1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/Basic/AddressSpaces.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LangOptions.h"
21#include "clang/Basic/OperatorKinds.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/VersionTuple.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/LambdaMangleContext.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/PrettyPrinter.h"
28#include "clang/AST/TemplateName.h"
29#include "clang/AST/Type.h"
30#include "clang/AST/CanonicalType.h"
31#include "clang/AST/RawCommentList.h"
32#include "clang/AST/CommentCommandTraits.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/FoldingSet.h"
35#include "llvm/ADT/IntrusiveRefCntPtr.h"
36#include "llvm/ADT/OwningPtr.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/TinyPtrVector.h"
39#include "llvm/Support/Allocator.h"
40#include <vector>
41
42namespace llvm {
43  struct fltSemantics;
44}
45
46namespace clang {
47  class FileManager;
48  class ASTRecordLayout;
49  class BlockExpr;
50  class CharUnits;
51  class DiagnosticsEngine;
52  class Expr;
53  class ExternalASTSource;
54  class ASTMutationListener;
55  class IdentifierTable;
56  class SelectorTable;
57  class TargetInfo;
58  class CXXABI;
59  // Decls
60  class DeclContext;
61  class CXXConversionDecl;
62  class CXXMethodDecl;
63  class CXXRecordDecl;
64  class Decl;
65  class FieldDecl;
66  class MangleContext;
67  class ObjCIvarDecl;
68  class ObjCIvarRefExpr;
69  class ObjCPropertyDecl;
70  class ParmVarDecl;
71  class RecordDecl;
72  class StoredDeclsMap;
73  class TagDecl;
74  class TemplateTemplateParmDecl;
75  class TemplateTypeParmDecl;
76  class TranslationUnitDecl;
77  class TypeDecl;
78  class TypedefNameDecl;
79  class UsingDecl;
80  class UsingShadowDecl;
81  class UnresolvedSetIterator;
82
83  namespace Builtin { class Context; }
84
85  namespace comments {
86    class FullComment;
87  }
88
89/// \brief Holds long-lived AST nodes (such as types and decls) that can be
90/// referred to throughout the semantic analysis of a file.
91class ASTContext : public RefCountedBase<ASTContext> {
92  ASTContext &this_() { return *this; }
93
94  mutable std::vector<Type*> Types;
95  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
96  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
97  mutable llvm::FoldingSet<PointerType> PointerTypes;
98  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
99  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
100  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
101  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
102  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
103  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
104  mutable std::vector<VariableArrayType*> VariableArrayTypes;
105  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
106  mutable llvm::FoldingSet<DependentSizedExtVectorType>
107    DependentSizedExtVectorTypes;
108  mutable llvm::FoldingSet<VectorType> VectorTypes;
109  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
110  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
111    FunctionProtoTypes;
112  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
113  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
114  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
115  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
116    SubstTemplateTypeParmTypes;
117  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
118    SubstTemplateTypeParmPackTypes;
119  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
120    TemplateSpecializationTypes;
121  mutable llvm::FoldingSet<ParenType> ParenTypes;
122  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
123  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
124  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
125                                     ASTContext&>
126    DependentTemplateSpecializationTypes;
127  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
128  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
129  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
130  mutable llvm::FoldingSet<AutoType> AutoTypes;
131  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
132  llvm::FoldingSet<AttributedType> AttributedTypes;
133
134  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
135  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
136  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
137    SubstTemplateTemplateParms;
138  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
139                                     ASTContext&>
140    SubstTemplateTemplateParmPacks;
141
142  /// \brief The set of nested name specifiers.
143  ///
144  /// This set is managed by the NestedNameSpecifier class.
145  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
146  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
147  friend class NestedNameSpecifier;
148
149  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
150  ///
151  /// This is lazily created.  This is intentionally not serialized.
152  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
153    ASTRecordLayouts;
154  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
155    ObjCLayouts;
156
157  /// \brief A cache from types to size and alignment information.
158  typedef llvm::DenseMap<const Type*,
159                         std::pair<uint64_t, unsigned> > TypeInfoMap;
160  mutable TypeInfoMap MemoizedTypeInfo;
161
162  /// \brief A cache mapping from CXXRecordDecls to key functions.
163  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
164
165  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
166  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
167
168  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
169  /// interface.
170  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
171
172  /// \brief Mapping from __block VarDecls to their copy initialization expr.
173  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
174
175  /// \brief Mapping from class scope functions specialization to their
176  /// template patterns.
177  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
178    ClassScopeSpecializationPattern;
179
180  /// \brief Representation of a "canonical" template template parameter that
181  /// is used in canonical template names.
182  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
183    TemplateTemplateParmDecl *Parm;
184
185  public:
186    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
187      : Parm(Parm) { }
188
189    TemplateTemplateParmDecl *getParam() const { return Parm; }
190
191    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
192
193    static void Profile(llvm::FoldingSetNodeID &ID,
194                        TemplateTemplateParmDecl *Parm);
195  };
196  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
197    CanonTemplateTemplateParms;
198
199  TemplateTemplateParmDecl *
200    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
201
202  /// \brief The typedef for the __int128_t type.
203  mutable TypedefDecl *Int128Decl;
204
205  /// \brief The typedef for the __uint128_t type.
206  mutable TypedefDecl *UInt128Decl;
207
208  /// \brief The typedef for the target specific predefined
209  /// __builtin_va_list type.
210  mutable TypedefDecl *BuiltinVaListDecl;
211
212  /// \brief The typedef for the predefined \c id type.
213  mutable TypedefDecl *ObjCIdDecl;
214
215  /// \brief The typedef for the predefined \c SEL type.
216  mutable TypedefDecl *ObjCSelDecl;
217
218  /// \brief The typedef for the predefined \c Class type.
219  mutable TypedefDecl *ObjCClassDecl;
220
221  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
222  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
223
224  /// \brief The typedef for the predefined 'BOOL' type.
225  mutable TypedefDecl *BOOLDecl;
226
227  // Typedefs which may be provided defining the structure of Objective-C
228  // pseudo-builtins
229  QualType ObjCIdRedefinitionType;
230  QualType ObjCClassRedefinitionType;
231  QualType ObjCSelRedefinitionType;
232
233  QualType ObjCConstantStringType;
234  mutable RecordDecl *CFConstantStringTypeDecl;
235
236  QualType ObjCNSStringType;
237
238  /// \brief The typedef declaration for the Objective-C "instancetype" type.
239  TypedefDecl *ObjCInstanceTypeDecl;
240
241  /// \brief The type for the C FILE type.
242  TypeDecl *FILEDecl;
243
244  /// \brief The type for the C jmp_buf type.
245  TypeDecl *jmp_bufDecl;
246
247  /// \brief The type for the C sigjmp_buf type.
248  TypeDecl *sigjmp_bufDecl;
249
250  /// \brief The type for the C ucontext_t type.
251  TypeDecl *ucontext_tDecl;
252
253  /// \brief Type for the Block descriptor for Blocks CodeGen.
254  ///
255  /// Since this is only used for generation of debug info, it is not
256  /// serialized.
257  mutable RecordDecl *BlockDescriptorType;
258
259  /// \brief Type for the Block descriptor for Blocks CodeGen.
260  ///
261  /// Since this is only used for generation of debug info, it is not
262  /// serialized.
263  mutable RecordDecl *BlockDescriptorExtendedType;
264
265  /// \brief Declaration for the CUDA cudaConfigureCall function.
266  FunctionDecl *cudaConfigureCallDecl;
267
268  TypeSourceInfo NullTypeSourceInfo;
269
270  /// \brief Keeps track of all declaration attributes.
271  ///
272  /// Since so few decls have attrs, we keep them in a hash map instead of
273  /// wasting space in the Decl class.
274  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
275
276  /// \brief Keeps track of the static data member templates from which
277  /// static data members of class template specializations were instantiated.
278  ///
279  /// This data structure stores the mapping from instantiations of static
280  /// data members to the static data member representations within the
281  /// class template from which they were instantiated along with the kind
282  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
283  ///
284  /// Given the following example:
285  ///
286  /// \code
287  /// template<typename T>
288  /// struct X {
289  ///   static T value;
290  /// };
291  ///
292  /// template<typename T>
293  ///   T X<T>::value = T(17);
294  ///
295  /// int *x = &X<int>::value;
296  /// \endcode
297  ///
298  /// This mapping will contain an entry that maps from the VarDecl for
299  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
300  /// class template X) and will be marked TSK_ImplicitInstantiation.
301  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
302    InstantiatedFromStaticDataMember;
303
304  /// \brief Keeps track of the declaration from which a UsingDecl was
305  /// created during instantiation.
306  ///
307  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
308  /// or an UnresolvedUsingTypenameDecl.
309  ///
310  /// For example:
311  /// \code
312  /// template<typename T>
313  /// struct A {
314  ///   void f();
315  /// };
316  ///
317  /// template<typename T>
318  /// struct B : A<T> {
319  ///   using A<T>::f;
320  /// };
321  ///
322  /// template struct B<int>;
323  /// \endcode
324  ///
325  /// This mapping will contain an entry that maps from the UsingDecl in
326  /// B<int> to the UnresolvedUsingDecl in B<T>.
327  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
328
329  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
330    InstantiatedFromUsingShadowDecl;
331
332  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
333
334  /// \brief Mapping that stores the methods overridden by a given C++
335  /// member function.
336  ///
337  /// Since most C++ member functions aren't virtual and therefore
338  /// don't override anything, we store the overridden functions in
339  /// this map on the side rather than within the CXXMethodDecl structure.
340  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
341  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
342
343  /// \brief Mapping from each declaration context to its corresponding lambda
344  /// mangling context.
345  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
346
347  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
348  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
349  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
350  ParameterIndexTable ParamIndices;
351
352  ImportDecl *FirstLocalImport;
353  ImportDecl *LastLocalImport;
354
355  TranslationUnitDecl *TUDecl;
356
357  /// \brief The associated SourceManager object.a
358  SourceManager &SourceMgr;
359
360  /// \brief The language options used to create the AST associated with
361  ///  this ASTContext object.
362  LangOptions &LangOpts;
363
364  /// \brief The allocator used to create AST objects.
365  ///
366  /// AST objects are never destructed; rather, all memory associated with the
367  /// AST objects will be released when the ASTContext itself is destroyed.
368  mutable llvm::BumpPtrAllocator BumpAlloc;
369
370  /// \brief Allocator for partial diagnostics.
371  PartialDiagnostic::StorageAllocator DiagAllocator;
372
373  /// \brief The current C++ ABI.
374  OwningPtr<CXXABI> ABI;
375  CXXABI *createCXXABI(const TargetInfo &T);
376
377  /// \brief The logical -> physical address space map.
378  const LangAS::Map *AddrSpaceMap;
379
380  friend class ASTDeclReader;
381  friend class ASTReader;
382  friend class ASTWriter;
383  friend class CXXRecordDecl;
384
385  const TargetInfo *Target;
386  clang::PrintingPolicy PrintingPolicy;
387
388public:
389  IdentifierTable &Idents;
390  SelectorTable &Selectors;
391  Builtin::Context &BuiltinInfo;
392  mutable DeclarationNameTable DeclarationNames;
393  OwningPtr<ExternalASTSource> ExternalSource;
394  ASTMutationListener *Listener;
395
396  clang::PrintingPolicy getPrintingPolicy() const { return PrintingPolicy; }
397
398  void setPrintingPolicy(clang::PrintingPolicy Policy) {
399    PrintingPolicy = Policy;
400  }
401
402  SourceManager& getSourceManager() { return SourceMgr; }
403  const SourceManager& getSourceManager() const { return SourceMgr; }
404
405  llvm::BumpPtrAllocator &getAllocator() const {
406    return BumpAlloc;
407  }
408
409  void *Allocate(unsigned Size, unsigned Align = 8) const {
410    return BumpAlloc.Allocate(Size, Align);
411  }
412  void Deallocate(void *Ptr) const { }
413
414  /// Return the total amount of physical memory allocated for representing
415  /// AST nodes and type information.
416  size_t getASTAllocatedMemory() const {
417    return BumpAlloc.getTotalMemory();
418  }
419  /// Return the total memory used for various side tables.
420  size_t getSideTableAllocatedMemory() const;
421
422  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
423    return DiagAllocator;
424  }
425
426  const TargetInfo &getTargetInfo() const { return *Target; }
427
428  const LangOptions& getLangOpts() const { return LangOpts; }
429
430  DiagnosticsEngine &getDiagnostics() const;
431
432  FullSourceLoc getFullLoc(SourceLocation Loc) const {
433    return FullSourceLoc(Loc,SourceMgr);
434  }
435
436  /// \brief All comments in this translation unit.
437  RawCommentList Comments;
438
439  /// \brief True if comments are already loaded from ExternalASTSource.
440  mutable bool CommentsLoaded;
441
442  class RawCommentAndCacheFlags {
443  public:
444    enum Kind {
445      /// We searched for a comment attached to the particular declaration, but
446      /// didn't find any.
447      ///
448      /// getRaw() == 0.
449      NoCommentInDecl = 0,
450
451      /// We have found a comment attached to this particular declaration.
452      ///
453      /// getRaw() != 0.
454      FromDecl,
455
456      /// This declaration does not have an attached comment, and we have
457      /// searched the redeclaration chain.
458      ///
459      /// If getRaw() == 0, the whole redeclaration chain does not have any
460      /// comments.
461      ///
462      /// If getRaw() != 0, it is a comment propagated from other
463      /// redeclaration.
464      FromRedecl
465    };
466
467    Kind getKind() const LLVM_READONLY {
468      return Data.getInt();
469    }
470
471    void setKind(Kind K) {
472      Data.setInt(K);
473    }
474
475    const RawComment *getRaw() const LLVM_READONLY {
476      return Data.getPointer();
477    }
478
479    void setRaw(const RawComment *RC) {
480      Data.setPointer(RC);
481    }
482
483    const Decl *getOriginalDecl() const LLVM_READONLY {
484      return OriginalDecl;
485    }
486
487    void setOriginalDecl(const Decl *Orig) {
488      OriginalDecl = Orig;
489    }
490
491  private:
492    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
493    const Decl *OriginalDecl;
494  };
495
496  /// \brief Mapping from declarations to comments attached to any
497  /// redeclaration.
498  ///
499  /// Raw comments are owned by Comments list.  This mapping is populated
500  /// lazily.
501  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
502
503  /// \brief Mapping from declarations to parsed comments attached to any
504  /// redeclaration.
505  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
506
507  /// \brief Return the documentation comment attached to a given declaration,
508  /// without looking into cache.
509  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
510
511public:
512  RawCommentList &getRawCommentList() {
513    return Comments;
514  }
515
516  void addComment(const RawComment &RC) {
517    Comments.addComment(RC, BumpAlloc);
518  }
519
520  /// \brief Return the documentation comment attached to a given declaration.
521  /// Returns NULL if no comment is attached.
522  ///
523  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
524  /// the comment, if the comment we found comes from a redeclaration.
525  const RawComment *getRawCommentForAnyRedecl(
526                                      const Decl *D,
527                                      const Decl **OriginalDecl = NULL) const;
528
529  /// Return parsed documentation comment attached to a given declaration.
530  /// Returns NULL if no comment is attached.
531  comments::FullComment *getCommentForDecl(const Decl *D) const;
532
533private:
534  mutable comments::CommandTraits CommentCommandTraits;
535
536public:
537  comments::CommandTraits &getCommentCommandTraits() const {
538    return CommentCommandTraits;
539  }
540
541  /// \brief Retrieve the attributes for the given declaration.
542  AttrVec& getDeclAttrs(const Decl *D);
543
544  /// \brief Erase the attributes corresponding to the given declaration.
545  void eraseDeclAttrs(const Decl *D);
546
547  /// \brief If this variable is an instantiated static data member of a
548  /// class template specialization, returns the templated static data member
549  /// from which it was instantiated.
550  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
551                                                           const VarDecl *Var);
552
553  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
554
555  void setClassScopeSpecializationPattern(FunctionDecl *FD,
556                                          FunctionDecl *Pattern);
557
558  /// \brief Note that the static data member \p Inst is an instantiation of
559  /// the static data member template \p Tmpl of a class template.
560  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
561                                           TemplateSpecializationKind TSK,
562                        SourceLocation PointOfInstantiation = SourceLocation());
563
564  /// \brief If the given using decl \p Inst is an instantiation of a
565  /// (possibly unresolved) using decl from a template instantiation,
566  /// return it.
567  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
568
569  /// \brief Remember that the using decl \p Inst is an instantiation
570  /// of the using decl \p Pattern of a class template.
571  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
572
573  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
574                                          UsingShadowDecl *Pattern);
575  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
576
577  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
578
579  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
580
581  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
582  /// the non-bitfield \p LastFD.
583  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
584                                      const FieldDecl *LastFD) const;
585
586  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
587  /// the bitfield \p LastFD.
588  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
589                                   const FieldDecl *LastFD) const;
590
591  /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
592  /// \p LastFD.
593  bool BitfieldFollowsBitfield(const FieldDecl *FD,
594                               const FieldDecl *LastFD) const;
595
596  /// \brief Return \c true if \p FD is not a bitfield which follows the
597  /// bitfield \p LastFD.
598  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
599                                  const FieldDecl *LastFD) const;
600
601  /// \brief Return \c true if \p FD is a bitfield which follows the
602  /// non-bitfield \p LastFD.
603  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
604                                  const FieldDecl *LastFD) const;
605
606  // Access to the set of methods overridden by the given C++ method.
607  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
608  overridden_cxx_method_iterator
609  overridden_methods_begin(const CXXMethodDecl *Method) const;
610
611  overridden_cxx_method_iterator
612  overridden_methods_end(const CXXMethodDecl *Method) const;
613
614  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
615
616  /// \brief Note that the given C++ \p Method overrides the given \p
617  /// Overridden method.
618  void addOverriddenMethod(const CXXMethodDecl *Method,
619                           const CXXMethodDecl *Overridden);
620
621  /// \brief Notify the AST context that a new import declaration has been
622  /// parsed or implicitly created within this translation unit.
623  void addedLocalImportDecl(ImportDecl *Import);
624
625  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
626    return Import->NextLocalImport;
627  }
628
629  /// \brief Iterator that visits import declarations.
630  class import_iterator {
631    ImportDecl *Import;
632
633  public:
634    typedef ImportDecl               *value_type;
635    typedef ImportDecl               *reference;
636    typedef ImportDecl               *pointer;
637    typedef int                       difference_type;
638    typedef std::forward_iterator_tag iterator_category;
639
640    import_iterator() : Import() { }
641    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
642
643    reference operator*() const { return Import; }
644    pointer operator->() const { return Import; }
645
646    import_iterator &operator++() {
647      Import = ASTContext::getNextLocalImport(Import);
648      return *this;
649    }
650
651    import_iterator operator++(int) {
652      import_iterator Other(*this);
653      ++(*this);
654      return Other;
655    }
656
657    friend bool operator==(import_iterator X, import_iterator Y) {
658      return X.Import == Y.Import;
659    }
660
661    friend bool operator!=(import_iterator X, import_iterator Y) {
662      return X.Import != Y.Import;
663    }
664  };
665
666  import_iterator local_import_begin() const {
667    return import_iterator(FirstLocalImport);
668  }
669  import_iterator local_import_end() const { return import_iterator(); }
670
671  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
672
673
674  // Builtin Types.
675  CanQualType VoidTy;
676  CanQualType BoolTy;
677  CanQualType CharTy;
678  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
679  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
680  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
681  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
682  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
683  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
684  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
685  CanQualType FloatTy, DoubleTy, LongDoubleTy;
686  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
687  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
688  CanQualType VoidPtrTy, NullPtrTy;
689  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
690  CanQualType BuiltinFnTy;
691  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
692  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
693  CanQualType ObjCBuiltinBoolTy;
694
695  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
696  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
697  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
698
699  // Type used to help define __builtin_va_list for some targets.
700  // The type is built when constructing 'BuiltinVaListDecl'.
701  mutable QualType VaListTagTy;
702
703  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
704             IdentifierTable &idents, SelectorTable &sels,
705             Builtin::Context &builtins,
706             unsigned size_reserve,
707             bool DelayInitialization = false);
708
709  ~ASTContext();
710
711  /// \brief Attach an external AST source to the AST context.
712  ///
713  /// The external AST source provides the ability to load parts of
714  /// the abstract syntax tree as needed from some external storage,
715  /// e.g., a precompiled header.
716  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
717
718  /// \brief Retrieve a pointer to the external AST source associated
719  /// with this AST context, if any.
720  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
721
722  /// \brief Attach an AST mutation listener to the AST context.
723  ///
724  /// The AST mutation listener provides the ability to track modifications to
725  /// the abstract syntax tree entities committed after they were initially
726  /// created.
727  void setASTMutationListener(ASTMutationListener *Listener) {
728    this->Listener = Listener;
729  }
730
731  /// \brief Retrieve a pointer to the AST mutation listener associated
732  /// with this AST context, if any.
733  ASTMutationListener *getASTMutationListener() const { return Listener; }
734
735  void PrintStats() const;
736  const std::vector<Type*>& getTypes() const { return Types; }
737
738  /// \brief Retrieve the declaration for the 128-bit signed integer type.
739  TypedefDecl *getInt128Decl() const;
740
741  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
742  TypedefDecl *getUInt128Decl() const;
743
744  //===--------------------------------------------------------------------===//
745  //                           Type Constructors
746  //===--------------------------------------------------------------------===//
747
748private:
749  /// \brief Return a type with extended qualifiers.
750  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
751
752  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
753
754public:
755  /// \brief Return the uniqued reference to the type for an address space
756  /// qualified type with the specified type and address space.
757  ///
758  /// The resulting type has a union of the qualifiers from T and the address
759  /// space. If T already has an address space specifier, it is silently
760  /// replaced.
761  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
762
763  /// \brief Return the uniqued reference to the type for an Objective-C
764  /// gc-qualified type.
765  ///
766  /// The retulting type has a union of the qualifiers from T and the gc
767  /// attribute.
768  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
769
770  /// \brief Return the uniqued reference to the type for a \c restrict
771  /// qualified type.
772  ///
773  /// The resulting type has a union of the qualifiers from \p T and
774  /// \c restrict.
775  QualType getRestrictType(QualType T) const {
776    return T.withFastQualifiers(Qualifiers::Restrict);
777  }
778
779  /// \brief Return the uniqued reference to the type for a \c volatile
780  /// qualified type.
781  ///
782  /// The resulting type has a union of the qualifiers from \p T and
783  /// \c volatile.
784  QualType getVolatileType(QualType T) const {
785    return T.withFastQualifiers(Qualifiers::Volatile);
786  }
787
788  /// \brief Return the uniqued reference to the type for a \c const
789  /// qualified type.
790  ///
791  /// The resulting type has a union of the qualifiers from \p T and \c const.
792  ///
793  /// It can be reasonably expected that this will always be equivalent to
794  /// calling T.withConst().
795  QualType getConstType(QualType T) const { return T.withConst(); }
796
797  /// \brief Change the ExtInfo on a function type.
798  const FunctionType *adjustFunctionType(const FunctionType *Fn,
799                                         FunctionType::ExtInfo EInfo);
800
801  /// \brief Return the uniqued reference to the type for a complex
802  /// number with the specified element type.
803  QualType getComplexType(QualType T) const;
804  CanQualType getComplexType(CanQualType T) const {
805    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
806  }
807
808  /// \brief Return the uniqued reference to the type for a pointer to
809  /// the specified type.
810  QualType getPointerType(QualType T) const;
811  CanQualType getPointerType(CanQualType T) const {
812    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
813  }
814
815  /// \brief Return the uniqued reference to the atomic type for the specified
816  /// type.
817  QualType getAtomicType(QualType T) const;
818
819  /// \brief Return the uniqued reference to the type for a block of the
820  /// specified type.
821  QualType getBlockPointerType(QualType T) const;
822
823  /// Gets the struct used to keep track of the descriptor for pointer to
824  /// blocks.
825  QualType getBlockDescriptorType() const;
826
827  /// Gets the struct used to keep track of the extended descriptor for
828  /// pointer to blocks.
829  QualType getBlockDescriptorExtendedType() const;
830
831  void setcudaConfigureCallDecl(FunctionDecl *FD) {
832    cudaConfigureCallDecl = FD;
833  }
834  FunctionDecl *getcudaConfigureCallDecl() {
835    return cudaConfigureCallDecl;
836  }
837
838  /// Builds the struct used for __block variables.
839  QualType BuildByRefType(StringRef DeclName, QualType Ty) const;
840
841  /// Returns true iff we need copy/dispose helpers for the given type.
842  bool BlockRequiresCopying(QualType Ty) const;
843
844  /// \brief Return the uniqued reference to the type for an lvalue reference
845  /// to the specified type.
846  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
847    const;
848
849  /// \brief Return the uniqued reference to the type for an rvalue reference
850  /// to the specified type.
851  QualType getRValueReferenceType(QualType T) const;
852
853  /// \brief Return the uniqued reference to the type for a member pointer to
854  /// the specified type in the specified class.
855  ///
856  /// The class \p Cls is a \c Type because it could be a dependent name.
857  QualType getMemberPointerType(QualType T, const Type *Cls) const;
858
859  /// \brief Return a non-unique reference to the type for a variable array of
860  /// the specified element type.
861  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
862                                ArrayType::ArraySizeModifier ASM,
863                                unsigned IndexTypeQuals,
864                                SourceRange Brackets) const;
865
866  /// \brief Return a non-unique reference to the type for a dependently-sized
867  /// array of the specified element type.
868  ///
869  /// FIXME: We will need these to be uniqued, or at least comparable, at some
870  /// point.
871  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
872                                      ArrayType::ArraySizeModifier ASM,
873                                      unsigned IndexTypeQuals,
874                                      SourceRange Brackets) const;
875
876  /// \brief Return a unique reference to the type for an incomplete array of
877  /// the specified element type.
878  QualType getIncompleteArrayType(QualType EltTy,
879                                  ArrayType::ArraySizeModifier ASM,
880                                  unsigned IndexTypeQuals) const;
881
882  /// \brief Return the unique reference to the type for a constant array of
883  /// the specified element type.
884  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
885                                ArrayType::ArraySizeModifier ASM,
886                                unsigned IndexTypeQuals) const;
887
888  /// \brief Returns a vla type where known sizes are replaced with [*].
889  QualType getVariableArrayDecayedType(QualType Ty) const;
890
891  /// \brief Return the unique reference to a vector type of the specified
892  /// element type and size.
893  ///
894  /// \pre \p VectorType must be a built-in type.
895  QualType getVectorType(QualType VectorType, unsigned NumElts,
896                         VectorType::VectorKind VecKind) const;
897
898  /// \brief Return the unique reference to an extended vector type
899  /// of the specified element type and size.
900  ///
901  /// \pre \p VectorType must be a built-in type.
902  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
903
904  /// \pre Return a non-unique reference to the type for a dependently-sized
905  /// vector of the specified element type.
906  ///
907  /// FIXME: We will need these to be uniqued, or at least comparable, at some
908  /// point.
909  QualType getDependentSizedExtVectorType(QualType VectorType,
910                                          Expr *SizeExpr,
911                                          SourceLocation AttrLoc) const;
912
913  /// \brief Return a K&R style C function type like 'int()'.
914  QualType getFunctionNoProtoType(QualType ResultTy,
915                                  const FunctionType::ExtInfo &Info) const;
916
917  QualType getFunctionNoProtoType(QualType ResultTy) const {
918    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
919  }
920
921  /// \brief Return a normal function type with a typed argument list.
922  QualType getFunctionType(QualType ResultTy,
923                           const QualType *Args, unsigned NumArgs,
924                           const FunctionProtoType::ExtProtoInfo &EPI) const;
925
926  /// \brief Return the unique reference to the type for the specified type
927  /// declaration.
928  QualType getTypeDeclType(const TypeDecl *Decl,
929                           const TypeDecl *PrevDecl = 0) const {
930    assert(Decl && "Passed null for Decl param");
931    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
932
933    if (PrevDecl) {
934      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
935      Decl->TypeForDecl = PrevDecl->TypeForDecl;
936      return QualType(PrevDecl->TypeForDecl, 0);
937    }
938
939    return getTypeDeclTypeSlow(Decl);
940  }
941
942  /// \brief Return the unique reference to the type for the specified
943  /// typedef-name decl.
944  QualType getTypedefType(const TypedefNameDecl *Decl,
945                          QualType Canon = QualType()) const;
946
947  QualType getRecordType(const RecordDecl *Decl) const;
948
949  QualType getEnumType(const EnumDecl *Decl) const;
950
951  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
952
953  QualType getAttributedType(AttributedType::Kind attrKind,
954                             QualType modifiedType,
955                             QualType equivalentType);
956
957  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
958                                        QualType Replacement) const;
959  QualType getSubstTemplateTypeParmPackType(
960                                          const TemplateTypeParmType *Replaced,
961                                            const TemplateArgument &ArgPack);
962
963  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
964                                   bool ParameterPack,
965                                   TemplateTypeParmDecl *ParmDecl = 0) const;
966
967  QualType getTemplateSpecializationType(TemplateName T,
968                                         const TemplateArgument *Args,
969                                         unsigned NumArgs,
970                                         QualType Canon = QualType()) const;
971
972  QualType getCanonicalTemplateSpecializationType(TemplateName T,
973                                                  const TemplateArgument *Args,
974                                                  unsigned NumArgs) const;
975
976  QualType getTemplateSpecializationType(TemplateName T,
977                                         const TemplateArgumentListInfo &Args,
978                                         QualType Canon = QualType()) const;
979
980  TypeSourceInfo *
981  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
982                                    const TemplateArgumentListInfo &Args,
983                                    QualType Canon = QualType()) const;
984
985  QualType getParenType(QualType NamedType) const;
986
987  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
988                             NestedNameSpecifier *NNS,
989                             QualType NamedType) const;
990  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
991                                NestedNameSpecifier *NNS,
992                                const IdentifierInfo *Name,
993                                QualType Canon = QualType()) const;
994
995  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
996                                                  NestedNameSpecifier *NNS,
997                                                  const IdentifierInfo *Name,
998                                    const TemplateArgumentListInfo &Args) const;
999  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1000                                                  NestedNameSpecifier *NNS,
1001                                                  const IdentifierInfo *Name,
1002                                                  unsigned NumArgs,
1003                                            const TemplateArgument *Args) const;
1004
1005  QualType getPackExpansionType(QualType Pattern,
1006                                llvm::Optional<unsigned> NumExpansions);
1007
1008  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1009                                ObjCInterfaceDecl *PrevDecl = 0) const;
1010
1011  QualType getObjCObjectType(QualType Base,
1012                             ObjCProtocolDecl * const *Protocols,
1013                             unsigned NumProtocols) const;
1014
1015  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1016  QualType getObjCObjectPointerType(QualType OIT) const;
1017
1018  /// \brief GCC extension.
1019  QualType getTypeOfExprType(Expr *e) const;
1020  QualType getTypeOfType(QualType t) const;
1021
1022  /// \brief C++11 decltype.
1023  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1024
1025  /// \brief Unary type transforms
1026  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1027                                 UnaryTransformType::UTTKind UKind) const;
1028
1029  /// \brief C++11 deduced auto type.
1030  QualType getAutoType(QualType DeducedType) const;
1031
1032  /// \brief C++11 deduction pattern for 'auto' type.
1033  QualType getAutoDeductType() const;
1034
1035  /// \brief C++11 deduction pattern for 'auto &&' type.
1036  QualType getAutoRRefDeductType() const;
1037
1038  /// \brief Return the unique reference to the type for the specified TagDecl
1039  /// (struct/union/class/enum) decl.
1040  QualType getTagDeclType(const TagDecl *Decl) const;
1041
1042  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1043  /// <stddef.h>.
1044  ///
1045  /// The sizeof operator requires this (C99 6.5.3.4p4).
1046  CanQualType getSizeType() const;
1047
1048  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1049  /// <stdint.h>.
1050  CanQualType getIntMaxType() const;
1051
1052  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1053  /// <stdint.h>.
1054  CanQualType getUIntMaxType() const;
1055
1056  /// \brief In C++, this returns the unique wchar_t type.  In C99, this
1057  /// returns a type compatible with the type defined in <stddef.h> as defined
1058  /// by the target.
1059  QualType getWCharType() const { return WCharTy; }
1060
1061  /// \brief Return the type of "signed wchar_t".
1062  ///
1063  /// Used when in C++, as a GCC extension.
1064  QualType getSignedWCharType() const;
1065
1066  /// \brief Return the type of "unsigned wchar_t".
1067  ///
1068  /// Used when in C++, as a GCC extension.
1069  QualType getUnsignedWCharType() const;
1070
1071  /// \brief In C99, this returns a type compatible with the type
1072  /// defined in <stddef.h> as defined by the target.
1073  QualType getWIntType() const { return WIntTy; }
1074
1075  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1076  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1077  QualType getPointerDiffType() const;
1078
1079  /// \brief Return the C structure type used to represent constant CFStrings.
1080  QualType getCFConstantStringType() const;
1081
1082  /// Get the structure type used to representation CFStrings, or NULL
1083  /// if it hasn't yet been built.
1084  QualType getRawCFConstantStringType() const {
1085    if (CFConstantStringTypeDecl)
1086      return getTagDeclType(CFConstantStringTypeDecl);
1087    return QualType();
1088  }
1089  void setCFConstantStringType(QualType T);
1090
1091  // This setter/getter represents the ObjC type for an NSConstantString.
1092  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1093  QualType getObjCConstantStringInterface() const {
1094    return ObjCConstantStringType;
1095  }
1096
1097  QualType getObjCNSStringType() const {
1098    return ObjCNSStringType;
1099  }
1100
1101  void setObjCNSStringType(QualType T) {
1102    ObjCNSStringType = T;
1103  }
1104
1105  /// \brief Retrieve the type that \c id has been defined to, which may be
1106  /// different from the built-in \c id if \c id has been typedef'd.
1107  QualType getObjCIdRedefinitionType() const {
1108    if (ObjCIdRedefinitionType.isNull())
1109      return getObjCIdType();
1110    return ObjCIdRedefinitionType;
1111  }
1112
1113  /// \brief Set the user-written type that redefines \c id.
1114  void setObjCIdRedefinitionType(QualType RedefType) {
1115    ObjCIdRedefinitionType = RedefType;
1116  }
1117
1118  /// \brief Retrieve the type that \c Class has been defined to, which may be
1119  /// different from the built-in \c Class if \c Class has been typedef'd.
1120  QualType getObjCClassRedefinitionType() const {
1121    if (ObjCClassRedefinitionType.isNull())
1122      return getObjCClassType();
1123    return ObjCClassRedefinitionType;
1124  }
1125
1126  /// \brief Set the user-written type that redefines 'SEL'.
1127  void setObjCClassRedefinitionType(QualType RedefType) {
1128    ObjCClassRedefinitionType = RedefType;
1129  }
1130
1131  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1132  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1133  QualType getObjCSelRedefinitionType() const {
1134    if (ObjCSelRedefinitionType.isNull())
1135      return getObjCSelType();
1136    return ObjCSelRedefinitionType;
1137  }
1138
1139
1140  /// \brief Set the user-written type that redefines 'SEL'.
1141  void setObjCSelRedefinitionType(QualType RedefType) {
1142    ObjCSelRedefinitionType = RedefType;
1143  }
1144
1145  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1146  /// otherwise, returns a NULL type;
1147  QualType getObjCInstanceType() {
1148    return getTypeDeclType(getObjCInstanceTypeDecl());
1149  }
1150
1151  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1152  /// "instancetype" type.
1153  TypedefDecl *getObjCInstanceTypeDecl();
1154
1155  /// \brief Set the type for the C FILE type.
1156  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1157
1158  /// \brief Retrieve the C FILE type.
1159  QualType getFILEType() const {
1160    if (FILEDecl)
1161      return getTypeDeclType(FILEDecl);
1162    return QualType();
1163  }
1164
1165  /// \brief Set the type for the C jmp_buf type.
1166  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1167    this->jmp_bufDecl = jmp_bufDecl;
1168  }
1169
1170  /// \brief Retrieve the C jmp_buf type.
1171  QualType getjmp_bufType() const {
1172    if (jmp_bufDecl)
1173      return getTypeDeclType(jmp_bufDecl);
1174    return QualType();
1175  }
1176
1177  /// \brief Set the type for the C sigjmp_buf type.
1178  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1179    this->sigjmp_bufDecl = sigjmp_bufDecl;
1180  }
1181
1182  /// \brief Retrieve the C sigjmp_buf type.
1183  QualType getsigjmp_bufType() const {
1184    if (sigjmp_bufDecl)
1185      return getTypeDeclType(sigjmp_bufDecl);
1186    return QualType();
1187  }
1188
1189  /// \brief Set the type for the C ucontext_t type.
1190  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1191    this->ucontext_tDecl = ucontext_tDecl;
1192  }
1193
1194  /// \brief Retrieve the C ucontext_t type.
1195  QualType getucontext_tType() const {
1196    if (ucontext_tDecl)
1197      return getTypeDeclType(ucontext_tDecl);
1198    return QualType();
1199  }
1200
1201  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1202  QualType getLogicalOperationType() const {
1203    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1204  }
1205
1206  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1207  /// \p S.
1208  ///
1209  /// If \p Field is specified then record field names are also encoded.
1210  void getObjCEncodingForType(QualType T, std::string &S,
1211                              const FieldDecl *Field=0) const;
1212
1213  void getLegacyIntegralTypeEncoding(QualType &t) const;
1214
1215  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1216  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1217                                       std::string &S) const;
1218
1219  /// \brief Emit the encoded type for the function \p Decl into \p S.
1220  ///
1221  /// This is in the same format as Objective-C method encodings.
1222  ///
1223  /// \returns true if an error occurred (e.g., because one of the parameter
1224  /// types is incomplete), false otherwise.
1225  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1226
1227  /// \brief Emit the encoded type for the method declaration \p Decl into
1228  /// \p S.
1229  ///
1230  /// \returns true if an error occurred (e.g., because one of the parameter
1231  /// types is incomplete), false otherwise.
1232  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1233                                    bool Extended = false)
1234    const;
1235
1236  /// \brief Return the encoded type for this block declaration.
1237  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1238
1239  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1240  /// this method declaration. If non-NULL, Container must be either
1241  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1242  /// only be NULL when getting encodings for protocol properties.
1243  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1244                                      const Decl *Container,
1245                                      std::string &S) const;
1246
1247  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1248                                      ObjCProtocolDecl *rProto) const;
1249
1250  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1251  /// in characters.
1252  CharUnits getObjCEncodingTypeSize(QualType T) const;
1253
1254  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1255  /// in Objective-C.
1256  TypedefDecl *getObjCIdDecl() const;
1257
1258  /// \brief Represents the Objective-CC \c id type.
1259  ///
1260  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1261  /// pointer type, a pointer to a struct.
1262  QualType getObjCIdType() const {
1263    return getTypeDeclType(getObjCIdDecl());
1264  }
1265
1266  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1267  /// in Objective-C.
1268  TypedefDecl *getObjCSelDecl() const;
1269
1270  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1271  /// 'SEL' type.
1272  QualType getObjCSelType() const {
1273    return getTypeDeclType(getObjCSelDecl());
1274  }
1275
1276  /// \brief Retrieve the typedef declaration corresponding to the predefined
1277  /// Objective-C 'Class' type.
1278  TypedefDecl *getObjCClassDecl() const;
1279
1280  /// \brief Represents the Objective-C \c Class type.
1281  ///
1282  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1283  /// pointer type, a pointer to a struct.
1284  QualType getObjCClassType() const {
1285    return getTypeDeclType(getObjCClassDecl());
1286  }
1287
1288  /// \brief Retrieve the Objective-C class declaration corresponding to
1289  /// the predefined \c Protocol class.
1290  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1291
1292  /// \brief Retrieve declaration of 'BOOL' typedef
1293  TypedefDecl *getBOOLDecl() const {
1294    return BOOLDecl;
1295  }
1296
1297  /// \brief Save declaration of 'BOOL' typedef
1298  void setBOOLDecl(TypedefDecl *TD) {
1299    BOOLDecl = TD;
1300  }
1301
1302  /// \brief type of 'BOOL' type.
1303  QualType getBOOLType() const {
1304    return getTypeDeclType(getBOOLDecl());
1305  }
1306
1307  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1308  QualType getObjCProtoType() const {
1309    return getObjCInterfaceType(getObjCProtocolDecl());
1310  }
1311
1312  /// \brief Retrieve the C type declaration corresponding to the predefined
1313  /// \c __builtin_va_list type.
1314  TypedefDecl *getBuiltinVaListDecl() const;
1315
1316  /// \brief Retrieve the type of the \c __builtin_va_list type.
1317  QualType getBuiltinVaListType() const {
1318    return getTypeDeclType(getBuiltinVaListDecl());
1319  }
1320
1321  /// \brief Retrieve the C type declaration corresponding to the predefined
1322  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1323  /// for some targets.
1324  QualType getVaListTagType() const;
1325
1326  /// \brief Return a type with additional \c const, \c volatile, or \crestrict
1327  /// qualifiers.
1328  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1329    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1330  }
1331
1332  /// \brief Un-split a SplitQualType.
1333  QualType getQualifiedType(SplitQualType split) const {
1334    return getQualifiedType(split.Ty, split.Quals);
1335  }
1336
1337  /// \brief Return a type with additional qualifiers.
1338  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1339    if (!Qs.hasNonFastQualifiers())
1340      return T.withFastQualifiers(Qs.getFastQualifiers());
1341    QualifierCollector Qc(Qs);
1342    const Type *Ptr = Qc.strip(T);
1343    return getExtQualType(Ptr, Qc);
1344  }
1345
1346  /// \brief Return a type with additional qualifiers.
1347  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1348    if (!Qs.hasNonFastQualifiers())
1349      return QualType(T, Qs.getFastQualifiers());
1350    return getExtQualType(T, Qs);
1351  }
1352
1353  /// \brief Return a type with the given lifetime qualifier.
1354  ///
1355  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1356  QualType getLifetimeQualifiedType(QualType type,
1357                                    Qualifiers::ObjCLifetime lifetime) {
1358    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1359    assert(lifetime != Qualifiers::OCL_None);
1360
1361    Qualifiers qs;
1362    qs.addObjCLifetime(lifetime);
1363    return getQualifiedType(type, qs);
1364  }
1365
1366  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1367                                         SourceLocation NameLoc) const;
1368
1369  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1370                                         UnresolvedSetIterator End) const;
1371
1372  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1373                                        bool TemplateKeyword,
1374                                        TemplateDecl *Template) const;
1375
1376  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1377                                        const IdentifierInfo *Name) const;
1378  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1379                                        OverloadedOperatorKind Operator) const;
1380  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1381                                            TemplateName replacement) const;
1382  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1383                                        const TemplateArgument &ArgPack) const;
1384
1385  enum GetBuiltinTypeError {
1386    GE_None,              ///< No error
1387    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1388    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1389    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1390  };
1391
1392  /// \brief Return the type for the specified builtin.
1393  ///
1394  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1395  /// arguments to the builtin that are required to be integer constant
1396  /// expressions.
1397  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1398                          unsigned *IntegerConstantArgs = 0) const;
1399
1400private:
1401  CanQualType getFromTargetType(unsigned Type) const;
1402  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1403
1404  //===--------------------------------------------------------------------===//
1405  //                         Type Predicates.
1406  //===--------------------------------------------------------------------===//
1407
1408public:
1409  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1410  /// collection attributes.
1411  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1412
1413  /// \brief Return true if the given vector types are of the same unqualified
1414  /// type or if they are equivalent to the same GCC vector type.
1415  ///
1416  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1417  /// types.
1418  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1419
1420  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1421  /// attribute set.
1422  static bool isObjCNSObjectType(QualType Ty) {
1423    return Ty->isObjCNSObjectType();
1424  }
1425
1426  //===--------------------------------------------------------------------===//
1427  //                         Type Sizing and Analysis
1428  //===--------------------------------------------------------------------===//
1429
1430  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1431  /// point type.
1432  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1433
1434  /// \brief Get the size and alignment of the specified complete type in bits.
1435  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1436  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1437    return getTypeInfo(T.getTypePtr());
1438  }
1439
1440  /// \brief Return the size of the specified (complete) type \p T, in bits.
1441  uint64_t getTypeSize(QualType T) const {
1442    return getTypeInfo(T).first;
1443  }
1444  uint64_t getTypeSize(const Type *T) const {
1445    return getTypeInfo(T).first;
1446  }
1447
1448  /// \brief Return the size of the character type, in bits.
1449  uint64_t getCharWidth() const {
1450    return getTypeSize(CharTy);
1451  }
1452
1453  /// \brief Convert a size in bits to a size in characters.
1454  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1455
1456  /// \brief Convert a size in characters to a size in bits.
1457  int64_t toBits(CharUnits CharSize) const;
1458
1459  /// \brief Return the size of the specified (complete) type \p T, in
1460  /// characters.
1461  CharUnits getTypeSizeInChars(QualType T) const;
1462  CharUnits getTypeSizeInChars(const Type *T) const;
1463
1464  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1465  /// bits.
1466  unsigned getTypeAlign(QualType T) const {
1467    return getTypeInfo(T).second;
1468  }
1469  unsigned getTypeAlign(const Type *T) const {
1470    return getTypeInfo(T).second;
1471  }
1472
1473  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1474  /// characters.
1475  CharUnits getTypeAlignInChars(QualType T) const;
1476  CharUnits getTypeAlignInChars(const Type *T) const;
1477
1478  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1479  // type is a record, its data size is returned.
1480  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1481
1482  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1483  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1484
1485  /// \brief Return the "preferred" alignment of the specified type \p T for
1486  /// the current target, in bits.
1487  ///
1488  /// This can be different than the ABI alignment in cases where it is
1489  /// beneficial for performance to overalign a data type.
1490  unsigned getPreferredTypeAlign(const Type *T) const;
1491
1492  /// \brief Return a conservative estimate of the alignment of the specified
1493  /// decl \p D.
1494  ///
1495  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1496  /// alignment.
1497  ///
1498  /// If \p RefAsPointee, references are treated like their underlying type
1499  /// (for alignof), else they're treated like pointers (for CodeGen).
1500  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1501
1502  /// \brief Get or compute information about the layout of the specified
1503  /// record (struct/union/class) \p D, which indicates its size and field
1504  /// position information.
1505  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1506
1507  /// \brief Get or compute information about the layout of the specified
1508  /// Objective-C interface.
1509  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1510    const;
1511
1512  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1513                        bool Simple = false) const;
1514
1515  /// \brief Get or compute information about the layout of the specified
1516  /// Objective-C implementation.
1517  ///
1518  /// This may differ from the interface if synthesized ivars are present.
1519  const ASTRecordLayout &
1520  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1521
1522  /// \brief Get the key function for the given record decl, or NULL if there
1523  /// isn't one.
1524  ///
1525  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1526  ///
1527  /// ...the first non-pure virtual function that is not inline at the point
1528  /// of class definition.
1529  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1530
1531  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1532  uint64_t getFieldOffset(const ValueDecl *FD) const;
1533
1534  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1535
1536  MangleContext *createMangleContext();
1537
1538  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1539                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1540
1541  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1542  void CollectInheritedProtocols(const Decl *CDecl,
1543                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1544
1545  //===--------------------------------------------------------------------===//
1546  //                            Type Operators
1547  //===--------------------------------------------------------------------===//
1548
1549  /// \brief Return the canonical (structural) type corresponding to the
1550  /// specified potentially non-canonical type \p T.
1551  ///
1552  /// The non-canonical version of a type may have many "decorated" versions of
1553  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1554  /// returned type is guaranteed to be free of any of these, allowing two
1555  /// canonical types to be compared for exact equality with a simple pointer
1556  /// comparison.
1557  CanQualType getCanonicalType(QualType T) const {
1558    return CanQualType::CreateUnsafe(T.getCanonicalType());
1559  }
1560
1561  const Type *getCanonicalType(const Type *T) const {
1562    return T->getCanonicalTypeInternal().getTypePtr();
1563  }
1564
1565  /// \brief Return the canonical parameter type corresponding to the specific
1566  /// potentially non-canonical one.
1567  ///
1568  /// Qualifiers are stripped off, functions are turned into function
1569  /// pointers, and arrays decay one level into pointers.
1570  CanQualType getCanonicalParamType(QualType T) const;
1571
1572  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1573  bool hasSameType(QualType T1, QualType T2) const {
1574    return getCanonicalType(T1) == getCanonicalType(T2);
1575  }
1576
1577  /// \brief Return this type as a completely-unqualified array type,
1578  /// capturing the qualifiers in \p Quals.
1579  ///
1580  /// This will remove the minimal amount of sugaring from the types, similar
1581  /// to the behavior of QualType::getUnqualifiedType().
1582  ///
1583  /// \param T is the qualified type, which may be an ArrayType
1584  ///
1585  /// \param Quals will receive the full set of qualifiers that were
1586  /// applied to the array.
1587  ///
1588  /// \returns if this is an array type, the completely unqualified array type
1589  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1590  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1591
1592  /// \brief Determine whether the given types are equivalent after
1593  /// cvr-qualifiers have been removed.
1594  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1595    return getCanonicalType(T1).getTypePtr() ==
1596           getCanonicalType(T2).getTypePtr();
1597  }
1598
1599  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1600
1601  /// \brief Retrieves the "canonical" nested name specifier for a
1602  /// given nested name specifier.
1603  ///
1604  /// The canonical nested name specifier is a nested name specifier
1605  /// that uniquely identifies a type or namespace within the type
1606  /// system. For example, given:
1607  ///
1608  /// \code
1609  /// namespace N {
1610  ///   struct S {
1611  ///     template<typename T> struct X { typename T* type; };
1612  ///   };
1613  /// }
1614  ///
1615  /// template<typename T> struct Y {
1616  ///   typename N::S::X<T>::type member;
1617  /// };
1618  /// \endcode
1619  ///
1620  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1621  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1622  /// by declarations in the type system and the canonical type for
1623  /// the template type parameter 'T' is template-param-0-0.
1624  NestedNameSpecifier *
1625  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1626
1627  /// \brief Retrieves the default calling convention to use for
1628  /// C++ instance methods.
1629  CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1630
1631  /// \brief Retrieves the canonical representation of the given
1632  /// calling convention.
1633  CallingConv getCanonicalCallConv(CallingConv CC) const;
1634
1635  /// \brief Determines whether two calling conventions name the same
1636  /// calling convention.
1637  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1638    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1639  }
1640
1641  /// \brief Retrieves the "canonical" template name that refers to a
1642  /// given template.
1643  ///
1644  /// The canonical template name is the simplest expression that can
1645  /// be used to refer to a given template. For most templates, this
1646  /// expression is just the template declaration itself. For example,
1647  /// the template std::vector can be referred to via a variety of
1648  /// names---std::vector, \::std::vector, vector (if vector is in
1649  /// scope), etc.---but all of these names map down to the same
1650  /// TemplateDecl, which is used to form the canonical template name.
1651  ///
1652  /// Dependent template names are more interesting. Here, the
1653  /// template name could be something like T::template apply or
1654  /// std::allocator<T>::template rebind, where the nested name
1655  /// specifier itself is dependent. In this case, the canonical
1656  /// template name uses the shortest form of the dependent
1657  /// nested-name-specifier, which itself contains all canonical
1658  /// types, values, and templates.
1659  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1660
1661  /// \brief Determine whether the given template names refer to the same
1662  /// template.
1663  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1664
1665  /// \brief Retrieve the "canonical" template argument.
1666  ///
1667  /// The canonical template argument is the simplest template argument
1668  /// (which may be a type, value, expression, or declaration) that
1669  /// expresses the value of the argument.
1670  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1671    const;
1672
1673  /// Type Query functions.  If the type is an instance of the specified class,
1674  /// return the Type pointer for the underlying maximally pretty type.  This
1675  /// is a member of ASTContext because this may need to do some amount of
1676  /// canonicalization, e.g. to move type qualifiers into the element type.
1677  const ArrayType *getAsArrayType(QualType T) const;
1678  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1679    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1680  }
1681  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1682    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1683  }
1684  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1685    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1686  }
1687  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1688    const {
1689    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1690  }
1691
1692  /// \brief Return the innermost element type of an array type.
1693  ///
1694  /// For example, will return "int" for int[m][n]
1695  QualType getBaseElementType(const ArrayType *VAT) const;
1696
1697  /// \brief Return the innermost element type of a type (which needn't
1698  /// actually be an array type).
1699  QualType getBaseElementType(QualType QT) const;
1700
1701  /// \brief Return number of constant array elements.
1702  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1703
1704  /// \brief Perform adjustment on the parameter type of a function.
1705  ///
1706  /// This routine adjusts the given parameter type @p T to the actual
1707  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1708  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1709  QualType getAdjustedParameterType(QualType T) const;
1710
1711  /// \brief Retrieve the parameter type as adjusted for use in the signature
1712  /// of a function, decaying array and function types and removing top-level
1713  /// cv-qualifiers.
1714  QualType getSignatureParameterType(QualType T) const;
1715
1716  /// \brief Return the properly qualified result of decaying the specified
1717  /// array type to a pointer.
1718  ///
1719  /// This operation is non-trivial when handling typedefs etc.  The canonical
1720  /// type of \p T must be an array type, this returns a pointer to a properly
1721  /// qualified element of the array.
1722  ///
1723  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1724  QualType getArrayDecayedType(QualType T) const;
1725
1726  /// \brief Return the type that \p PromotableType will promote to: C99
1727  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1728  QualType getPromotedIntegerType(QualType PromotableType) const;
1729
1730  /// \brief Recurses in pointer/array types until it finds an Objective-C
1731  /// retainable type and returns its ownership.
1732  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1733
1734  /// \brief Whether this is a promotable bitfield reference according
1735  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1736  ///
1737  /// \returns the type this bit-field will promote to, or NULL if no
1738  /// promotion occurs.
1739  QualType isPromotableBitField(Expr *E) const;
1740
1741  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1742  ///
1743  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1744  /// \p LHS < \p RHS, return -1.
1745  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1746
1747  /// \brief Compare the rank of the two specified floating point types,
1748  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1749  ///
1750  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1751  /// \p LHS < \p RHS, return -1.
1752  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1753
1754  /// \brief Return a real floating point or a complex type (based on
1755  /// \p typeDomain/\p typeSize).
1756  ///
1757  /// \arg typeDomain a real floating point or complex type.
1758  /// \arg typeSize a real floating point or complex type.
1759  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1760                                             QualType typeDomain) const;
1761
1762  unsigned getTargetAddressSpace(QualType T) const {
1763    return getTargetAddressSpace(T.getQualifiers());
1764  }
1765
1766  unsigned getTargetAddressSpace(Qualifiers Q) const {
1767    return getTargetAddressSpace(Q.getAddressSpace());
1768  }
1769
1770  unsigned getTargetAddressSpace(unsigned AS) const {
1771    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1772      return AS;
1773    else
1774      return (*AddrSpaceMap)[AS - LangAS::Offset];
1775  }
1776
1777private:
1778  // Helper for integer ordering
1779  unsigned getIntegerRank(const Type *T) const;
1780
1781public:
1782
1783  //===--------------------------------------------------------------------===//
1784  //                    Type Compatibility Predicates
1785  //===--------------------------------------------------------------------===//
1786
1787  /// Compatibility predicates used to check assignment expressions.
1788  bool typesAreCompatible(QualType T1, QualType T2,
1789                          bool CompareUnqualified = false); // C99 6.2.7p1
1790
1791  bool propertyTypesAreCompatible(QualType, QualType);
1792  bool typesAreBlockPointerCompatible(QualType, QualType);
1793
1794  bool isObjCIdType(QualType T) const {
1795    return T == getObjCIdType();
1796  }
1797  bool isObjCClassType(QualType T) const {
1798    return T == getObjCClassType();
1799  }
1800  bool isObjCSelType(QualType T) const {
1801    return T == getObjCSelType();
1802  }
1803  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1804  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1805                                         bool ForCompare);
1806
1807  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1808
1809  // Check the safety of assignment from LHS to RHS
1810  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1811                               const ObjCObjectPointerType *RHSOPT);
1812  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1813                               const ObjCObjectType *RHS);
1814  bool canAssignObjCInterfacesInBlockPointer(
1815                                          const ObjCObjectPointerType *LHSOPT,
1816                                          const ObjCObjectPointerType *RHSOPT,
1817                                          bool BlockReturnType);
1818  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1819  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1820                                   const ObjCObjectPointerType *RHSOPT);
1821  bool canBindObjCObjectType(QualType To, QualType From);
1822
1823  // Functions for calculating composite types
1824  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1825                      bool Unqualified = false, bool BlockReturnType = false);
1826  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1827                              bool Unqualified = false);
1828  QualType mergeFunctionArgumentTypes(QualType, QualType,
1829                                      bool OfBlockPointer=false,
1830                                      bool Unqualified = false);
1831  QualType mergeTransparentUnionType(QualType, QualType,
1832                                     bool OfBlockPointer=false,
1833                                     bool Unqualified = false);
1834
1835  QualType mergeObjCGCQualifiers(QualType, QualType);
1836
1837  bool FunctionTypesMatchOnNSConsumedAttrs(
1838         const FunctionProtoType *FromFunctionType,
1839         const FunctionProtoType *ToFunctionType);
1840
1841  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1842    ObjCLayouts[CD] = 0;
1843  }
1844
1845  //===--------------------------------------------------------------------===//
1846  //                    Integer Predicates
1847  //===--------------------------------------------------------------------===//
1848
1849  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1850  // of bits in an integer type excluding any padding bits.
1851  unsigned getIntWidth(QualType T) const;
1852
1853  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1854  // unsigned integer type.  This method takes a signed type, and returns the
1855  // corresponding unsigned integer type.
1856  QualType getCorrespondingUnsignedType(QualType T) const;
1857
1858  //===--------------------------------------------------------------------===//
1859  //                    Type Iterators.
1860  //===--------------------------------------------------------------------===//
1861
1862  typedef std::vector<Type*>::iterator       type_iterator;
1863  typedef std::vector<Type*>::const_iterator const_type_iterator;
1864
1865  type_iterator types_begin() { return Types.begin(); }
1866  type_iterator types_end() { return Types.end(); }
1867  const_type_iterator types_begin() const { return Types.begin(); }
1868  const_type_iterator types_end() const { return Types.end(); }
1869
1870  //===--------------------------------------------------------------------===//
1871  //                    Integer Values
1872  //===--------------------------------------------------------------------===//
1873
1874  /// \brief Make an APSInt of the appropriate width and signedness for the
1875  /// given \p Value and integer \p Type.
1876  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1877    llvm::APSInt Res(getIntWidth(Type),
1878                     !Type->isSignedIntegerOrEnumerationType());
1879    Res = Value;
1880    return Res;
1881  }
1882
1883  bool isSentinelNullExpr(const Expr *E);
1884
1885  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
1886  /// none exists.
1887  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1888  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
1889  /// none exists.
1890  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1891
1892  /// \brief Return true if there is at least one \@implementation in the TU.
1893  bool AnyObjCImplementation() {
1894    return !ObjCImpls.empty();
1895  }
1896
1897  /// \brief Set the implementation of ObjCInterfaceDecl.
1898  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1899                             ObjCImplementationDecl *ImplD);
1900  /// \brief Set the implementation of ObjCCategoryDecl.
1901  void setObjCImplementation(ObjCCategoryDecl *CatD,
1902                             ObjCCategoryImplDecl *ImplD);
1903
1904  /// \brief Get the duplicate declaration of a ObjCMethod in the same
1905  /// interface, or null if none exists.
1906  const ObjCMethodDecl *getObjCMethodRedeclaration(
1907                                               const ObjCMethodDecl *MD) const {
1908    return ObjCMethodRedecls.lookup(MD);
1909  }
1910
1911  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
1912                                  const ObjCMethodDecl *Redecl) {
1913    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
1914    ObjCMethodRedecls[MD] = Redecl;
1915  }
1916
1917  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
1918  /// an Objective-C method/property/ivar etc. that is part of an interface,
1919  /// otherwise returns null.
1920  ObjCInterfaceDecl *getObjContainingInterface(NamedDecl *ND) const;
1921
1922  /// \brief Set the copy inialization expression of a block var decl.
1923  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
1924  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
1925  /// NULL if none exists.
1926  Expr *getBlockVarCopyInits(const VarDecl* VD);
1927
1928  /// \brief Allocate an uninitialized TypeSourceInfo.
1929  ///
1930  /// The caller should initialize the memory held by TypeSourceInfo using
1931  /// the TypeLoc wrappers.
1932  ///
1933  /// \param T the type that will be the basis for type source info. This type
1934  /// should refer to how the declarator was written in source code, not to
1935  /// what type semantic analysis resolved the declarator to.
1936  ///
1937  /// \param Size the size of the type info to create, or 0 if the size
1938  /// should be calculated based on the type.
1939  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
1940
1941  /// \brief Allocate a TypeSourceInfo where all locations have been
1942  /// initialized to a given location, which defaults to the empty
1943  /// location.
1944  TypeSourceInfo *
1945  getTrivialTypeSourceInfo(QualType T,
1946                           SourceLocation Loc = SourceLocation()) const;
1947
1948  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1949
1950  /// \brief Add a deallocation callback that will be invoked when the
1951  /// ASTContext is destroyed.
1952  ///
1953  /// \param Callback A callback function that will be invoked on destruction.
1954  ///
1955  /// \param Data Pointer data that will be provided to the callback function
1956  /// when it is called.
1957  void AddDeallocation(void (*Callback)(void*), void *Data);
1958
1959  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1960  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1961
1962  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1963  /// lazily, only when used; this is only relevant for function or file scoped
1964  /// var definitions.
1965  ///
1966  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1967  /// it is not used.
1968  bool DeclMustBeEmitted(const Decl *D);
1969
1970  /// \brief Retrieve the lambda mangling number for a lambda expression.
1971  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
1972
1973  /// \brief Used by ParmVarDecl to store on the side the
1974  /// index of the parameter when it exceeds the size of the normal bitfield.
1975  void setParameterIndex(const ParmVarDecl *D, unsigned index);
1976
1977  /// \brief Used by ParmVarDecl to retrieve on the side the
1978  /// index of the parameter when it exceeds the size of the normal bitfield.
1979  unsigned getParameterIndex(const ParmVarDecl *D) const;
1980
1981  //===--------------------------------------------------------------------===//
1982  //                    Statistics
1983  //===--------------------------------------------------------------------===//
1984
1985  /// \brief The number of implicitly-declared default constructors.
1986  static unsigned NumImplicitDefaultConstructors;
1987
1988  /// \brief The number of implicitly-declared default constructors for
1989  /// which declarations were built.
1990  static unsigned NumImplicitDefaultConstructorsDeclared;
1991
1992  /// \brief The number of implicitly-declared copy constructors.
1993  static unsigned NumImplicitCopyConstructors;
1994
1995  /// \brief The number of implicitly-declared copy constructors for
1996  /// which declarations were built.
1997  static unsigned NumImplicitCopyConstructorsDeclared;
1998
1999  /// \brief The number of implicitly-declared move constructors.
2000  static unsigned NumImplicitMoveConstructors;
2001
2002  /// \brief The number of implicitly-declared move constructors for
2003  /// which declarations were built.
2004  static unsigned NumImplicitMoveConstructorsDeclared;
2005
2006  /// \brief The number of implicitly-declared copy assignment operators.
2007  static unsigned NumImplicitCopyAssignmentOperators;
2008
2009  /// \brief The number of implicitly-declared copy assignment operators for
2010  /// which declarations were built.
2011  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2012
2013  /// \brief The number of implicitly-declared move assignment operators.
2014  static unsigned NumImplicitMoveAssignmentOperators;
2015
2016  /// \brief The number of implicitly-declared move assignment operators for
2017  /// which declarations were built.
2018  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2019
2020  /// \brief The number of implicitly-declared destructors.
2021  static unsigned NumImplicitDestructors;
2022
2023  /// \brief The number of implicitly-declared destructors for which
2024  /// declarations were built.
2025  static unsigned NumImplicitDestructorsDeclared;
2026
2027private:
2028  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
2029  void operator=(const ASTContext&); // DO NOT IMPLEMENT
2030
2031public:
2032  /// \brief Initialize built-in types.
2033  ///
2034  /// This routine may only be invoked once for a given ASTContext object.
2035  /// It is normally invoked by the ASTContext constructor. However, the
2036  /// constructor can be asked to delay initialization, which places the burden
2037  /// of calling this function on the user of that object.
2038  ///
2039  /// \param Target The target
2040  void InitBuiltinTypes(const TargetInfo &Target);
2041
2042private:
2043  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2044
2045  // Return the Objective-C type encoding for a given type.
2046  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2047                                  bool ExpandPointedToStructures,
2048                                  bool ExpandStructures,
2049                                  const FieldDecl *Field,
2050                                  bool OutermostType = false,
2051                                  bool EncodingProperty = false,
2052                                  bool StructField = false,
2053                                  bool EncodeBlockParameters = false,
2054                                  bool EncodeClassNames = false) const;
2055
2056  // Adds the encoding of the structure's members.
2057  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2058                                       const FieldDecl *Field,
2059                                       bool includeVBases = true) const;
2060
2061  // Adds the encoding of a method parameter or return type.
2062  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2063                                         QualType T, std::string& S,
2064                                         bool Extended) const;
2065
2066  const ASTRecordLayout &
2067  getObjCLayout(const ObjCInterfaceDecl *D,
2068                const ObjCImplementationDecl *Impl) const;
2069
2070private:
2071  /// \brief A set of deallocations that should be performed when the
2072  /// ASTContext is destroyed.
2073  SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
2074
2075  // FIXME: This currently contains the set of StoredDeclMaps used
2076  // by DeclContext objects.  This probably should not be in ASTContext,
2077  // but we include it here so that ASTContext can quickly deallocate them.
2078  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2079
2080  /// \brief A counter used to uniquely identify "blocks".
2081  mutable unsigned int UniqueBlockByRefTypeID;
2082
2083  friend class DeclContext;
2084  friend class DeclarationNameTable;
2085  void ReleaseDeclContextMaps();
2086};
2087
2088/// \brief Utility function for constructing a nullary selector.
2089static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2090  IdentifierInfo* II = &Ctx.Idents.get(name);
2091  return Ctx.Selectors.getSelector(0, &II);
2092}
2093
2094/// \brief Utility function for constructing an unary selector.
2095static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2096  IdentifierInfo* II = &Ctx.Idents.get(name);
2097  return Ctx.Selectors.getSelector(1, &II);
2098}
2099
2100}  // end namespace clang
2101
2102// operator new and delete aren't allowed inside namespaces.
2103
2104/// @brief Placement new for using the ASTContext's allocator.
2105///
2106/// This placement form of operator new uses the ASTContext's allocator for
2107/// obtaining memory.
2108///
2109/// IMPORTANT: These are also declared in clang/AST/Attr.h! Any changes here
2110/// need to also be made there.
2111///
2112/// We intentionally avoid using a nothrow specification here so that the calls
2113/// to this operator will not perform a null check on the result -- the
2114/// underlying allocator never returns null pointers.
2115///
2116/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2117/// @code
2118/// // Default alignment (8)
2119/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2120/// // Specific alignment
2121/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2122/// @endcode
2123/// Please note that you cannot use delete on the pointer; it must be
2124/// deallocated using an explicit destructor call followed by
2125/// @c Context.Deallocate(Ptr).
2126///
2127/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2128/// @param C The ASTContext that provides the allocator.
2129/// @param Alignment The alignment of the allocated memory (if the underlying
2130///                  allocator supports it).
2131/// @return The allocated memory. Could be NULL.
2132inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2133                          size_t Alignment) {
2134  return C.Allocate(Bytes, Alignment);
2135}
2136/// @brief Placement delete companion to the new above.
2137///
2138/// This operator is just a companion to the new above. There is no way of
2139/// invoking it directly; see the new operator for more details. This operator
2140/// is called implicitly by the compiler if a placement new expression using
2141/// the ASTContext throws in the object constructor.
2142inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2143  C.Deallocate(Ptr);
2144}
2145
2146/// This placement form of operator new[] uses the ASTContext's allocator for
2147/// obtaining memory.
2148///
2149/// We intentionally avoid using a nothrow specification here so that the calls
2150/// to this operator will not perform a null check on the result -- the
2151/// underlying allocator never returns null pointers.
2152///
2153/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2154/// @code
2155/// // Default alignment (8)
2156/// char *data = new (Context) char[10];
2157/// // Specific alignment
2158/// char *data = new (Context, 4) char[10];
2159/// @endcode
2160/// Please note that you cannot use delete on the pointer; it must be
2161/// deallocated using an explicit destructor call followed by
2162/// @c Context.Deallocate(Ptr).
2163///
2164/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2165/// @param C The ASTContext that provides the allocator.
2166/// @param Alignment The alignment of the allocated memory (if the underlying
2167///                  allocator supports it).
2168/// @return The allocated memory. Could be NULL.
2169inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2170                            size_t Alignment = 8) {
2171  return C.Allocate(Bytes, Alignment);
2172}
2173
2174/// @brief Placement delete[] companion to the new[] above.
2175///
2176/// This operator is just a companion to the new[] above. There is no way of
2177/// invoking it directly; see the new[] operator for more details. This operator
2178/// is called implicitly by the compiler if a placement new[] expression using
2179/// the ASTContext throws in the object constructor.
2180inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2181  C.Deallocate(Ptr);
2182}
2183
2184#endif
2185