint8* lastmatch = NULL;   // most recent matching position in text
1293  bool matched = false;
1294  State* s = start;
1295
1296  if (s->IsMatch()) {
1297    matched = true;
1298    lastmatch = p;
1299    if (want_earliest_match) {
1300      params->ep = reinterpret_cast<const char*>(lastmatch);
1301      return true;
1302    }
1303  }
1304
1305  while (p != ep) {
1306    if (DebugDFA)
1307      fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp),
1308              DumpState(s).c_str());
1309    if (have_firstbyte && s == start) {
1310      // In start state, only way out is to find firstbyte,
1311      // so use optimized assembly in memchr to skip ahead.
1312      // If firstbyte isn't found, we can skip to the end
1313      // of the string.
1314      if (run_forward) {
1315        if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) {
1316          p = ep;
1317          break;
1318        }
1319      } else {
1320        if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) {
1321          p = ep;
1322          break;
1323        }
1324        p++;
1325      }
1326    }
1327
1328    int c;
1329    if (run_forward)
1330      c = *p++;
1331    else
1332      c = *--p;
1333
1334    // Note that multiple threads might be consulting
1335    // s->next_[bytemap[c]] simultaneously.
1336    // RunStateOnByte takes care of the appropriate locking,
1337    // including a memory barrier so that the unlocked access
1338    // (sometimes known as "double-checked locking") is safe.
1339    // The alternative would be either one DFA per thread
1340    // or one mutex operation per input byte.
1341    //
1342    // ns == DeadState means the state is known to be dead
1343    // (no more matches are possible).
1344    // ns == NULL means the state has not yet been computed
1345    // (need to call RunStateOnByteUnlocked).
1346    // RunStateOnByte returns ns == NULL if it is out of memory.
1347    // ns == FullMatchState means the rest of the string matches.
1348    //
1349    // Okay to use bytemap[] not ByteMap() here, because
1350    // c is known to be an actual byte and not kByteEndText.
1351
1352    MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
1353    State* ns = s->next_[bytemap[c]];
1354    if (ns == NULL) {
1355      ns = RunStateOnByteUnlocked(s, c);
1356      if (ns == NULL) {
1357        // After we reset the cache, we hold cache_mutex exclusively,
1358        // so if resetp != NULL, it means we filled the DFA state
1359        // cache with this search alone (without any other threads).
1360        // Benchmarks show that doing a state computation on every
1361        // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
1362        // same at about 2 MB/s.  Unless we're processing an average
1363        // of 10 bytes per state computation, fail so that RE2 can
1364        // fall back to the NFA.
1365        if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL &&
1366            (p - resetp) < 10*state_cache_.size()) {
1367          params->failed = true;
1368          return false;
1369        }
1370        resetp = p;
1371
1372        // Prepare to save start and s across the reset.
1373        StateSaver save_start(this, start);
1374        StateSaver save_s(this, s);
1375
1376        // Discard all the States in the cache.
1377        ResetCache(params->cache_lock);
1378
1379        // Restore start and s so we can continue.
1380        if ((start = save_start.Restore()) == NULL ||
1381            (s = save_s.Restore()) == NULL) {
1382          // Restore already did LOG(DFATAL).
1383          params->failed = true;
1384          return false;
1385        }
1386        ns = RunStateOnByteUnlocked(s, c);
1387        if (ns == NULL) {
1388          LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
1389          params->failed = true;
1390          return false;
1391        }
1392      }
1393    }
1394    if (ns <= SpecialStateMax) {
1395      if (ns == DeadState) {
1396        params->ep = reinterpret_cast<const char*>(lastmatch);
1397        return matched;
1398      }
1399      // FullMatchState
1400      params->ep = reinterpret_cast<const char*>(ep);
1401      return true;
1402    }
1403    s = ns;
1404
1405    if (s->IsMatch()) {
1406      matched = true;
1407      // The DFA notices the match one byte late,
1408      // so adjust p before using it in the match.
1409      if (run_forward)
1410        lastmatch = p - 1;
1411      else
1412        lastmatch = p + 1;
1413      if (DebugDFA)
1414        fprintf(stderr, "match @%d! [%s]\n",
1415                static_cast<int>(lastmatch - bp),
1416                DumpState(s).c_str());
1417
1418      if (want_earliest_match) {
1419        params->ep = reinterpret_cast<const char*>(lastmatch);
1420        return true;
1421      }
1422    }
1423  }
1424
1425  // Peek in state to see if a match is coming up.
1426  if (params->matches && kind_ == Prog::kManyMatch) {
1427    vector<int>* v = params->matches;
1428    v->clear();
1429    if (s > SpecialStateMax) {
1430      for (int i = 0; i < s->ninst_; i++) {
1431        Prog::Inst* ip = prog_->inst(s->inst_[i]);
1432        if (ip->opcode() == kInstMatch)
1433          v->push_back(ip->match_id());
1434      }
1435    }
1436  }
1437
1438
1439  // Process one more byte to see if it triggers a match.
1440  // (Remember, matches are delayed one byte.)
1441  int lastbyte;
1442  if (run_forward) {
1443    if (params->text.end() == params->context.end())
1444      lastbyte = kByteEndText;
1445    else
1446      lastbyte = params->text.end()[0] & 0xFF;
1447  } else {
1448    if (params->text.begin() == params->context.begin())
1449      lastbyte = kByteEndText;
1450    else
1451      lastbyte = params->text.begin()[-1] & 0xFF;
1452  }
1453
1454  MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
1455  State* ns = s->next_[ByteMap(lastbyte)];
1456  if (ns == NULL) {
1457    ns = RunStateOnByteUnlocked(s, lastbyte);
1458    if (ns == NULL) {
1459      StateSaver save_s(this, s);
1460      ResetCache(params->cache_lock);
1461      if ((s = save_s.Restore()) == NULL) {
1462        params->failed = true;
1463        return false;
1464      }
1465      ns = RunStateOnByteUnlocked(s, lastbyte);
1466      if (ns == NULL) {
1467        LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
1468        params->failed = true;
1469        return false;
1470      }
1471    }
1472  }
1473  s = ns;
1474  if (DebugDFA)
1475    fprintf(stderr, "@_: %s\n", DumpState(s).c_str());
1476  if (s == FullMatchState) {
1477    params->ep = reinterpret_cast<const char*>(ep);
1478    return true;
1479  }
1480  if (s > SpecialStateMax && s->IsMatch()) {
1481    matched = true;
1482    lastmatch = p;
1483    if (DebugDFA)
1484      fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp),
1485              DumpState(s).c_str());
1486  }
1487  params->ep = reinterpret_cast<const char*>(lastmatch);
1488  return matched;
1489}
1490
1491// Inline specializations of the general loop.
1492bool DFA::SearchFFF(SearchParams* params) {
1493  return InlinedSearchLoop(params, 0, 0, 0);
1494}
1495bool DFA::SearchFFT(SearchParams* params) {
1496  return InlinedSearchLoop(params, 0, 0, 1);
1497}
1498bool DFA::SearchFTF(SearchParams* params) {
1499  return InlinedSearchLoop(params, 0, 1, 0);
1500}
1501bool DFA::SearchFTT(SearchParams* params) {
1502  return InlinedSearchLoop(params, 0, 1, 1);
1503}
1504bool DFA::SearchTFF(SearchParams* params) {
1505  return InlinedSearchLoop(params, 1, 0, 0);
1506}
1507bool DFA::SearchTFT(SearchParams* params) {
1508  return InlinedSearchLoop(params, 1, 0, 1);
1509}
1510bool DFA::SearchTTF(SearchParams* params) {
1511  return InlinedSearchLoop(params, 1, 1, 0);
1512}
1513bool DFA::SearchTTT(SearchParams* params) {
1514  return InlinedSearchLoop(params, 1, 1, 1);
1515}
1516
1517// For debugging, calls the general code directly.
1518bool DFA::SlowSearchLoop(SearchParams* params) {
1519  return InlinedSearchLoop(params,
1520                           params->firstbyte >= 0,
1521                           params->want_earliest_match,
1522                           params->run_forward);
1523}
1524
1525// For performance, calls the appropriate specialized version
1526// of InlinedSearchLoop.
1527bool DFA::FastSearchLoop(SearchParams* params) {
1528  // Because the methods are private, the Searches array
1529  // cannot be declared at top level.
1530  static bool (DFA::*Searches[])(SearchParams*) = {
1531    &DFA::SearchFFF,
1532    &DFA::SearchFFT,
1533    &DFA::SearchFTF,
1534    &DFA::SearchFTT,
1535    &DFA::SearchTFF,
1536    &DFA::SearchTFT,
1537    &DFA::SearchTTF,
1538    &DFA::SearchTTT,
1539  };
1540
1541  bool have_firstbyte = (params->firstbyte >= 0);
1542  int index = 4 * have_firstbyte +
1543              2 * params->want_earliest_match +
1544              1 * params->run_forward;
1545  return (this->*Searches[index])(params);
1546}
1547
1548
1549// The discussion of DFA execution above ignored the question of how
1550// to determine the initial state for the search loop.  There are two
1551// factors that influence the choice of start state.
1552//
1553// The first factor is whether the search is anchored or not.
1554// The regexp program (Prog*) itself has
1555// two different entry points: one for anchored searches and one for
1556// unanchored searches.  (The unanchored version starts with a leading ".*?"
1557// and then jumps to the anchored one.)
1558//
1559// The second factor is where text appears in the larger context, which
1560// determines which empty-string operators can be matched at the beginning
1561// of execution.  If text is at the very beginning of context, \A and ^ match.
1562// Otherwise if text is at the beginning of a line, then ^ matches.
1563// Otherwise it matters whether the character before text is a word character
1564// or a non-word character.
1565//
1566// The two cases (unanchored vs not) and four cases (empty-string flags)
1567// combine to make the eight cases recorded in the DFA's begin_text_[2],
1568// begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
1569// StartInfos.  The start state for each is filled in the first time it
1570// is used for an actual search.
1571
1572// Examines text, context, and anchored to determine the right start
1573// state for the DFA search loop.  Fills in params and returns true on success.
1574// Returns false on failure.
1575bool DFA::AnalyzeSearch(SearchParams* params) {
1576  const StringPiece& text = params->text;
1577  const StringPiece& context = params->context;
1578
1579  // Sanity check: make sure that text lies within context.
1580  if (text.begin() < context.begin() || text.end() > context.end()) {
1581    LOG(DFATAL) << "Text is not inside context.";
1582    params->start = DeadState;
1583    return true;
1584  }
1585
1586  // Determine correct search type.
1587  int start;
1588  uint flags;
1589  if (params->run_forward) {
1590    if (text.begin() == context.begin()) {
1591      start = kStartBeginText;
1592      flags = kEmptyBeginText|kEmptyBeginLine;
1593    } else if (text.begin()[-1] == '\n') {
1594      start = kStartBeginLine;
1595      flags = kEmptyBeginLine;
1596    } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
1597      start = kStartAfterWordChar;
1598      flags = kFlagLastWord;
1599    } else {
1600      start = kStartAfterNonWordChar;
1601      flags = 0;
1602    }
1603  } else {
1604    if (text.end() == context.end()) {
1605      start = kStartBeginText;
1606      flags = kEmptyBeginText|kEmptyBeginLine;
1607    } else if (text.end()[0] == '\n') {
1608      start = kStartBeginLine;
1609      flags = kEmptyBeginLine;
1610    } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
1611      start = kStartAfterWordChar;
1612      flags = kFlagLastWord;
1613    } else {
1614      start = kStartAfterNonWordChar;
1615      flags = 0;
1616    }
1617  }
1618  if (params->anchored || prog_->anchor_start())
1619    start |= kStartAnchored;
1620  StartInfo* info = &start_[start];
1621
1622  // Try once without cache_lock for writing.
1623  // Try again after resetting the cache
1624  // (ResetCache will relock cache_lock for writing).
1625  if (!AnalyzeSearchHelper(params, info, flags)) {
1626    ResetCache(params->cache_lock);
1627    if (!AnalyzeSearchHelper(params, info, flags)) {
1628      LOG(DFATAL) << "Failed to analyze start state.";
1629      params->failed = true;
1630      return false;
1631    }
1632  }
1633
1634  if (DebugDFA)
1635    fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n",
1636            params->anchored, params->run_forward, flags,
1637            DumpState(info->start).c_str(), info->firstbyte);
1638
1639  params->start = info->start;
1640  params->firstbyte = info->firstbyte;
1641
1642  return true;
1643}
1644
1645// Fills in info if needed.  Returns true on success, false on failure.
1646bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
1647                              uint flags) {
1648  // Quick check; okay because of memory barriers below.
1649  if (info->firstbyte != kFbUnknown)
1650    return true;
1651
1652  MutexLock l(&mutex_);
1653  if (info->firstbyte != kFbUnknown)
1654    return true;
1655
1656  q0_->clear();
1657  AddToQueue(q0_,
1658             params->anchored ? prog_->start() : prog_->start_unanchored(),
1659             flags);
1660  info->start = WorkqToCachedState(q0_, flags);
1661  if (info->start == NULL)
1662    return false;
1663
1664  if (info->start == DeadState) {
1665    WriteMemoryBarrier();  // Synchronize with "quick check" above.
1666    info->firstbyte = kFbNone;
1667    return true;
1668  }
1669
1670  if (info->start == FullMatchState) {
1671    WriteMemoryBarrier();  // Synchronize with "quick check" above.
1672    info->firstbyte = kFbNone;	// will be ignored
1673    return true;
1674  }
1675
1676  // Compute info->firstbyte by running state on all
1677  // possible byte values, looking for a single one that
1678  // leads to a different state.
1679  int firstbyte = kFbNone;
1680  for (int i = 0; i < 256; i++) {
1681    State* s = RunStateOnByte(info->start, i);
1682    if (s == NULL) {
1683      WriteMemoryBarrier();  // Synchronize with "quick check" above.
1684      info->firstbyte = firstbyte;
1685      return false;
1686    }
1687    if (s == info->start)
1688      continue;
1689    // Goes to new state...
1690    if (firstbyte == kFbNone) {
1691      firstbyte = i;        // ... first one
1692    } else {
1693      firstbyte = kFbMany;  // ... too many
1694      break;
1695    }
1696  }
1697  WriteMemoryBarrier();  // Synchronize with "quick check" above.
1698  info->firstbyte = firstbyte;
1699  return true;
1700}
1701
1702// The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
1703bool DFA::Search(const StringPiece& text,
1704                 const StringPiece& context,
1705                 bool anchored,
1706                 bool want_earliest_match,
1707                 bool run_forward,
1708                 bool* failed,
1709                 const char** epp,
1710                 vector<int>* matches) {
1711  *epp = NULL;
1712  if (!ok()) {
1713    *failed = true;
1714    return false;
1715  }
1716  *failed = false;
1717
1718  if (DebugDFA) {
1719    fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
1720    fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
1721            text.as_string().c_str(), anchored, want_earliest_match,
1722            run_forward, kind_);
1723  }
1724
1725  RWLocker l(&cache_mutex_);
1726  SearchParams params(text, context, &l);
1727  params.anchored = anchored;
1728  params.want_earliest_match = want_earliest_match;
1729  params.run_forward = run_forward;
1730  params.matches = matches;
1731
1732  if (!AnalyzeSearch(&params)) {
1733    *failed = true;
1734    return false;
1735  }
1736  if (params.start == DeadState)
1737    return NULL;
1738  if (params.start == FullMatchState) {
1739    if (run_forward == want_earliest_match)
1740      *epp = text.begin();
1741    else
1742      *epp = text.end();
1743    return true;
1744  }
1745  if (DebugDFA)
1746    fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
1747  bool ret = FastSearchLoop(&params);
1748  if (params.failed) {
1749    *failed = true;
1750    return false;
1751  }
1752  *epp = params.ep;
1753  return ret;
1754}
1755
1756// Deletes dfa.
1757//
1758// This is a separate function so that
1759// prog.h can be used without moving the definition of
1760// class DFA out of this file.  If you set
1761//   prog->dfa_ = dfa;
1762// then you also have to set
1763//   prog->delete_dfa_ = DeleteDFA;
1764// so that ~Prog can delete the dfa.
1765static void DeleteDFA(DFA* dfa) {
1766  delete dfa;
1767}
1768
1769DFA* Prog::GetDFA(MatchKind kind) {
1770  DFA*volatile* pdfa;
1771  if (kind == kFirstMatch || kind == kManyMatch) {
1772    pdfa = &dfa_first_;
1773  } else {
1774    kind = kLongestMatch;
1775    pdfa = &dfa_longest_;
1776  }
1777
1778  // Quick check; okay because of memory barrier below.
1779  DFA *dfa = *pdfa;
1780  if (dfa != NULL) {
1781    ANNOTATE_HAPPENS_AFTER(dfa);
1782    return dfa;
1783  }
1784
1785  MutexLock l(&dfa_mutex_);
1786  dfa = *pdfa;
1787  if (dfa != NULL)
1788    return dfa;
1789
1790  // For a forward DFA, half the memory goes to each DFA.
1791  // For a reverse DFA, all the memory goes to the
1792  // "longest match" DFA, because RE2 never does reverse
1793  // "first match" searches.
1794  int64 m = dfa_mem_/2;
1795  if (reversed_) {
1796    if (kind == kLongestMatch || kind == kManyMatch)
1797      m = dfa_mem_;
1798    else
1799      m = 0;
1800  }
1801  dfa = new DFA(this, kind, m);
1802  delete_dfa_ = DeleteDFA;
1803
1804  // Synchronize with "quick check" above.
1805  ANNOTATE_HAPPENS_BEFORE(dfa);
1806  WriteMemoryBarrier();
1807  *pdfa = dfa;
1808
1809  return dfa;
1810}
1811
1812
1813// Executes the regexp program to search in text,
1814// which itself is inside the larger context.  (As a convenience,
1815// passing a NULL context is equivalent to passing text.)
1816// Returns true if a match is found, false if not.
1817// If a match is found, fills in match0->end() to point at the end of the match
1818// and sets match0->begin() to text.begin(), since the DFA can't track
1819// where the match actually began.
1820//
1821// This is the only external interface (class DFA only exists in this file).
1822//
1823bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
1824                     Anchor anchor, MatchKind kind,
1825                     StringPiece* match0, bool* failed, vector<int>* matches) {
1826  *failed = false;
1827
1828  StringPiece context = const_context;
1829  if (context.begin() == NULL)
1830    context = text;
1831  bool carat = anchor_start();
1832  bool dollar = anchor_end();
1833  if (reversed_) {
1834    bool t = carat;
1835    carat = dollar;
1836    dollar = t;
1837  }
1838  if (carat && context.begin() != text.begin())
1839    return false;
1840  if (dollar && context.end() != text.end())
1841    return false;
1842
1843  // Handle full match by running an anchored longest match
1844  // and then checking if it covers all of text.
1845  bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
1846  bool endmatch = false;
1847  if (kind == kManyMatch) {
1848    endmatch = true;
1849  } else if (kind == kFullMatch || anchor_end()) {
1850    endmatch = true;
1851    kind = kLongestMatch;
1852  }
1853
1854  // If the caller doesn't care where the match is (just whether one exists),
1855  // then we can stop at the very first match we find, the so-called
1856  // "shortest match".
1857  bool want_shortest_match = false;
1858  if (match0 == NULL && !endmatch) {
1859    want_shortest_match = true;
1860    kind = kLongestMatch;
1861  }
1862
1863  DFA* dfa = GetDFA(kind);
1864  const char* ep;
1865  bool matched = dfa->Search(text, context, anchored,
1866                             want_shortest_match, !reversed_,
1867                             failed, &ep, matches);
1868  if (*failed)
1869    return false;
1870  if (!matched)
1871    return false;
1872  if (endmatch && ep != (reversed_ ? text.begin() : text.end()))
1873    return false;
1874
1875  // If caller cares, record the boundary of the match.
1876  // We only know where it ends, so use the boundary of text
1877  // as the beginning.
1878  if (match0) {
1879    if (reversed_)
1880      *match0 = StringPiece(ep, text.end() - ep);
1881    else
1882      *match0 = StringPiece(text.begin(), ep - text.begin());
1883  }
1884  return true;
1885}
1886
1887// Build out all states in DFA.  Returns number of states.
1888int DFA::BuildAllStates() {
1889  if (!ok())
1890    return 0;
1891
1892  // Pick out start state for unanchored search
1893  // at beginning of text.
1894  RWLocker l(&cache_mutex_);
1895  SearchParams params(NULL, NULL, &l);
1896  params.anchored = false;
1897  if (!AnalyzeSearch(&params) || params.start <= SpecialStateMax)
1898    return 0;
1899
1900  // Add start state to work queue.
1901  StateSet queued;
1902  vector<State*> q;
1903  queued.insert(params.start);
1904  q.push_back(params.start);
1905
1906  // Flood to expand every state.
1907  for (int i = 0; i < q.size(); i++) {
1908    State* s = q[i];
1909    for (int c = 0; c < 257; c++) {
1910      State* ns = RunStateOnByteUnlocked(s, c);
1911      if (ns > SpecialStateMax && queued.find(ns) == queued.end()) {
1912        queued.insert(ns);
1913        q.push_back(ns);
1914      }
1915    }
1916  }
1917
1918  return q.size();
1919}
1920
1921// Build out all states in DFA for kind.  Returns number of states.
1922int Prog::BuildEntireDFA(MatchKind kind) {
1923  //LOG(ERROR) << "BuildEntireDFA is only for testing.";
1924  return GetDFA(kind)->BuildAllStates();
1925}
1926
1927// Computes min and max for matching string.
1928// Won't return strings bigger than maxlen.
1929bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) {
1930  if (!ok())
1931    return false;
1932
1933  // NOTE: if future users of PossibleMatchRange want more precision when
1934  // presented with infinitely repeated elements, consider making this a
1935  // parameter to PossibleMatchRange.
1936  static int kMaxEltRepetitions = 0;
1937
1938  // Keep track of the number of times we've visited states previously. We only
1939  // revisit a given state if it's part of a repeated group, so if the value
1940  // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
1941  // |*max| to |PrefixSuccessor(*max)|.
1942  //
1943  // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
1944  // tradition, implicitly insert a '0' value at first use. We take advantage
1945  // of that property below.
1946  map<State*, int> previously_visited_states;
1947
1948  // Pick out start state for anchored search at beginning of text.
1949  RWLocker l(&cache_mutex_);
1950  SearchParams params(NULL, NULL, &l);
1951  params.anchored = true;
1952  if (!AnalyzeSearch(&params))
1953    return false;
1954  if (params.start == DeadState) {  // No matching strings
1955    *min = "";
1956    *max = "";
1957    return true;
1958  }
1959  if (params.start == FullMatchState)  // Every string matches: no max
1960    return false;
1961
1962  // The DFA is essentially a big graph rooted at params.start,
1963  // and paths in the graph correspond to accepted strings.
1964  // Each node in the graph has potentially 256+1 arrows
1965  // coming out, one for each byte plus the magic end of
1966  // text character kByteEndText.
1967
1968  // To find the smallest possible prefix of an accepted
1969  // string, we just walk the graph preferring to follow
1970  // arrows with the lowest bytes possible.  To find the
1971  // largest possible prefix, we follow the largest bytes
1972  // possible.
1973
1974  // The test for whether there is an arrow from s on byte j is
1975  //    ns = RunStateOnByteUnlocked(s, j);
1976  //    if (ns == NULL)
1977  //      return false;
1978  //    if (ns != DeadState && ns->ninst > 0)
1979  // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
1980  // It returns NULL only if the DFA has run out of memory,
1981  // in which case we can't be sure of anything.
1982  // The second check sees whether there was graph built
1983  // and whether it is interesting graph.  Nodes might have
1984  // ns->ninst == 0 if they exist only to represent the fact
1985  // that a match was found on the previous byte.
1986
1987  // Build minimum prefix.
1988  State* s = params.start;
1989  min->clear();
1990  for (int i = 0; i < maxlen; i++) {
1991    if (previously_visited_states[s] > kMaxEltRepetitions) {
1992      VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
1993        << " for state s=" << s << " and min=" << CEscape(*min);
1994      break;
1995    }
1996    previously_visited_states[s]++;
1997
1998    // Stop if min is a match.
1999    State* ns = RunStateOnByteUnlocked(s, kByteEndText);
2000    if (ns == NULL)  // DFA out of memory
2001      return false;
2002    if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
2003      break;
2004
2005    // Try to extend the string with low bytes.
2006    bool extended = false;
2007    for (int j = 0; j < 256; j++) {
2008      ns = RunStateOnByteUnlocked(s, j);
2009      if (ns == NULL)  // DFA out of memory
2010        return false;
2011      if (ns == FullMatchState ||
2012          (ns > SpecialStateMax && ns->ninst_ > 0)) {
2013        extended = true;
2014        min->append(1, j);
2015        s = ns;
2016        break;
2017      }
2018    }
2019    if (!extended)
2020      break;
2021  }
2022
2023  // Build maximum prefix.
2024  previously_visited_states.clear();
2025  s = params.start;
2026  max->clear();
2027  for (int i = 0; i < maxlen; i++) {
2028    if (previously_visited_states[s] > kMaxEltRepetitions) {
2029      VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
2030        << " for state s=" << s << " and max=" << CEscape(*max);
2031      break;
2032    }
2033    previously_visited_states[s] += 1;
2034
2035    // Try to extend the string with high bytes.
2036    bool extended = false;
2037    for (int j = 255; j >= 0; j--) {
2038      State* ns = RunStateOnByteUnlocked(s, j);
2039      if (ns == NULL)
2040        return false;
2041      if (ns == FullMatchState ||
2042          (ns > SpecialStateMax && ns->ninst_ > 0)) {
2043        extended = true;
2044        max->append(1, j);
2045        s = ns;
2046        break;
2047      }
2048    }
2049    if (!extended) {
2050      // Done, no need for PrefixSuccessor.
2051      return true;
2052    }
2053  }
2054
2055  // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
2056  *max = PrefixSuccessor(*max);
2057
2058  // If there are no bytes left, we have no way to say "there is no maximum
2059  // string".  We could make the interface more complicated and be able to
2060  // return "there is no maximum but here is a minimum", but that seems like
2061  // overkill -- the most common no-max case is all possible strings, so not
2062  // telling the caller that the empty string is the minimum match isn't a
2063  // great loss.
2064  if (max->empty())
2065    return false;
2066
2067  return true;
2068}
2069
2070// PossibleMatchRange for a Prog.
2071bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) {
2072  DFA* dfa = NULL;
2073  {
2074    MutexLock l(&dfa_mutex_);
2075    // Have to use dfa_longest_ to get all strings for full matches.
2076    // For example, (a|aa) never matches aa in first-match mode.
2077    if (dfa_longest_ == NULL) {
2078      dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2);
2079      delete_dfa_ = DeleteDFA;
2080    }
2081    dfa = dfa_longest_;
2082  }
2083  return dfa->PossibleMatchRange(min, max, maxlen);
2084}
2085
2086}  // namespace re2
2087