1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_IA32)
31
32#include "codegen.h"
33#include "deoptimizer.h"
34#include "full-codegen.h"
35#include "safepoint-table.h"
36
37namespace v8 {
38namespace internal {
39
40const int Deoptimizer::table_entry_size_ = 10;
41
42
43int Deoptimizer::patch_size() {
44  return Assembler::kCallInstructionLength;
45}
46
47
48void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
49  Isolate* isolate = code->GetIsolate();
50  HandleScope scope(isolate);
51
52  // Compute the size of relocation information needed for the code
53  // patching in Deoptimizer::DeoptimizeFunction.
54  int min_reloc_size = 0;
55  int prev_pc_offset = 0;
56  DeoptimizationInputData* deopt_data =
57      DeoptimizationInputData::cast(code->deoptimization_data());
58  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
59    int pc_offset = deopt_data->Pc(i)->value();
60    if (pc_offset == -1) continue;
61    ASSERT_GE(pc_offset, prev_pc_offset);
62    int pc_delta = pc_offset - prev_pc_offset;
63    // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
64    // if encodable with small pc delta encoding and up to 6 bytes
65    // otherwise.
66    if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
67      min_reloc_size += 2;
68    } else {
69      min_reloc_size += 6;
70    }
71    prev_pc_offset = pc_offset;
72  }
73
74  // If the relocation information is not big enough we create a new
75  // relocation info object that is padded with comments to make it
76  // big enough for lazy doptimization.
77  int reloc_length = code->relocation_info()->length();
78  if (min_reloc_size > reloc_length) {
79    int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
80    // Padding needed.
81    int min_padding = min_reloc_size - reloc_length;
82    // Number of comments needed to take up at least that much space.
83    int additional_comments =
84        (min_padding + comment_reloc_size - 1) / comment_reloc_size;
85    // Actual padding size.
86    int padding = additional_comments * comment_reloc_size;
87    // Allocate new relocation info and copy old relocation to the end
88    // of the new relocation info array because relocation info is
89    // written and read backwards.
90    Factory* factory = isolate->factory();
91    Handle<ByteArray> new_reloc =
92        factory->NewByteArray(reloc_length + padding, TENURED);
93    memcpy(new_reloc->GetDataStartAddress() + padding,
94           code->relocation_info()->GetDataStartAddress(),
95           reloc_length);
96    // Create a relocation writer to write the comments in the padding
97    // space. Use position 0 for everything to ensure short encoding.
98    RelocInfoWriter reloc_info_writer(
99        new_reloc->GetDataStartAddress() + padding, 0);
100    intptr_t comment_string
101        = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
102    RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL);
103    for (int i = 0; i < additional_comments; ++i) {
104#ifdef DEBUG
105      byte* pos_before = reloc_info_writer.pos();
106#endif
107      reloc_info_writer.Write(&rinfo);
108      ASSERT(RelocInfo::kMinRelocCommentSize ==
109             pos_before - reloc_info_writer.pos());
110    }
111    // Replace relocation information on the code object.
112    code->set_relocation_info(*new_reloc);
113  }
114}
115
116
117void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
118  if (!function->IsOptimized()) return;
119
120  Isolate* isolate = function->GetIsolate();
121  HandleScope scope(isolate);
122  AssertNoAllocation no_allocation;
123
124  // Get the optimized code.
125  Code* code = function->code();
126  Address code_start_address = code->instruction_start();
127
128  // We will overwrite the code's relocation info in-place. Relocation info
129  // is written backward. The relocation info is the payload of a byte
130  // array.  Later on we will slide this to the start of the byte array and
131  // create a filler object in the remaining space.
132  ByteArray* reloc_info = code->relocation_info();
133  Address reloc_end_address = reloc_info->address() + reloc_info->Size();
134  RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
135
136  // For each LLazyBailout instruction insert a call to the corresponding
137  // deoptimization entry.
138
139  // Since the call is a relative encoding, write new
140  // reloc info.  We do not need any of the existing reloc info because the
141  // existing code will not be used again (we zap it in debug builds).
142  //
143  // Emit call to lazy deoptimization at all lazy deopt points.
144  DeoptimizationInputData* deopt_data =
145      DeoptimizationInputData::cast(code->deoptimization_data());
146#ifdef DEBUG
147  Address prev_call_address = NULL;
148#endif
149  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
150    if (deopt_data->Pc(i)->value() == -1) continue;
151    // Patch lazy deoptimization entry.
152    Address call_address = code_start_address + deopt_data->Pc(i)->value();
153    CodePatcher patcher(call_address, patch_size());
154    Address deopt_entry = GetDeoptimizationEntry(i, LAZY);
155    patcher.masm()->call(deopt_entry, RelocInfo::NONE);
156    // We use RUNTIME_ENTRY for deoptimization bailouts.
157    RelocInfo rinfo(call_address + 1,  // 1 after the call opcode.
158                    RelocInfo::RUNTIME_ENTRY,
159                    reinterpret_cast<intptr_t>(deopt_entry),
160                    NULL);
161    reloc_info_writer.Write(&rinfo);
162    ASSERT_GE(reloc_info_writer.pos(),
163              reloc_info->address() + ByteArray::kHeaderSize);
164    ASSERT(prev_call_address == NULL ||
165           call_address >= prev_call_address + patch_size());
166    ASSERT(call_address + patch_size() <= code->instruction_end());
167#ifdef DEBUG
168    prev_call_address = call_address;
169#endif
170  }
171
172  // Move the relocation info to the beginning of the byte array.
173  int new_reloc_size = reloc_end_address - reloc_info_writer.pos();
174  memmove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_size);
175
176  // The relocation info is in place, update the size.
177  reloc_info->set_length(new_reloc_size);
178
179  // Handle the junk part after the new relocation info. We will create
180  // a non-live object in the extra space at the end of the former reloc info.
181  Address junk_address = reloc_info->address() + reloc_info->Size();
182  ASSERT(junk_address <= reloc_end_address);
183  isolate->heap()->CreateFillerObjectAt(junk_address,
184                                        reloc_end_address - junk_address);
185
186  // Add the deoptimizing code to the list.
187  DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code);
188  DeoptimizerData* data = isolate->deoptimizer_data();
189  node->set_next(data->deoptimizing_code_list_);
190  data->deoptimizing_code_list_ = node;
191
192  // We might be in the middle of incremental marking with compaction.
193  // Tell collector to treat this code object in a special way and
194  // ignore all slots that might have been recorded on it.
195  isolate->heap()->mark_compact_collector()->InvalidateCode(code);
196
197  // Set the code for the function to non-optimized version.
198  function->ReplaceCode(function->shared()->code());
199
200  if (FLAG_trace_deopt) {
201    PrintF("[forced deoptimization: ");
202    function->PrintName();
203    PrintF(" / %x]\n", reinterpret_cast<uint32_t>(function));
204  }
205}
206
207
208static const byte kJnsInstruction = 0x79;
209static const byte kJnsOffset = 0x13;
210static const byte kJaeInstruction = 0x73;
211static const byte kJaeOffset = 0x07;
212static const byte kCallInstruction = 0xe8;
213static const byte kNopByteOne = 0x66;
214static const byte kNopByteTwo = 0x90;
215
216
217void Deoptimizer::PatchStackCheckCodeAt(Code* unoptimized_code,
218                                        Address pc_after,
219                                        Code* check_code,
220                                        Code* replacement_code) {
221  Address call_target_address = pc_after - kIntSize;
222  ASSERT_EQ(check_code->entry(),
223            Assembler::target_address_at(call_target_address));
224  // The stack check code matches the pattern:
225  //
226  //     cmp esp, <limit>
227  //     jae ok
228  //     call <stack guard>
229  //     test eax, <loop nesting depth>
230  // ok: ...
231  //
232  // We will patch away the branch so the code is:
233  //
234  //     cmp esp, <limit>  ;; Not changed
235  //     nop
236  //     nop
237  //     call <on-stack replacment>
238  //     test eax, <loop nesting depth>
239  // ok:
240
241  if (FLAG_count_based_interrupts) {
242    ASSERT_EQ(*(call_target_address - 3), kJnsInstruction);
243    ASSERT_EQ(*(call_target_address - 2), kJnsOffset);
244  } else {
245    ASSERT_EQ(*(call_target_address - 3), kJaeInstruction);
246    ASSERT_EQ(*(call_target_address - 2), kJaeOffset);
247  }
248  ASSERT_EQ(*(call_target_address - 1), kCallInstruction);
249  *(call_target_address - 3) = kNopByteOne;
250  *(call_target_address - 2) = kNopByteTwo;
251  Assembler::set_target_address_at(call_target_address,
252                                   replacement_code->entry());
253
254  unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
255      unoptimized_code, call_target_address, replacement_code);
256}
257
258
259void Deoptimizer::RevertStackCheckCodeAt(Code* unoptimized_code,
260                                         Address pc_after,
261                                         Code* check_code,
262                                         Code* replacement_code) {
263  Address call_target_address = pc_after - kIntSize;
264  ASSERT_EQ(replacement_code->entry(),
265            Assembler::target_address_at(call_target_address));
266
267  // Replace the nops from patching (Deoptimizer::PatchStackCheckCode) to
268  // restore the conditional branch.
269  ASSERT_EQ(*(call_target_address - 3), kNopByteOne);
270  ASSERT_EQ(*(call_target_address - 2), kNopByteTwo);
271  ASSERT_EQ(*(call_target_address - 1), kCallInstruction);
272  if (FLAG_count_based_interrupts) {
273    *(call_target_address - 3) = kJnsInstruction;
274    *(call_target_address - 2) = kJnsOffset;
275  } else {
276    *(call_target_address - 3) = kJaeInstruction;
277    *(call_target_address - 2) = kJaeOffset;
278  }
279  Assembler::set_target_address_at(call_target_address,
280                                   check_code->entry());
281
282  check_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
283      unoptimized_code, call_target_address, check_code);
284}
285
286
287static int LookupBailoutId(DeoptimizationInputData* data, unsigned ast_id) {
288  ByteArray* translations = data->TranslationByteArray();
289  int length = data->DeoptCount();
290  for (int i = 0; i < length; i++) {
291    if (static_cast<unsigned>(data->AstId(i)->value()) == ast_id) {
292      TranslationIterator it(translations,  data->TranslationIndex(i)->value());
293      int value = it.Next();
294      ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value));
295      // Read the number of frames.
296      value = it.Next();
297      if (value == 1) return i;
298    }
299  }
300  UNREACHABLE();
301  return -1;
302}
303
304
305void Deoptimizer::DoComputeOsrOutputFrame() {
306  DeoptimizationInputData* data = DeoptimizationInputData::cast(
307      optimized_code_->deoptimization_data());
308  unsigned ast_id = data->OsrAstId()->value();
309  // TODO(kasperl): This should not be the bailout_id_. It should be
310  // the ast id. Confusing.
311  ASSERT(bailout_id_ == ast_id);
312
313  int bailout_id = LookupBailoutId(data, ast_id);
314  unsigned translation_index = data->TranslationIndex(bailout_id)->value();
315  ByteArray* translations = data->TranslationByteArray();
316
317  TranslationIterator iterator(translations, translation_index);
318  Translation::Opcode opcode =
319      static_cast<Translation::Opcode>(iterator.Next());
320  ASSERT(Translation::BEGIN == opcode);
321  USE(opcode);
322  int count = iterator.Next();
323  iterator.Next();  // Drop JS frames count.
324  ASSERT(count == 1);
325  USE(count);
326
327  opcode = static_cast<Translation::Opcode>(iterator.Next());
328  USE(opcode);
329  ASSERT(Translation::JS_FRAME == opcode);
330  unsigned node_id = iterator.Next();
331  USE(node_id);
332  ASSERT(node_id == ast_id);
333  JSFunction* function = JSFunction::cast(ComputeLiteral(iterator.Next()));
334  USE(function);
335  ASSERT(function == function_);
336  unsigned height = iterator.Next();
337  unsigned height_in_bytes = height * kPointerSize;
338  USE(height_in_bytes);
339
340  unsigned fixed_size = ComputeFixedSize(function_);
341  unsigned input_frame_size = input_->GetFrameSize();
342  ASSERT(fixed_size + height_in_bytes == input_frame_size);
343
344  unsigned stack_slot_size = optimized_code_->stack_slots() * kPointerSize;
345  unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value();
346  unsigned outgoing_size = outgoing_height * kPointerSize;
347  unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size;
348  ASSERT(outgoing_size == 0);  // OSR does not happen in the middle of a call.
349
350  if (FLAG_trace_osr) {
351    PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ",
352           reinterpret_cast<intptr_t>(function_));
353    function_->PrintName();
354    PrintF(" => node=%u, frame=%d->%d]\n",
355           ast_id,
356           input_frame_size,
357           output_frame_size);
358  }
359
360  // There's only one output frame in the OSR case.
361  output_count_ = 1;
362  output_ = new FrameDescription*[1];
363  output_[0] = new(output_frame_size) FrameDescription(
364      output_frame_size, function_);
365  output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT);
366
367  // Clear the incoming parameters in the optimized frame to avoid
368  // confusing the garbage collector.
369  unsigned output_offset = output_frame_size - kPointerSize;
370  int parameter_count = function_->shared()->formal_parameter_count() + 1;
371  for (int i = 0; i < parameter_count; ++i) {
372    output_[0]->SetFrameSlot(output_offset, 0);
373    output_offset -= kPointerSize;
374  }
375
376  // Translate the incoming parameters. This may overwrite some of the
377  // incoming argument slots we've just cleared.
378  int input_offset = input_frame_size - kPointerSize;
379  bool ok = true;
380  int limit = input_offset - (parameter_count * kPointerSize);
381  while (ok && input_offset > limit) {
382    ok = DoOsrTranslateCommand(&iterator, &input_offset);
383  }
384
385  // There are no translation commands for the caller's pc and fp, the
386  // context, and the function.  Set them up explicitly.
387  for (int i =  StandardFrameConstants::kCallerPCOffset;
388       ok && i >=  StandardFrameConstants::kMarkerOffset;
389       i -= kPointerSize) {
390    uint32_t input_value = input_->GetFrameSlot(input_offset);
391    if (FLAG_trace_osr) {
392      const char* name = "UNKNOWN";
393      switch (i) {
394        case StandardFrameConstants::kCallerPCOffset:
395          name = "caller's pc";
396          break;
397        case StandardFrameConstants::kCallerFPOffset:
398          name = "fp";
399          break;
400        case StandardFrameConstants::kContextOffset:
401          name = "context";
402          break;
403        case StandardFrameConstants::kMarkerOffset:
404          name = "function";
405          break;
406      }
407      PrintF("    [esp + %d] <- 0x%08x ; [esp + %d] (fixed part - %s)\n",
408             output_offset,
409             input_value,
410             input_offset,
411             name);
412    }
413    output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset));
414    input_offset -= kPointerSize;
415    output_offset -= kPointerSize;
416  }
417
418  // Translate the rest of the frame.
419  while (ok && input_offset >= 0) {
420    ok = DoOsrTranslateCommand(&iterator, &input_offset);
421  }
422
423  // If translation of any command failed, continue using the input frame.
424  if (!ok) {
425    delete output_[0];
426    output_[0] = input_;
427    output_[0]->SetPc(reinterpret_cast<uint32_t>(from_));
428  } else {
429    // Set up the frame pointer and the context pointer.
430    output_[0]->SetRegister(ebp.code(), input_->GetRegister(ebp.code()));
431    output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code()));
432
433    unsigned pc_offset = data->OsrPcOffset()->value();
434    uint32_t pc = reinterpret_cast<uint32_t>(
435        optimized_code_->entry() + pc_offset);
436    output_[0]->SetPc(pc);
437  }
438  Code* continuation =
439      function->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR);
440  output_[0]->SetContinuation(
441      reinterpret_cast<uint32_t>(continuation->entry()));
442
443  if (FLAG_trace_osr) {
444    PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ",
445           ok ? "finished" : "aborted",
446           reinterpret_cast<intptr_t>(function));
447    function->PrintName();
448    PrintF(" => pc=0x%0x]\n", output_[0]->GetPc());
449  }
450}
451
452
453void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator,
454                                                 int frame_index) {
455  JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
456  unsigned height = iterator->Next();
457  unsigned height_in_bytes = height * kPointerSize;
458  if (FLAG_trace_deopt) {
459    PrintF("  translating arguments adaptor => height=%d\n", height_in_bytes);
460  }
461
462  unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize;
463  unsigned output_frame_size = height_in_bytes + fixed_frame_size;
464
465  // Allocate and store the output frame description.
466  FrameDescription* output_frame =
467      new(output_frame_size) FrameDescription(output_frame_size, function);
468  output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
469
470  // Arguments adaptor can not be topmost or bottommost.
471  ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
472  ASSERT(output_[frame_index] == NULL);
473  output_[frame_index] = output_frame;
474
475  // The top address of the frame is computed from the previous
476  // frame's top and this frame's size.
477  uint32_t top_address;
478  top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
479  output_frame->SetTop(top_address);
480
481  // Compute the incoming parameter translation.
482  int parameter_count = height;
483  unsigned output_offset = output_frame_size;
484  for (int i = 0; i < parameter_count; ++i) {
485    output_offset -= kPointerSize;
486    DoTranslateCommand(iterator, frame_index, output_offset);
487  }
488
489  // Read caller's PC from the previous frame.
490  output_offset -= kPointerSize;
491  intptr_t callers_pc = output_[frame_index - 1]->GetPc();
492  output_frame->SetFrameSlot(output_offset, callers_pc);
493  if (FLAG_trace_deopt) {
494    PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's pc\n",
495           top_address + output_offset, output_offset, callers_pc);
496  }
497
498  // Read caller's FP from the previous frame, and set this frame's FP.
499  output_offset -= kPointerSize;
500  intptr_t value = output_[frame_index - 1]->GetFp();
501  output_frame->SetFrameSlot(output_offset, value);
502  intptr_t fp_value = top_address + output_offset;
503  output_frame->SetFp(fp_value);
504  if (FLAG_trace_deopt) {
505    PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's fp\n",
506           fp_value, output_offset, value);
507  }
508
509  // A marker value is used in place of the context.
510  output_offset -= kPointerSize;
511  intptr_t context = reinterpret_cast<intptr_t>(
512      Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
513  output_frame->SetFrameSlot(output_offset, context);
514  if (FLAG_trace_deopt) {
515    PrintF("    0x%08x: [top + %d] <- 0x%08x ; context (adaptor sentinel)\n",
516           top_address + output_offset, output_offset, context);
517  }
518
519  // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
520  output_offset -= kPointerSize;
521  value = reinterpret_cast<intptr_t>(function);
522  output_frame->SetFrameSlot(output_offset, value);
523  if (FLAG_trace_deopt) {
524    PrintF("    0x%08x: [top + %d] <- 0x%08x ; function\n",
525           top_address + output_offset, output_offset, value);
526  }
527
528  // Number of incoming arguments.
529  output_offset -= kPointerSize;
530  value = reinterpret_cast<uint32_t>(Smi::FromInt(height - 1));
531  output_frame->SetFrameSlot(output_offset, value);
532  if (FLAG_trace_deopt) {
533    PrintF("    0x%08x: [top + %d] <- 0x%08x ; argc (%d)\n",
534           top_address + output_offset, output_offset, value, height - 1);
535  }
536
537  ASSERT(0 == output_offset);
538
539  Builtins* builtins = isolate_->builtins();
540  Code* adaptor_trampoline =
541      builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
542  uint32_t pc = reinterpret_cast<uint32_t>(
543      adaptor_trampoline->instruction_start() +
544      isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
545  output_frame->SetPc(pc);
546}
547
548
549void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator,
550                                              int frame_index) {
551  Builtins* builtins = isolate_->builtins();
552  Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
553  JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
554  unsigned height = iterator->Next();
555  unsigned height_in_bytes = height * kPointerSize;
556  if (FLAG_trace_deopt) {
557    PrintF("  translating construct stub => height=%d\n", height_in_bytes);
558  }
559
560  unsigned fixed_frame_size = 7 * kPointerSize;
561  unsigned output_frame_size = height_in_bytes + fixed_frame_size;
562
563  // Allocate and store the output frame description.
564  FrameDescription* output_frame =
565      new(output_frame_size) FrameDescription(output_frame_size, function);
566  output_frame->SetFrameType(StackFrame::CONSTRUCT);
567
568  // Construct stub can not be topmost or bottommost.
569  ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
570  ASSERT(output_[frame_index] == NULL);
571  output_[frame_index] = output_frame;
572
573  // The top address of the frame is computed from the previous
574  // frame's top and this frame's size.
575  uint32_t top_address;
576  top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
577  output_frame->SetTop(top_address);
578
579  // Compute the incoming parameter translation.
580  int parameter_count = height;
581  unsigned output_offset = output_frame_size;
582  for (int i = 0; i < parameter_count; ++i) {
583    output_offset -= kPointerSize;
584    DoTranslateCommand(iterator, frame_index, output_offset);
585  }
586
587  // Read caller's PC from the previous frame.
588  output_offset -= kPointerSize;
589  intptr_t callers_pc = output_[frame_index - 1]->GetPc();
590  output_frame->SetFrameSlot(output_offset, callers_pc);
591  if (FLAG_trace_deopt) {
592    PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's pc\n",
593           top_address + output_offset, output_offset, callers_pc);
594  }
595
596  // Read caller's FP from the previous frame, and set this frame's FP.
597  output_offset -= kPointerSize;
598  intptr_t value = output_[frame_index - 1]->GetFp();
599  output_frame->SetFrameSlot(output_offset, value);
600  intptr_t fp_value = top_address + output_offset;
601  output_frame->SetFp(fp_value);
602  if (FLAG_trace_deopt) {
603    PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's fp\n",
604           fp_value, output_offset, value);
605  }
606
607  // The context can be gotten from the previous frame.
608  output_offset -= kPointerSize;
609  value = output_[frame_index - 1]->GetContext();
610  output_frame->SetFrameSlot(output_offset, value);
611  if (FLAG_trace_deopt) {
612    PrintF("    0x%08x: [top + %d] <- 0x%08x ; context\n",
613           top_address + output_offset, output_offset, value);
614  }
615
616  // A marker value is used in place of the function.
617  output_offset -= kPointerSize;
618  value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
619  output_frame->SetFrameSlot(output_offset, value);
620  if (FLAG_trace_deopt) {
621    PrintF("    0x%08x: [top + %d] <- 0x%08x ; function (construct sentinel)\n",
622           top_address + output_offset, output_offset, value);
623  }
624
625  // The output frame reflects a JSConstructStubGeneric frame.
626  output_offset -= kPointerSize;
627  value = reinterpret_cast<intptr_t>(construct_stub);
628  output_frame->SetFrameSlot(output_offset, value);
629  if (FLAG_trace_deopt) {
630    PrintF("    0x%08x: [top + %d] <- 0x%08x ; code object\n",
631           top_address + output_offset, output_offset, value);
632  }
633
634  // Number of incoming arguments.
635  output_offset -= kPointerSize;
636  value = reinterpret_cast<uint32_t>(Smi::FromInt(height - 1));
637  output_frame->SetFrameSlot(output_offset, value);
638  if (FLAG_trace_deopt) {
639    PrintF("    0x%08x: [top + %d] <- 0x%08x ; argc (%d)\n",
640           top_address + output_offset, output_offset, value, height - 1);
641  }
642
643  // The newly allocated object was passed as receiver in the artificial
644  // constructor stub environment created by HEnvironment::CopyForInlining().
645  output_offset -= kPointerSize;
646  value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
647  output_frame->SetFrameSlot(output_offset, value);
648  if (FLAG_trace_deopt) {
649    PrintF("    0x%08x: [top + %d] <- 0x%08x ; allocated receiver\n",
650           top_address + output_offset, output_offset, value);
651  }
652
653  ASSERT(0 == output_offset);
654
655  uint32_t pc = reinterpret_cast<uint32_t>(
656      construct_stub->instruction_start() +
657      isolate_->heap()->construct_stub_deopt_pc_offset()->value());
658  output_frame->SetPc(pc);
659}
660
661
662void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator,
663                                   int frame_index) {
664  int node_id = iterator->Next();
665  JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
666  unsigned height = iterator->Next();
667  unsigned height_in_bytes = height * kPointerSize;
668  if (FLAG_trace_deopt) {
669    PrintF("  translating ");
670    function->PrintName();
671    PrintF(" => node=%d, height=%d\n", node_id, height_in_bytes);
672  }
673
674  // The 'fixed' part of the frame consists of the incoming parameters and
675  // the part described by JavaScriptFrameConstants.
676  unsigned fixed_frame_size = ComputeFixedSize(function);
677  unsigned input_frame_size = input_->GetFrameSize();
678  unsigned output_frame_size = height_in_bytes + fixed_frame_size;
679
680  // Allocate and store the output frame description.
681  FrameDescription* output_frame =
682      new(output_frame_size) FrameDescription(output_frame_size, function);
683  output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
684
685  bool is_bottommost = (0 == frame_index);
686  bool is_topmost = (output_count_ - 1 == frame_index);
687  ASSERT(frame_index >= 0 && frame_index < output_count_);
688  ASSERT(output_[frame_index] == NULL);
689  output_[frame_index] = output_frame;
690
691  // The top address for the bottommost output frame can be computed from
692  // the input frame pointer and the output frame's height.  For all
693  // subsequent output frames, it can be computed from the previous one's
694  // top address and the current frame's size.
695  uint32_t top_address;
696  if (is_bottommost) {
697    // 2 = context and function in the frame.
698    top_address =
699        input_->GetRegister(ebp.code()) - (2 * kPointerSize) - height_in_bytes;
700  } else {
701    top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
702  }
703  output_frame->SetTop(top_address);
704
705  // Compute the incoming parameter translation.
706  int parameter_count = function->shared()->formal_parameter_count() + 1;
707  unsigned output_offset = output_frame_size;
708  unsigned input_offset = input_frame_size;
709  for (int i = 0; i < parameter_count; ++i) {
710    output_offset -= kPointerSize;
711    DoTranslateCommand(iterator, frame_index, output_offset);
712  }
713  input_offset -= (parameter_count * kPointerSize);
714
715  // There are no translation commands for the caller's pc and fp, the
716  // context, and the function.  Synthesize their values and set them up
717  // explicitly.
718  //
719  // The caller's pc for the bottommost output frame is the same as in the
720  // input frame.  For all subsequent output frames, it can be read from the
721  // previous one.  This frame's pc can be computed from the non-optimized
722  // function code and AST id of the bailout.
723  output_offset -= kPointerSize;
724  input_offset -= kPointerSize;
725  intptr_t value;
726  if (is_bottommost) {
727    value = input_->GetFrameSlot(input_offset);
728  } else {
729    value = output_[frame_index - 1]->GetPc();
730  }
731  output_frame->SetFrameSlot(output_offset, value);
732  if (FLAG_trace_deopt) {
733    PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's pc\n",
734           top_address + output_offset, output_offset, value);
735  }
736
737  // The caller's frame pointer for the bottommost output frame is the same
738  // as in the input frame.  For all subsequent output frames, it can be
739  // read from the previous one.  Also compute and set this frame's frame
740  // pointer.
741  output_offset -= kPointerSize;
742  input_offset -= kPointerSize;
743  if (is_bottommost) {
744    value = input_->GetFrameSlot(input_offset);
745  } else {
746    value = output_[frame_index - 1]->GetFp();
747  }
748  output_frame->SetFrameSlot(output_offset, value);
749  intptr_t fp_value = top_address + output_offset;
750  ASSERT(!is_bottommost || input_->GetRegister(ebp.code()) == fp_value);
751  output_frame->SetFp(fp_value);
752  if (is_topmost) output_frame->SetRegister(ebp.code(), fp_value);
753  if (FLAG_trace_deopt) {
754    PrintF("    0x%08x: [top + %d] <- 0x%08x ; caller's fp\n",
755           fp_value, output_offset, value);
756  }
757
758  // For the bottommost output frame the context can be gotten from the input
759  // frame. For all subsequent output frames it can be gotten from the function
760  // so long as we don't inline functions that need local contexts.
761  output_offset -= kPointerSize;
762  input_offset -= kPointerSize;
763  if (is_bottommost) {
764    value = input_->GetFrameSlot(input_offset);
765  } else {
766    value = reinterpret_cast<uint32_t>(function->context());
767  }
768  output_frame->SetFrameSlot(output_offset, value);
769  output_frame->SetContext(value);
770  if (is_topmost) output_frame->SetRegister(esi.code(), value);
771  if (FLAG_trace_deopt) {
772    PrintF("    0x%08x: [top + %d] <- 0x%08x ; context\n",
773           top_address + output_offset, output_offset, value);
774  }
775
776  // The function was mentioned explicitly in the BEGIN_FRAME.
777  output_offset -= kPointerSize;
778  input_offset -= kPointerSize;
779  value = reinterpret_cast<uint32_t>(function);
780  // The function for the bottommost output frame should also agree with the
781  // input frame.
782  ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
783  output_frame->SetFrameSlot(output_offset, value);
784  if (FLAG_trace_deopt) {
785    PrintF("    0x%08x: [top + %d] <- 0x%08x ; function\n",
786           top_address + output_offset, output_offset, value);
787  }
788
789  // Translate the rest of the frame.
790  for (unsigned i = 0; i < height; ++i) {
791    output_offset -= kPointerSize;
792    DoTranslateCommand(iterator, frame_index, output_offset);
793  }
794  ASSERT(0 == output_offset);
795
796  // Compute this frame's PC, state, and continuation.
797  Code* non_optimized_code = function->shared()->code();
798  FixedArray* raw_data = non_optimized_code->deoptimization_data();
799  DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
800  Address start = non_optimized_code->instruction_start();
801  unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
802  unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
803  uint32_t pc_value = reinterpret_cast<uint32_t>(start + pc_offset);
804  output_frame->SetPc(pc_value);
805
806  FullCodeGenerator::State state =
807      FullCodeGenerator::StateField::decode(pc_and_state);
808  output_frame->SetState(Smi::FromInt(state));
809
810  // Set the continuation for the topmost frame.
811  if (is_topmost && bailout_type_ != DEBUGGER) {
812    Builtins* builtins = isolate_->builtins();
813    Code* continuation = (bailout_type_ == EAGER)
814        ? builtins->builtin(Builtins::kNotifyDeoptimized)
815        : builtins->builtin(Builtins::kNotifyLazyDeoptimized);
816    output_frame->SetContinuation(
817        reinterpret_cast<uint32_t>(continuation->entry()));
818  }
819}
820
821
822void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
823  // Set the register values. The values are not important as there are no
824  // callee saved registers in JavaScript frames, so all registers are
825  // spilled. Registers ebp and esp are set to the correct values though.
826
827  for (int i = 0; i < Register::kNumRegisters; i++) {
828    input_->SetRegister(i, i * 4);
829  }
830  input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
831  input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
832  for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
833    input_->SetDoubleRegister(i, 0.0);
834  }
835
836  // Fill the frame content from the actual data on the frame.
837  for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
838    input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
839  }
840}
841
842
843#define __ masm()->
844
845void Deoptimizer::EntryGenerator::Generate() {
846  GeneratePrologue();
847  CpuFeatures::Scope scope(SSE2);
848
849  Isolate* isolate = masm()->isolate();
850
851  // Save all general purpose registers before messing with them.
852  const int kNumberOfRegisters = Register::kNumRegisters;
853
854  const int kDoubleRegsSize = kDoubleSize *
855                              XMMRegister::kNumAllocatableRegisters;
856  __ sub(esp, Immediate(kDoubleRegsSize));
857  for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
858    XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
859    int offset = i * kDoubleSize;
860    __ movdbl(Operand(esp, offset), xmm_reg);
861  }
862
863  __ pushad();
864
865  const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
866                                      kDoubleRegsSize;
867
868  // Get the bailout id from the stack.
869  __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
870
871  // Get the address of the location in the code object if possible
872  // and compute the fp-to-sp delta in register edx.
873  if (type() == EAGER) {
874    __ Set(ecx, Immediate(0));
875    __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
876  } else {
877    __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
878    __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
879  }
880  __ sub(edx, ebp);
881  __ neg(edx);
882
883  // Allocate a new deoptimizer object.
884  __ PrepareCallCFunction(6, eax);
885  __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
886  __ mov(Operand(esp, 0 * kPointerSize), eax);  // Function.
887  __ mov(Operand(esp, 1 * kPointerSize), Immediate(type()));  // Bailout type.
888  __ mov(Operand(esp, 2 * kPointerSize), ebx);  // Bailout id.
889  __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Code address or 0.
890  __ mov(Operand(esp, 4 * kPointerSize), edx);  // Fp-to-sp delta.
891  __ mov(Operand(esp, 5 * kPointerSize),
892         Immediate(ExternalReference::isolate_address()));
893  {
894    AllowExternalCallThatCantCauseGC scope(masm());
895    __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate), 6);
896  }
897
898  // Preserve deoptimizer object in register eax and get the input
899  // frame descriptor pointer.
900  __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
901
902  // Fill in the input registers.
903  for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
904    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
905    __ pop(Operand(ebx, offset));
906  }
907
908  // Fill in the double input registers.
909  int double_regs_offset = FrameDescription::double_registers_offset();
910  for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
911    int dst_offset = i * kDoubleSize + double_regs_offset;
912    int src_offset = i * kDoubleSize;
913    __ movdbl(xmm0, Operand(esp, src_offset));
914    __ movdbl(Operand(ebx, dst_offset), xmm0);
915  }
916
917  // Remove the bailout id and the double registers from the stack.
918  if (type() == EAGER) {
919    __ add(esp, Immediate(kDoubleRegsSize + kPointerSize));
920  } else {
921    __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
922  }
923
924  // Compute a pointer to the unwinding limit in register ecx; that is
925  // the first stack slot not part of the input frame.
926  __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
927  __ add(ecx, esp);
928
929  // Unwind the stack down to - but not including - the unwinding
930  // limit and copy the contents of the activation frame to the input
931  // frame description.
932  __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
933  Label pop_loop;
934  __ bind(&pop_loop);
935  __ pop(Operand(edx, 0));
936  __ add(edx, Immediate(sizeof(uint32_t)));
937  __ cmp(ecx, esp);
938  __ j(not_equal, &pop_loop);
939
940  // Compute the output frame in the deoptimizer.
941  __ push(eax);
942  __ PrepareCallCFunction(1, ebx);
943  __ mov(Operand(esp, 0 * kPointerSize), eax);
944  {
945    AllowExternalCallThatCantCauseGC scope(masm());
946    __ CallCFunction(
947        ExternalReference::compute_output_frames_function(isolate), 1);
948  }
949  __ pop(eax);
950
951  // Replace the current frame with the output frames.
952  Label outer_push_loop, inner_push_loop;
953  // Outer loop state: eax = current FrameDescription**, edx = one past the
954  // last FrameDescription**.
955  __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
956  __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
957  __ lea(edx, Operand(eax, edx, times_4, 0));
958  __ bind(&outer_push_loop);
959  // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
960  __ mov(ebx, Operand(eax, 0));
961  __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
962  __ bind(&inner_push_loop);
963  __ sub(ecx, Immediate(sizeof(uint32_t)));
964  __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
965  __ test(ecx, ecx);
966  __ j(not_zero, &inner_push_loop);
967  __ add(eax, Immediate(kPointerSize));
968  __ cmp(eax, edx);
969  __ j(below, &outer_push_loop);
970
971  // In case of OSR, we have to restore the XMM registers.
972  if (type() == OSR) {
973    for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) {
974      XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
975      int src_offset = i * kDoubleSize + double_regs_offset;
976      __ movdbl(xmm_reg, Operand(ebx, src_offset));
977    }
978  }
979
980  // Push state, pc, and continuation from the last output frame.
981  if (type() != OSR) {
982    __ push(Operand(ebx, FrameDescription::state_offset()));
983  }
984  __ push(Operand(ebx, FrameDescription::pc_offset()));
985  __ push(Operand(ebx, FrameDescription::continuation_offset()));
986
987
988  // Push the registers from the last output frame.
989  for (int i = 0; i < kNumberOfRegisters; i++) {
990    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
991    __ push(Operand(ebx, offset));
992  }
993
994  // Restore the registers from the stack.
995  __ popad();
996
997  // Return to the continuation point.
998  __ ret(0);
999}
1000
1001
1002void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
1003  // Create a sequence of deoptimization entries.
1004  Label done;
1005  for (int i = 0; i < count(); i++) {
1006    int start = masm()->pc_offset();
1007    USE(start);
1008    __ push_imm32(i);
1009    __ jmp(&done);
1010    ASSERT(masm()->pc_offset() - start == table_entry_size_);
1011  }
1012  __ bind(&done);
1013}
1014
1015#undef __
1016
1017
1018} }  // namespace v8::internal
1019
1020#endif  // V8_TARGET_ARCH_IA32
1021