1//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Decl subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Decl.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Stmt.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/IdentifierTable.h"
27#include "clang/Basic/Module.h"
28#include "clang/Basic/Specifiers.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31
32#include <algorithm>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// NamedDecl Implementation
38//===----------------------------------------------------------------------===//
39
40static llvm::Optional<Visibility> getVisibilityOf(const Decl *D) {
41  // If this declaration has an explicit visibility attribute, use it.
42  if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
43    switch (A->getVisibility()) {
44    case VisibilityAttr::Default:
45      return DefaultVisibility;
46    case VisibilityAttr::Hidden:
47      return HiddenVisibility;
48    case VisibilityAttr::Protected:
49      return ProtectedVisibility;
50    }
51  }
52
53  // If we're on Mac OS X, an 'availability' for Mac OS X attribute
54  // implies visibility(default).
55  if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
56    for (specific_attr_iterator<AvailabilityAttr>
57              A = D->specific_attr_begin<AvailabilityAttr>(),
58           AEnd = D->specific_attr_end<AvailabilityAttr>();
59         A != AEnd; ++A)
60      if ((*A)->getPlatform()->getName().equals("macosx"))
61        return DefaultVisibility;
62  }
63
64  return llvm::Optional<Visibility>();
65}
66
67typedef NamedDecl::LinkageInfo LinkageInfo;
68
69static LinkageInfo getLVForType(QualType T) {
70  std::pair<Linkage,Visibility> P = T->getLinkageAndVisibility();
71  return LinkageInfo(P.first, P.second, T->isVisibilityExplicit());
72}
73
74/// \brief Get the most restrictive linkage for the types in the given
75/// template parameter list.
76static LinkageInfo
77getLVForTemplateParameterList(const TemplateParameterList *Params) {
78  LinkageInfo LV(ExternalLinkage, DefaultVisibility, false);
79  for (TemplateParameterList::const_iterator P = Params->begin(),
80                                          PEnd = Params->end();
81       P != PEnd; ++P) {
82    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
83      if (NTTP->isExpandedParameterPack()) {
84        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
85          QualType T = NTTP->getExpansionType(I);
86          if (!T->isDependentType())
87            LV.merge(getLVForType(T));
88        }
89        continue;
90      }
91
92      if (!NTTP->getType()->isDependentType()) {
93        LV.merge(getLVForType(NTTP->getType()));
94        continue;
95      }
96    }
97
98    if (TemplateTemplateParmDecl *TTP
99                                   = dyn_cast<TemplateTemplateParmDecl>(*P)) {
100      LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters()));
101    }
102  }
103
104  return LV;
105}
106
107/// getLVForDecl - Get the linkage and visibility for the given declaration.
108static LinkageInfo getLVForDecl(const NamedDecl *D, bool OnlyTemplate);
109
110/// \brief Get the most restrictive linkage for the types and
111/// declarations in the given template argument list.
112static LinkageInfo getLVForTemplateArgumentList(const TemplateArgument *Args,
113                                                unsigned NumArgs,
114                                                bool OnlyTemplate) {
115  LinkageInfo LV(ExternalLinkage, DefaultVisibility, false);
116
117  for (unsigned I = 0; I != NumArgs; ++I) {
118    switch (Args[I].getKind()) {
119    case TemplateArgument::Null:
120    case TemplateArgument::Integral:
121    case TemplateArgument::Expression:
122      break;
123
124    case TemplateArgument::Type:
125      LV.mergeWithMin(getLVForType(Args[I].getAsType()));
126      break;
127
128    case TemplateArgument::Declaration:
129      // The decl can validly be null as the representation of nullptr
130      // arguments, valid only in C++0x.
131      if (Decl *D = Args[I].getAsDecl()) {
132        if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
133          LV.mergeWithMin(getLVForDecl(ND, OnlyTemplate));
134      }
135      break;
136
137    case TemplateArgument::Template:
138    case TemplateArgument::TemplateExpansion:
139      if (TemplateDecl *Template
140                = Args[I].getAsTemplateOrTemplatePattern().getAsTemplateDecl())
141        LV.mergeWithMin(getLVForDecl(Template, OnlyTemplate));
142      break;
143
144    case TemplateArgument::Pack:
145      LV.mergeWithMin(getLVForTemplateArgumentList(Args[I].pack_begin(),
146                                                   Args[I].pack_size(),
147                                                   OnlyTemplate));
148      break;
149    }
150  }
151
152  return LV;
153}
154
155static LinkageInfo
156getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
157                             bool OnlyTemplate) {
158  return getLVForTemplateArgumentList(TArgs.data(), TArgs.size(), OnlyTemplate);
159}
160
161static bool shouldConsiderTemplateVis(const FunctionDecl *fn,
162                               const FunctionTemplateSpecializationInfo *spec) {
163  return !fn->hasAttr<VisibilityAttr>() || spec->isExplicitSpecialization();
164}
165
166static bool
167shouldConsiderTemplateVis(const ClassTemplateSpecializationDecl *d) {
168  return !d->hasAttr<VisibilityAttr>() || d->isExplicitSpecialization();
169}
170
171static bool useInlineVisibilityHidden(const NamedDecl *D) {
172  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
173  const LangOptions &Opts = D->getASTContext().getLangOpts();
174  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
175    return false;
176
177  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
178  if (!FD)
179    return false;
180
181  TemplateSpecializationKind TSK = TSK_Undeclared;
182  if (FunctionTemplateSpecializationInfo *spec
183      = FD->getTemplateSpecializationInfo()) {
184    TSK = spec->getTemplateSpecializationKind();
185  } else if (MemberSpecializationInfo *MSI =
186             FD->getMemberSpecializationInfo()) {
187    TSK = MSI->getTemplateSpecializationKind();
188  }
189
190  const FunctionDecl *Def = 0;
191  // InlineVisibilityHidden only applies to definitions, and
192  // isInlined() only gives meaningful answers on definitions
193  // anyway.
194  return TSK != TSK_ExplicitInstantiationDeclaration &&
195    TSK != TSK_ExplicitInstantiationDefinition &&
196    FD->hasBody(Def) && Def->isInlined();
197}
198
199static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
200                                              bool OnlyTemplate) {
201  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
202         "Not a name having namespace scope");
203  ASTContext &Context = D->getASTContext();
204
205  // C++ [basic.link]p3:
206  //   A name having namespace scope (3.3.6) has internal linkage if it
207  //   is the name of
208  //     - an object, reference, function or function template that is
209  //       explicitly declared static; or,
210  // (This bullet corresponds to C99 6.2.2p3.)
211  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
212    // Explicitly declared static.
213    if (Var->getStorageClass() == SC_Static)
214      return LinkageInfo::internal();
215
216    // - an object or reference that is explicitly declared const
217    //   and neither explicitly declared extern nor previously
218    //   declared to have external linkage; or
219    // (there is no equivalent in C99)
220    if (Context.getLangOpts().CPlusPlus &&
221        Var->getType().isConstant(Context) &&
222        Var->getStorageClass() != SC_Extern &&
223        Var->getStorageClass() != SC_PrivateExtern) {
224      bool FoundExtern = false;
225      for (const VarDecl *PrevVar = Var->getPreviousDecl();
226           PrevVar && !FoundExtern;
227           PrevVar = PrevVar->getPreviousDecl())
228        if (isExternalLinkage(PrevVar->getLinkage()))
229          FoundExtern = true;
230
231      if (!FoundExtern)
232        return LinkageInfo::internal();
233    }
234    if (Var->getStorageClass() == SC_None) {
235      const VarDecl *PrevVar = Var->getPreviousDecl();
236      for (; PrevVar; PrevVar = PrevVar->getPreviousDecl())
237        if (PrevVar->getStorageClass() == SC_PrivateExtern)
238          break;
239        if (PrevVar)
240          return PrevVar->getLinkageAndVisibility();
241    }
242  } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
243    // C++ [temp]p4:
244    //   A non-member function template can have internal linkage; any
245    //   other template name shall have external linkage.
246    const FunctionDecl *Function = 0;
247    if (const FunctionTemplateDecl *FunTmpl
248                                        = dyn_cast<FunctionTemplateDecl>(D))
249      Function = FunTmpl->getTemplatedDecl();
250    else
251      Function = cast<FunctionDecl>(D);
252
253    // Explicitly declared static.
254    if (Function->getStorageClass() == SC_Static)
255      return LinkageInfo(InternalLinkage, DefaultVisibility, false);
256  } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
257    //   - a data member of an anonymous union.
258    if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
259      return LinkageInfo::internal();
260  }
261
262  if (D->isInAnonymousNamespace()) {
263    const VarDecl *Var = dyn_cast<VarDecl>(D);
264    const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
265    if ((!Var || !Var->getDeclContext()->isExternCContext()) &&
266        (!Func || !Func->getDeclContext()->isExternCContext()))
267      return LinkageInfo::uniqueExternal();
268  }
269
270  // Set up the defaults.
271
272  // C99 6.2.2p5:
273  //   If the declaration of an identifier for an object has file
274  //   scope and no storage-class specifier, its linkage is
275  //   external.
276  LinkageInfo LV;
277
278  if (!OnlyTemplate) {
279    if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility()) {
280      LV.mergeVisibility(*Vis, true);
281    } else {
282      // If we're declared in a namespace with a visibility attribute,
283      // use that namespace's visibility, but don't call it explicit.
284      for (const DeclContext *DC = D->getDeclContext();
285           !isa<TranslationUnitDecl>(DC);
286           DC = DC->getParent()) {
287        const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
288        if (!ND) continue;
289        if (llvm::Optional<Visibility> Vis = ND->getExplicitVisibility()) {
290          LV.mergeVisibility(*Vis, true);
291          break;
292        }
293      }
294    }
295  }
296
297  if (!OnlyTemplate) {
298    LV.mergeVisibility(Context.getLangOpts().getVisibilityMode());
299    // If we're paying attention to global visibility, apply
300    // -finline-visibility-hidden if this is an inline method.
301    if (!LV.visibilityExplicit() && useInlineVisibilityHidden(D))
302      LV.mergeVisibility(HiddenVisibility, true);
303  }
304
305  // C++ [basic.link]p4:
306
307  //   A name having namespace scope has external linkage if it is the
308  //   name of
309  //
310  //     - an object or reference, unless it has internal linkage; or
311  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
312    // GCC applies the following optimization to variables and static
313    // data members, but not to functions:
314    //
315    // Modify the variable's LV by the LV of its type unless this is
316    // C or extern "C".  This follows from [basic.link]p9:
317    //   A type without linkage shall not be used as the type of a
318    //   variable or function with external linkage unless
319    //    - the entity has C language linkage, or
320    //    - the entity is declared within an unnamed namespace, or
321    //    - the entity is not used or is defined in the same
322    //      translation unit.
323    // and [basic.link]p10:
324    //   ...the types specified by all declarations referring to a
325    //   given variable or function shall be identical...
326    // C does not have an equivalent rule.
327    //
328    // Ignore this if we've got an explicit attribute;  the user
329    // probably knows what they're doing.
330    //
331    // Note that we don't want to make the variable non-external
332    // because of this, but unique-external linkage suits us.
333    if (Context.getLangOpts().CPlusPlus &&
334        !Var->getDeclContext()->isExternCContext()) {
335      LinkageInfo TypeLV = getLVForType(Var->getType());
336      if (TypeLV.linkage() != ExternalLinkage)
337        return LinkageInfo::uniqueExternal();
338      LV.mergeVisibility(TypeLV);
339    }
340
341    if (Var->getStorageClass() == SC_PrivateExtern)
342      LV.mergeVisibility(HiddenVisibility, true);
343
344    if (!Context.getLangOpts().CPlusPlus &&
345        (Var->getStorageClass() == SC_Extern ||
346         Var->getStorageClass() == SC_PrivateExtern)) {
347
348      // C99 6.2.2p4:
349      //   For an identifier declared with the storage-class specifier
350      //   extern in a scope in which a prior declaration of that
351      //   identifier is visible, if the prior declaration specifies
352      //   internal or external linkage, the linkage of the identifier
353      //   at the later declaration is the same as the linkage
354      //   specified at the prior declaration. If no prior declaration
355      //   is visible, or if the prior declaration specifies no
356      //   linkage, then the identifier has external linkage.
357      if (const VarDecl *PrevVar = Var->getPreviousDecl()) {
358        LinkageInfo PrevLV = getLVForDecl(PrevVar, OnlyTemplate);
359        if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
360        LV.mergeVisibility(PrevLV);
361      }
362    }
363
364  //     - a function, unless it has internal linkage; or
365  } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
366    // In theory, we can modify the function's LV by the LV of its
367    // type unless it has C linkage (see comment above about variables
368    // for justification).  In practice, GCC doesn't do this, so it's
369    // just too painful to make work.
370
371    if (Function->getStorageClass() == SC_PrivateExtern)
372      LV.mergeVisibility(HiddenVisibility, true);
373
374    // C99 6.2.2p5:
375    //   If the declaration of an identifier for a function has no
376    //   storage-class specifier, its linkage is determined exactly
377    //   as if it were declared with the storage-class specifier
378    //   extern.
379    if (!Context.getLangOpts().CPlusPlus &&
380        (Function->getStorageClass() == SC_Extern ||
381         Function->getStorageClass() == SC_PrivateExtern ||
382         Function->getStorageClass() == SC_None)) {
383      // C99 6.2.2p4:
384      //   For an identifier declared with the storage-class specifier
385      //   extern in a scope in which a prior declaration of that
386      //   identifier is visible, if the prior declaration specifies
387      //   internal or external linkage, the linkage of the identifier
388      //   at the later declaration is the same as the linkage
389      //   specified at the prior declaration. If no prior declaration
390      //   is visible, or if the prior declaration specifies no
391      //   linkage, then the identifier has external linkage.
392      if (const FunctionDecl *PrevFunc = Function->getPreviousDecl()) {
393        LinkageInfo PrevLV = getLVForDecl(PrevFunc, OnlyTemplate);
394        if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
395        LV.mergeVisibility(PrevLV);
396      }
397    }
398
399    // In C++, then if the type of the function uses a type with
400    // unique-external linkage, it's not legally usable from outside
401    // this translation unit.  However, we should use the C linkage
402    // rules instead for extern "C" declarations.
403    if (Context.getLangOpts().CPlusPlus &&
404        !Function->getDeclContext()->isExternCContext() &&
405        Function->getType()->getLinkage() == UniqueExternalLinkage)
406      return LinkageInfo::uniqueExternal();
407
408    // Consider LV from the template and the template arguments unless
409    // this is an explicit specialization with a visibility attribute.
410    if (FunctionTemplateSpecializationInfo *specInfo
411                               = Function->getTemplateSpecializationInfo()) {
412      LinkageInfo TempLV = getLVForDecl(specInfo->getTemplate(), true);
413      const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
414      LinkageInfo ArgsLV = getLVForTemplateArgumentList(templateArgs,
415                                                        OnlyTemplate);
416      if (shouldConsiderTemplateVis(Function, specInfo)) {
417        LV.mergeWithMin(TempLV);
418        LV.mergeWithMin(ArgsLV);
419      } else {
420        LV.mergeLinkage(TempLV);
421        LV.mergeLinkage(ArgsLV);
422      }
423    }
424
425  //     - a named class (Clause 9), or an unnamed class defined in a
426  //       typedef declaration in which the class has the typedef name
427  //       for linkage purposes (7.1.3); or
428  //     - a named enumeration (7.2), or an unnamed enumeration
429  //       defined in a typedef declaration in which the enumeration
430  //       has the typedef name for linkage purposes (7.1.3); or
431  } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
432    // Unnamed tags have no linkage.
433    if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl())
434      return LinkageInfo::none();
435
436    // If this is a class template specialization, consider the
437    // linkage of the template and template arguments.
438    if (const ClassTemplateSpecializationDecl *spec
439          = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
440      // From the template.
441      LinkageInfo TempLV = getLVForDecl(spec->getSpecializedTemplate(), true);
442
443      // The arguments at which the template was instantiated.
444      const TemplateArgumentList &TemplateArgs = spec->getTemplateArgs();
445      LinkageInfo ArgsLV = getLVForTemplateArgumentList(TemplateArgs,
446                                                        OnlyTemplate);
447      if (shouldConsiderTemplateVis(spec)) {
448        LV.mergeWithMin(TempLV);
449        LV.mergeWithMin(ArgsLV);
450      } else {
451        LV.mergeLinkage(TempLV);
452        LV.mergeLinkage(ArgsLV);
453      }
454    }
455
456  //     - an enumerator belonging to an enumeration with external linkage;
457  } else if (isa<EnumConstantDecl>(D)) {
458    LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
459                                      OnlyTemplate);
460    if (!isExternalLinkage(EnumLV.linkage()))
461      return LinkageInfo::none();
462    LV.merge(EnumLV);
463
464  //     - a template, unless it is a function template that has
465  //       internal linkage (Clause 14);
466  } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
467    LV.merge(getLVForTemplateParameterList(temp->getTemplateParameters()));
468  //     - a namespace (7.3), unless it is declared within an unnamed
469  //       namespace.
470  } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
471    return LV;
472
473  // By extension, we assign external linkage to Objective-C
474  // interfaces.
475  } else if (isa<ObjCInterfaceDecl>(D)) {
476    // fallout
477
478  // Everything not covered here has no linkage.
479  } else {
480    return LinkageInfo::none();
481  }
482
483  // If we ended up with non-external linkage, visibility should
484  // always be default.
485  if (LV.linkage() != ExternalLinkage)
486    return LinkageInfo(LV.linkage(), DefaultVisibility, false);
487
488  return LV;
489}
490
491static LinkageInfo getLVForClassMember(const NamedDecl *D, bool OnlyTemplate) {
492  // Only certain class members have linkage.  Note that fields don't
493  // really have linkage, but it's convenient to say they do for the
494  // purposes of calculating linkage of pointer-to-data-member
495  // template arguments.
496  if (!(isa<CXXMethodDecl>(D) ||
497        isa<VarDecl>(D) ||
498        isa<FieldDecl>(D) ||
499        (isa<TagDecl>(D) &&
500         (D->getDeclName() || cast<TagDecl>(D)->getTypedefNameForAnonDecl()))))
501    return LinkageInfo::none();
502
503  LinkageInfo LV;
504
505  // If we have an explicit visibility attribute, merge that in.
506  if (!OnlyTemplate) {
507    if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility())
508      LV.mergeVisibility(*Vis, true);
509    // If we're paying attention to global visibility, apply
510    // -finline-visibility-hidden if this is an inline method.
511    //
512    // Note that we do this before merging information about
513    // the class visibility.
514    if (!LV.visibilityExplicit() && useInlineVisibilityHidden(D))
515      LV.mergeVisibility(HiddenVisibility, true);
516  }
517
518  // If this class member has an explicit visibility attribute, the only
519  // thing that can change its visibility is the template arguments, so
520  // only look for them when processing the class.
521  bool ClassOnlyTemplate =  LV.visibilityExplicit() ? true : OnlyTemplate;
522
523  // If this member has an visibility attribute, ClassF will exclude
524  // attributes on the class or command line options, keeping only information
525  // about the template instantiation. If the member has no visibility
526  // attributes, mergeWithMin behaves like merge, so in both cases mergeWithMin
527  // produces the desired result.
528  LV.mergeWithMin(getLVForDecl(cast<RecordDecl>(D->getDeclContext()),
529                               ClassOnlyTemplate));
530  if (!isExternalLinkage(LV.linkage()))
531    return LinkageInfo::none();
532
533  // If the class already has unique-external linkage, we can't improve.
534  if (LV.linkage() == UniqueExternalLinkage)
535    return LinkageInfo::uniqueExternal();
536
537  if (!OnlyTemplate)
538    LV.mergeVisibility(D->getASTContext().getLangOpts().getVisibilityMode());
539
540  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
541    // If the type of the function uses a type with unique-external
542    // linkage, it's not legally usable from outside this translation unit.
543    if (MD->getType()->getLinkage() == UniqueExternalLinkage)
544      return LinkageInfo::uniqueExternal();
545
546    // If this is a method template specialization, use the linkage for
547    // the template parameters and arguments.
548    if (FunctionTemplateSpecializationInfo *spec
549           = MD->getTemplateSpecializationInfo()) {
550      const TemplateArgumentList &TemplateArgs = *spec->TemplateArguments;
551      LinkageInfo ArgsLV = getLVForTemplateArgumentList(TemplateArgs,
552                                                        OnlyTemplate);
553      TemplateParameterList *TemplateParams =
554        spec->getTemplate()->getTemplateParameters();
555      LinkageInfo ParamsLV = getLVForTemplateParameterList(TemplateParams);
556      if (shouldConsiderTemplateVis(MD, spec)) {
557        LV.mergeWithMin(ArgsLV);
558        if (!OnlyTemplate)
559          LV.mergeWithMin(ParamsLV);
560      } else {
561        LV.mergeLinkage(ArgsLV);
562        if (!OnlyTemplate)
563          LV.mergeLinkage(ParamsLV);
564      }
565    }
566
567    // Note that in contrast to basically every other situation, we
568    // *do* apply -fvisibility to method declarations.
569
570  } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
571    if (const ClassTemplateSpecializationDecl *spec
572        = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
573      // Merge template argument/parameter information for member
574      // class template specializations.
575      const TemplateArgumentList &TemplateArgs = spec->getTemplateArgs();
576      LinkageInfo ArgsLV = getLVForTemplateArgumentList(TemplateArgs,
577                                                        OnlyTemplate);
578      TemplateParameterList *TemplateParams =
579        spec->getSpecializedTemplate()->getTemplateParameters();
580      LinkageInfo ParamsLV = getLVForTemplateParameterList(TemplateParams);
581      if (shouldConsiderTemplateVis(spec)) {
582        LV.mergeWithMin(ArgsLV);
583        if (!OnlyTemplate)
584          LV.mergeWithMin(ParamsLV);
585      } else {
586        LV.mergeLinkage(ArgsLV);
587        if (!OnlyTemplate)
588          LV.mergeLinkage(ParamsLV);
589      }
590    }
591
592  // Static data members.
593  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
594    // Modify the variable's linkage by its type, but ignore the
595    // type's visibility unless it's a definition.
596    LinkageInfo TypeLV = getLVForType(VD->getType());
597    if (TypeLV.linkage() != ExternalLinkage)
598      LV.mergeLinkage(UniqueExternalLinkage);
599    LV.mergeVisibility(TypeLV);
600  }
601
602  return LV;
603}
604
605static void clearLinkageForClass(const CXXRecordDecl *record) {
606  for (CXXRecordDecl::decl_iterator
607         i = record->decls_begin(), e = record->decls_end(); i != e; ++i) {
608    Decl *child = *i;
609    if (isa<NamedDecl>(child))
610      cast<NamedDecl>(child)->ClearLinkageCache();
611  }
612}
613
614void NamedDecl::anchor() { }
615
616void NamedDecl::ClearLinkageCache() {
617  // Note that we can't skip clearing the linkage of children just
618  // because the parent doesn't have cached linkage:  we don't cache
619  // when computing linkage for parent contexts.
620
621  HasCachedLinkage = 0;
622
623  // If we're changing the linkage of a class, we need to reset the
624  // linkage of child declarations, too.
625  if (const CXXRecordDecl *record = dyn_cast<CXXRecordDecl>(this))
626    clearLinkageForClass(record);
627
628  if (ClassTemplateDecl *temp =
629        dyn_cast<ClassTemplateDecl>(const_cast<NamedDecl*>(this))) {
630    // Clear linkage for the template pattern.
631    CXXRecordDecl *record = temp->getTemplatedDecl();
632    record->HasCachedLinkage = 0;
633    clearLinkageForClass(record);
634
635    // We need to clear linkage for specializations, too.
636    for (ClassTemplateDecl::spec_iterator
637           i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
638      i->ClearLinkageCache();
639  }
640
641  // Clear cached linkage for function template decls, too.
642  if (FunctionTemplateDecl *temp =
643        dyn_cast<FunctionTemplateDecl>(const_cast<NamedDecl*>(this))) {
644    temp->getTemplatedDecl()->ClearLinkageCache();
645    for (FunctionTemplateDecl::spec_iterator
646           i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
647      i->ClearLinkageCache();
648  }
649
650}
651
652Linkage NamedDecl::getLinkage() const {
653  if (HasCachedLinkage) {
654    assert(Linkage(CachedLinkage) ==
655             getLVForDecl(this, true).linkage());
656    return Linkage(CachedLinkage);
657  }
658
659  CachedLinkage = getLVForDecl(this, true).linkage();
660  HasCachedLinkage = 1;
661  return Linkage(CachedLinkage);
662}
663
664LinkageInfo NamedDecl::getLinkageAndVisibility() const {
665  LinkageInfo LI = getLVForDecl(this, false);
666  assert(!HasCachedLinkage || Linkage(CachedLinkage) == LI.linkage());
667  HasCachedLinkage = 1;
668  CachedLinkage = LI.linkage();
669  return LI;
670}
671
672llvm::Optional<Visibility> NamedDecl::getExplicitVisibility() const {
673  // Use the most recent declaration of a variable.
674  if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
675    if (llvm::Optional<Visibility> V =
676        getVisibilityOf(Var->getMostRecentDecl()))
677      return V;
678
679    if (Var->isStaticDataMember()) {
680      VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
681      if (InstantiatedFrom)
682        return getVisibilityOf(InstantiatedFrom);
683    }
684
685    return llvm::Optional<Visibility>();
686  }
687  // Use the most recent declaration of a function, and also handle
688  // function template specializations.
689  if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
690    if (llvm::Optional<Visibility> V
691                            = getVisibilityOf(fn->getMostRecentDecl()))
692      return V;
693
694    // If the function is a specialization of a template with an
695    // explicit visibility attribute, use that.
696    if (FunctionTemplateSpecializationInfo *templateInfo
697          = fn->getTemplateSpecializationInfo())
698      return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl());
699
700    // If the function is a member of a specialization of a class template
701    // and the corresponding decl has explicit visibility, use that.
702    FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
703    if (InstantiatedFrom)
704      return getVisibilityOf(InstantiatedFrom);
705
706    return llvm::Optional<Visibility>();
707  }
708
709  // Otherwise, just check the declaration itself first.
710  if (llvm::Optional<Visibility> V = getVisibilityOf(this))
711    return V;
712
713  // The visibility of a template is stored in the templated decl.
714  if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this))
715    return getVisibilityOf(TD->getTemplatedDecl());
716
717  // If there wasn't explicit visibility there, and this is a
718  // specialization of a class template, check for visibility
719  // on the pattern.
720  if (const ClassTemplateSpecializationDecl *spec
721        = dyn_cast<ClassTemplateSpecializationDecl>(this))
722    return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl());
723
724  // If this is a member class of a specialization of a class template
725  // and the corresponding decl has explicit visibility, use that.
726  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
727    CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
728    if (InstantiatedFrom)
729      return getVisibilityOf(InstantiatedFrom);
730  }
731
732  return llvm::Optional<Visibility>();
733}
734
735static LinkageInfo getLVForDecl(const NamedDecl *D, bool OnlyTemplate) {
736  // Objective-C: treat all Objective-C declarations as having external
737  // linkage.
738  switch (D->getKind()) {
739    default:
740      break;
741    case Decl::ParmVar:
742      return LinkageInfo::none();
743    case Decl::TemplateTemplateParm: // count these as external
744    case Decl::NonTypeTemplateParm:
745    case Decl::ObjCAtDefsField:
746    case Decl::ObjCCategory:
747    case Decl::ObjCCategoryImpl:
748    case Decl::ObjCCompatibleAlias:
749    case Decl::ObjCImplementation:
750    case Decl::ObjCMethod:
751    case Decl::ObjCProperty:
752    case Decl::ObjCPropertyImpl:
753    case Decl::ObjCProtocol:
754      return LinkageInfo::external();
755
756    case Decl::CXXRecord: {
757      const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
758      if (Record->isLambda()) {
759        if (!Record->getLambdaManglingNumber()) {
760          // This lambda has no mangling number, so it's internal.
761          return LinkageInfo::internal();
762        }
763
764        // This lambda has its linkage/visibility determined by its owner.
765        const DeclContext *DC = D->getDeclContext()->getRedeclContext();
766        if (Decl *ContextDecl = Record->getLambdaContextDecl()) {
767          if (isa<ParmVarDecl>(ContextDecl))
768            DC = ContextDecl->getDeclContext()->getRedeclContext();
769          else
770            return getLVForDecl(cast<NamedDecl>(ContextDecl),
771                                OnlyTemplate);
772        }
773
774        if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
775          return getLVForDecl(ND, OnlyTemplate);
776
777        return LinkageInfo::external();
778      }
779
780      break;
781    }
782  }
783
784  // Handle linkage for namespace-scope names.
785  if (D->getDeclContext()->getRedeclContext()->isFileContext())
786    return getLVForNamespaceScopeDecl(D, OnlyTemplate);
787
788  // C++ [basic.link]p5:
789  //   In addition, a member function, static data member, a named
790  //   class or enumeration of class scope, or an unnamed class or
791  //   enumeration defined in a class-scope typedef declaration such
792  //   that the class or enumeration has the typedef name for linkage
793  //   purposes (7.1.3), has external linkage if the name of the class
794  //   has external linkage.
795  if (D->getDeclContext()->isRecord())
796    return getLVForClassMember(D, OnlyTemplate);
797
798  // C++ [basic.link]p6:
799  //   The name of a function declared in block scope and the name of
800  //   an object declared by a block scope extern declaration have
801  //   linkage. If there is a visible declaration of an entity with
802  //   linkage having the same name and type, ignoring entities
803  //   declared outside the innermost enclosing namespace scope, the
804  //   block scope declaration declares that same entity and receives
805  //   the linkage of the previous declaration. If there is more than
806  //   one such matching entity, the program is ill-formed. Otherwise,
807  //   if no matching entity is found, the block scope entity receives
808  //   external linkage.
809  if (D->getLexicalDeclContext()->isFunctionOrMethod()) {
810    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
811      if (Function->isInAnonymousNamespace() &&
812          !Function->getDeclContext()->isExternCContext())
813        return LinkageInfo::uniqueExternal();
814
815      LinkageInfo LV;
816      if (!OnlyTemplate) {
817        if (llvm::Optional<Visibility> Vis = Function->getExplicitVisibility())
818          LV.mergeVisibility(*Vis, true);
819      }
820
821      if (const FunctionDecl *Prev = Function->getPreviousDecl()) {
822        LinkageInfo PrevLV = getLVForDecl(Prev, OnlyTemplate);
823        if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
824        LV.mergeVisibility(PrevLV);
825      }
826
827      return LV;
828    }
829
830    if (const VarDecl *Var = dyn_cast<VarDecl>(D))
831      if (Var->getStorageClass() == SC_Extern ||
832          Var->getStorageClass() == SC_PrivateExtern) {
833        if (Var->isInAnonymousNamespace() &&
834            !Var->getDeclContext()->isExternCContext())
835          return LinkageInfo::uniqueExternal();
836
837        LinkageInfo LV;
838        if (Var->getStorageClass() == SC_PrivateExtern)
839          LV.mergeVisibility(HiddenVisibility, true);
840        else if (!OnlyTemplate) {
841          if (llvm::Optional<Visibility> Vis = Var->getExplicitVisibility())
842            LV.mergeVisibility(*Vis, true);
843        }
844
845        if (const VarDecl *Prev = Var->getPreviousDecl()) {
846          LinkageInfo PrevLV = getLVForDecl(Prev, OnlyTemplate);
847          if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
848          LV.mergeVisibility(PrevLV);
849        }
850
851        return LV;
852      }
853  }
854
855  // C++ [basic.link]p6:
856  //   Names not covered by these rules have no linkage.
857  return LinkageInfo::none();
858}
859
860std::string NamedDecl::getQualifiedNameAsString() const {
861  return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
862}
863
864std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
865  const DeclContext *Ctx = getDeclContext();
866
867  if (Ctx->isFunctionOrMethod())
868    return getNameAsString();
869
870  typedef SmallVector<const DeclContext *, 8> ContextsTy;
871  ContextsTy Contexts;
872
873  // Collect contexts.
874  while (Ctx && isa<NamedDecl>(Ctx)) {
875    Contexts.push_back(Ctx);
876    Ctx = Ctx->getParent();
877  };
878
879  std::string QualName;
880  llvm::raw_string_ostream OS(QualName);
881
882  for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
883       I != E; ++I) {
884    if (const ClassTemplateSpecializationDecl *Spec
885          = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
886      const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
887      std::string TemplateArgsStr
888        = TemplateSpecializationType::PrintTemplateArgumentList(
889                                           TemplateArgs.data(),
890                                           TemplateArgs.size(),
891                                           P);
892      OS << Spec->getName() << TemplateArgsStr;
893    } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
894      if (ND->isAnonymousNamespace())
895        OS << "<anonymous namespace>";
896      else
897        OS << *ND;
898    } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
899      if (!RD->getIdentifier())
900        OS << "<anonymous " << RD->getKindName() << '>';
901      else
902        OS << *RD;
903    } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
904      const FunctionProtoType *FT = 0;
905      if (FD->hasWrittenPrototype())
906        FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
907
908      OS << *FD << '(';
909      if (FT) {
910        unsigned NumParams = FD->getNumParams();
911        for (unsigned i = 0; i < NumParams; ++i) {
912          if (i)
913            OS << ", ";
914          OS << FD->getParamDecl(i)->getType().stream(P);
915        }
916
917        if (FT->isVariadic()) {
918          if (NumParams > 0)
919            OS << ", ";
920          OS << "...";
921        }
922      }
923      OS << ')';
924    } else {
925      OS << *cast<NamedDecl>(*I);
926    }
927    OS << "::";
928  }
929
930  if (getDeclName())
931    OS << *this;
932  else
933    OS << "<anonymous>";
934
935  return OS.str();
936}
937
938bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
939  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
940
941  // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
942  // We want to keep it, unless it nominates same namespace.
943  if (getKind() == Decl::UsingDirective) {
944    return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
945             ->getOriginalNamespace() ==
946           cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
947             ->getOriginalNamespace();
948  }
949
950  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
951    // For function declarations, we keep track of redeclarations.
952    return FD->getPreviousDecl() == OldD;
953
954  // For function templates, the underlying function declarations are linked.
955  if (const FunctionTemplateDecl *FunctionTemplate
956        = dyn_cast<FunctionTemplateDecl>(this))
957    if (const FunctionTemplateDecl *OldFunctionTemplate
958          = dyn_cast<FunctionTemplateDecl>(OldD))
959      return FunctionTemplate->getTemplatedDecl()
960               ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
961
962  // For method declarations, we keep track of redeclarations.
963  if (isa<ObjCMethodDecl>(this))
964    return false;
965
966  if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
967    return true;
968
969  if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
970    return cast<UsingShadowDecl>(this)->getTargetDecl() ==
971           cast<UsingShadowDecl>(OldD)->getTargetDecl();
972
973  if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
974    ASTContext &Context = getASTContext();
975    return Context.getCanonicalNestedNameSpecifier(
976                                     cast<UsingDecl>(this)->getQualifier()) ==
977           Context.getCanonicalNestedNameSpecifier(
978                                        cast<UsingDecl>(OldD)->getQualifier());
979  }
980
981  // A typedef of an Objective-C class type can replace an Objective-C class
982  // declaration or definition, and vice versa.
983  if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
984      (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
985    return true;
986
987  // For non-function declarations, if the declarations are of the
988  // same kind then this must be a redeclaration, or semantic analysis
989  // would not have given us the new declaration.
990  return this->getKind() == OldD->getKind();
991}
992
993bool NamedDecl::hasLinkage() const {
994  return getLinkage() != NoLinkage;
995}
996
997NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
998  NamedDecl *ND = this;
999  while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1000    ND = UD->getTargetDecl();
1001
1002  if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1003    return AD->getClassInterface();
1004
1005  return ND;
1006}
1007
1008bool NamedDecl::isCXXInstanceMember() const {
1009  if (!isCXXClassMember())
1010    return false;
1011
1012  const NamedDecl *D = this;
1013  if (isa<UsingShadowDecl>(D))
1014    D = cast<UsingShadowDecl>(D)->getTargetDecl();
1015
1016  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
1017    return true;
1018  if (isa<CXXMethodDecl>(D))
1019    return cast<CXXMethodDecl>(D)->isInstance();
1020  if (isa<FunctionTemplateDecl>(D))
1021    return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
1022                                 ->getTemplatedDecl())->isInstance();
1023  return false;
1024}
1025
1026//===----------------------------------------------------------------------===//
1027// DeclaratorDecl Implementation
1028//===----------------------------------------------------------------------===//
1029
1030template <typename DeclT>
1031static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1032  if (decl->getNumTemplateParameterLists() > 0)
1033    return decl->getTemplateParameterList(0)->getTemplateLoc();
1034  else
1035    return decl->getInnerLocStart();
1036}
1037
1038SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1039  TypeSourceInfo *TSI = getTypeSourceInfo();
1040  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1041  return SourceLocation();
1042}
1043
1044void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1045  if (QualifierLoc) {
1046    // Make sure the extended decl info is allocated.
1047    if (!hasExtInfo()) {
1048      // Save (non-extended) type source info pointer.
1049      TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1050      // Allocate external info struct.
1051      DeclInfo = new (getASTContext()) ExtInfo;
1052      // Restore savedTInfo into (extended) decl info.
1053      getExtInfo()->TInfo = savedTInfo;
1054    }
1055    // Set qualifier info.
1056    getExtInfo()->QualifierLoc = QualifierLoc;
1057  } else {
1058    // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1059    if (hasExtInfo()) {
1060      if (getExtInfo()->NumTemplParamLists == 0) {
1061        // Save type source info pointer.
1062        TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1063        // Deallocate the extended decl info.
1064        getASTContext().Deallocate(getExtInfo());
1065        // Restore savedTInfo into (non-extended) decl info.
1066        DeclInfo = savedTInfo;
1067      }
1068      else
1069        getExtInfo()->QualifierLoc = QualifierLoc;
1070    }
1071  }
1072}
1073
1074void
1075DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1076                                              unsigned NumTPLists,
1077                                              TemplateParameterList **TPLists) {
1078  assert(NumTPLists > 0);
1079  // Make sure the extended decl info is allocated.
1080  if (!hasExtInfo()) {
1081    // Save (non-extended) type source info pointer.
1082    TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1083    // Allocate external info struct.
1084    DeclInfo = new (getASTContext()) ExtInfo;
1085    // Restore savedTInfo into (extended) decl info.
1086    getExtInfo()->TInfo = savedTInfo;
1087  }
1088  // Set the template parameter lists info.
1089  getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1090}
1091
1092SourceLocation DeclaratorDecl::getOuterLocStart() const {
1093  return getTemplateOrInnerLocStart(this);
1094}
1095
1096namespace {
1097
1098// Helper function: returns true if QT is or contains a type
1099// having a postfix component.
1100bool typeIsPostfix(clang::QualType QT) {
1101  while (true) {
1102    const Type* T = QT.getTypePtr();
1103    switch (T->getTypeClass()) {
1104    default:
1105      return false;
1106    case Type::Pointer:
1107      QT = cast<PointerType>(T)->getPointeeType();
1108      break;
1109    case Type::BlockPointer:
1110      QT = cast<BlockPointerType>(T)->getPointeeType();
1111      break;
1112    case Type::MemberPointer:
1113      QT = cast<MemberPointerType>(T)->getPointeeType();
1114      break;
1115    case Type::LValueReference:
1116    case Type::RValueReference:
1117      QT = cast<ReferenceType>(T)->getPointeeType();
1118      break;
1119    case Type::PackExpansion:
1120      QT = cast<PackExpansionType>(T)->getPattern();
1121      break;
1122    case Type::Paren:
1123    case Type::ConstantArray:
1124    case Type::DependentSizedArray:
1125    case Type::IncompleteArray:
1126    case Type::VariableArray:
1127    case Type::FunctionProto:
1128    case Type::FunctionNoProto:
1129      return true;
1130    }
1131  }
1132}
1133
1134} // namespace
1135
1136SourceRange DeclaratorDecl::getSourceRange() const {
1137  SourceLocation RangeEnd = getLocation();
1138  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1139    if (typeIsPostfix(TInfo->getType()))
1140      RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1141  }
1142  return SourceRange(getOuterLocStart(), RangeEnd);
1143}
1144
1145void
1146QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1147                                             unsigned NumTPLists,
1148                                             TemplateParameterList **TPLists) {
1149  assert((NumTPLists == 0 || TPLists != 0) &&
1150         "Empty array of template parameters with positive size!");
1151
1152  // Free previous template parameters (if any).
1153  if (NumTemplParamLists > 0) {
1154    Context.Deallocate(TemplParamLists);
1155    TemplParamLists = 0;
1156    NumTemplParamLists = 0;
1157  }
1158  // Set info on matched template parameter lists (if any).
1159  if (NumTPLists > 0) {
1160    TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1161    NumTemplParamLists = NumTPLists;
1162    for (unsigned i = NumTPLists; i-- > 0; )
1163      TemplParamLists[i] = TPLists[i];
1164  }
1165}
1166
1167//===----------------------------------------------------------------------===//
1168// VarDecl Implementation
1169//===----------------------------------------------------------------------===//
1170
1171const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1172  switch (SC) {
1173  case SC_None:                 break;
1174  case SC_Auto:                 return "auto";
1175  case SC_Extern:               return "extern";
1176  case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1177  case SC_PrivateExtern:        return "__private_extern__";
1178  case SC_Register:             return "register";
1179  case SC_Static:               return "static";
1180  }
1181
1182  llvm_unreachable("Invalid storage class");
1183}
1184
1185VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1186                         SourceLocation StartL, SourceLocation IdL,
1187                         IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1188                         StorageClass S, StorageClass SCAsWritten) {
1189  return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S, SCAsWritten);
1190}
1191
1192VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1193  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
1194  return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
1195                           QualType(), 0, SC_None, SC_None);
1196}
1197
1198void VarDecl::setStorageClass(StorageClass SC) {
1199  assert(isLegalForVariable(SC));
1200  if (getStorageClass() != SC)
1201    ClearLinkageCache();
1202
1203  VarDeclBits.SClass = SC;
1204}
1205
1206SourceRange VarDecl::getSourceRange() const {
1207  if (getInit())
1208    return SourceRange(getOuterLocStart(), getInit()->getLocEnd());
1209  return DeclaratorDecl::getSourceRange();
1210}
1211
1212bool VarDecl::isExternC() const {
1213  if (getLinkage() != ExternalLinkage)
1214    return false;
1215
1216  const DeclContext *DC = getDeclContext();
1217  if (DC->isRecord())
1218    return false;
1219
1220  ASTContext &Context = getASTContext();
1221  if (!Context.getLangOpts().CPlusPlus)
1222    return true;
1223  return DC->isExternCContext();
1224}
1225
1226VarDecl *VarDecl::getCanonicalDecl() {
1227  return getFirstDeclaration();
1228}
1229
1230VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
1231  ASTContext &C) const
1232{
1233  // C++ [basic.def]p2:
1234  //   A declaration is a definition unless [...] it contains the 'extern'
1235  //   specifier or a linkage-specification and neither an initializer [...],
1236  //   it declares a static data member in a class declaration [...].
1237  // C++ [temp.expl.spec]p15:
1238  //   An explicit specialization of a static data member of a template is a
1239  //   definition if the declaration includes an initializer; otherwise, it is
1240  //   a declaration.
1241  if (isStaticDataMember()) {
1242    if (isOutOfLine() && (hasInit() ||
1243          getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
1244      return Definition;
1245    else
1246      return DeclarationOnly;
1247  }
1248  // C99 6.7p5:
1249  //   A definition of an identifier is a declaration for that identifier that
1250  //   [...] causes storage to be reserved for that object.
1251  // Note: that applies for all non-file-scope objects.
1252  // C99 6.9.2p1:
1253  //   If the declaration of an identifier for an object has file scope and an
1254  //   initializer, the declaration is an external definition for the identifier
1255  if (hasInit())
1256    return Definition;
1257  // AST for 'extern "C" int foo;' is annotated with 'extern'.
1258  if (hasExternalStorage())
1259    return DeclarationOnly;
1260
1261  if (getStorageClassAsWritten() == SC_Extern ||
1262       getStorageClassAsWritten() == SC_PrivateExtern) {
1263    for (const VarDecl *PrevVar = getPreviousDecl();
1264         PrevVar; PrevVar = PrevVar->getPreviousDecl()) {
1265      if (PrevVar->getLinkage() == InternalLinkage && PrevVar->hasInit())
1266        return DeclarationOnly;
1267    }
1268  }
1269  // C99 6.9.2p2:
1270  //   A declaration of an object that has file scope without an initializer,
1271  //   and without a storage class specifier or the scs 'static', constitutes
1272  //   a tentative definition.
1273  // No such thing in C++.
1274  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1275    return TentativeDefinition;
1276
1277  // What's left is (in C, block-scope) declarations without initializers or
1278  // external storage. These are definitions.
1279  return Definition;
1280}
1281
1282VarDecl *VarDecl::getActingDefinition() {
1283  DefinitionKind Kind = isThisDeclarationADefinition();
1284  if (Kind != TentativeDefinition)
1285    return 0;
1286
1287  VarDecl *LastTentative = 0;
1288  VarDecl *First = getFirstDeclaration();
1289  for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1290       I != E; ++I) {
1291    Kind = (*I)->isThisDeclarationADefinition();
1292    if (Kind == Definition)
1293      return 0;
1294    else if (Kind == TentativeDefinition)
1295      LastTentative = *I;
1296  }
1297  return LastTentative;
1298}
1299
1300bool VarDecl::isTentativeDefinitionNow() const {
1301  DefinitionKind Kind = isThisDeclarationADefinition();
1302  if (Kind != TentativeDefinition)
1303    return false;
1304
1305  for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1306    if ((*I)->isThisDeclarationADefinition() == Definition)
1307      return false;
1308  }
1309  return true;
1310}
1311
1312VarDecl *VarDecl::getDefinition(ASTContext &C) {
1313  VarDecl *First = getFirstDeclaration();
1314  for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1315       I != E; ++I) {
1316    if ((*I)->isThisDeclarationADefinition(C) == Definition)
1317      return *I;
1318  }
1319  return 0;
1320}
1321
1322VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1323  DefinitionKind Kind = DeclarationOnly;
1324
1325  const VarDecl *First = getFirstDeclaration();
1326  for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1327       I != E; ++I) {
1328    Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
1329    if (Kind == Definition)
1330      break;
1331  }
1332
1333  return Kind;
1334}
1335
1336const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1337  redecl_iterator I = redecls_begin(), E = redecls_end();
1338  while (I != E && !I->getInit())
1339    ++I;
1340
1341  if (I != E) {
1342    D = *I;
1343    return I->getInit();
1344  }
1345  return 0;
1346}
1347
1348bool VarDecl::isOutOfLine() const {
1349  if (Decl::isOutOfLine())
1350    return true;
1351
1352  if (!isStaticDataMember())
1353    return false;
1354
1355  // If this static data member was instantiated from a static data member of
1356  // a class template, check whether that static data member was defined
1357  // out-of-line.
1358  if (VarDecl *VD = getInstantiatedFromStaticDataMember())
1359    return VD->isOutOfLine();
1360
1361  return false;
1362}
1363
1364VarDecl *VarDecl::getOutOfLineDefinition() {
1365  if (!isStaticDataMember())
1366    return 0;
1367
1368  for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
1369       RD != RDEnd; ++RD) {
1370    if (RD->getLexicalDeclContext()->isFileContext())
1371      return *RD;
1372  }
1373
1374  return 0;
1375}
1376
1377void VarDecl::setInit(Expr *I) {
1378  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
1379    Eval->~EvaluatedStmt();
1380    getASTContext().Deallocate(Eval);
1381  }
1382
1383  Init = I;
1384}
1385
1386bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
1387  const LangOptions &Lang = C.getLangOpts();
1388
1389  if (!Lang.CPlusPlus)
1390    return false;
1391
1392  // In C++11, any variable of reference type can be used in a constant
1393  // expression if it is initialized by a constant expression.
1394  if (Lang.CPlusPlus0x && getType()->isReferenceType())
1395    return true;
1396
1397  // Only const objects can be used in constant expressions in C++. C++98 does
1398  // not require the variable to be non-volatile, but we consider this to be a
1399  // defect.
1400  if (!getType().isConstQualified() || getType().isVolatileQualified())
1401    return false;
1402
1403  // In C++, const, non-volatile variables of integral or enumeration types
1404  // can be used in constant expressions.
1405  if (getType()->isIntegralOrEnumerationType())
1406    return true;
1407
1408  // Additionally, in C++11, non-volatile constexpr variables can be used in
1409  // constant expressions.
1410  return Lang.CPlusPlus0x && isConstexpr();
1411}
1412
1413/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
1414/// form, which contains extra information on the evaluated value of the
1415/// initializer.
1416EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
1417  EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
1418  if (!Eval) {
1419    Stmt *S = Init.get<Stmt *>();
1420    Eval = new (getASTContext()) EvaluatedStmt;
1421    Eval->Value = S;
1422    Init = Eval;
1423  }
1424  return Eval;
1425}
1426
1427APValue *VarDecl::evaluateValue() const {
1428  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
1429  return evaluateValue(Notes);
1430}
1431
1432APValue *VarDecl::evaluateValue(
1433    llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
1434  EvaluatedStmt *Eval = ensureEvaluatedStmt();
1435
1436  // We only produce notes indicating why an initializer is non-constant the
1437  // first time it is evaluated. FIXME: The notes won't always be emitted the
1438  // first time we try evaluation, so might not be produced at all.
1439  if (Eval->WasEvaluated)
1440    return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
1441
1442  const Expr *Init = cast<Expr>(Eval->Value);
1443  assert(!Init->isValueDependent());
1444
1445  if (Eval->IsEvaluating) {
1446    // FIXME: Produce a diagnostic for self-initialization.
1447    Eval->CheckedICE = true;
1448    Eval->IsICE = false;
1449    return 0;
1450  }
1451
1452  Eval->IsEvaluating = true;
1453
1454  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
1455                                            this, Notes);
1456
1457  // Ensure the result is an uninitialized APValue if evaluation fails.
1458  if (!Result)
1459    Eval->Evaluated = APValue();
1460
1461  Eval->IsEvaluating = false;
1462  Eval->WasEvaluated = true;
1463
1464  // In C++11, we have determined whether the initializer was a constant
1465  // expression as a side-effect.
1466  if (getASTContext().getLangOpts().CPlusPlus0x && !Eval->CheckedICE) {
1467    Eval->CheckedICE = true;
1468    Eval->IsICE = Result && Notes.empty();
1469  }
1470
1471  return Result ? &Eval->Evaluated : 0;
1472}
1473
1474bool VarDecl::checkInitIsICE() const {
1475  // Initializers of weak variables are never ICEs.
1476  if (isWeak())
1477    return false;
1478
1479  EvaluatedStmt *Eval = ensureEvaluatedStmt();
1480  if (Eval->CheckedICE)
1481    // We have already checked whether this subexpression is an
1482    // integral constant expression.
1483    return Eval->IsICE;
1484
1485  const Expr *Init = cast<Expr>(Eval->Value);
1486  assert(!Init->isValueDependent());
1487
1488  // In C++11, evaluate the initializer to check whether it's a constant
1489  // expression.
1490  if (getASTContext().getLangOpts().CPlusPlus0x) {
1491    llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
1492    evaluateValue(Notes);
1493    return Eval->IsICE;
1494  }
1495
1496  // It's an ICE whether or not the definition we found is
1497  // out-of-line.  See DR 721 and the discussion in Clang PR
1498  // 6206 for details.
1499
1500  if (Eval->CheckingICE)
1501    return false;
1502  Eval->CheckingICE = true;
1503
1504  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
1505  Eval->CheckingICE = false;
1506  Eval->CheckedICE = true;
1507  return Eval->IsICE;
1508}
1509
1510bool VarDecl::extendsLifetimeOfTemporary() const {
1511  assert(getType()->isReferenceType() &&"Non-references never extend lifetime");
1512
1513  const Expr *E = getInit();
1514  if (!E)
1515    return false;
1516
1517  if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(E))
1518    E = Cleanups->getSubExpr();
1519
1520  return isa<MaterializeTemporaryExpr>(E);
1521}
1522
1523VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
1524  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1525    return cast<VarDecl>(MSI->getInstantiatedFrom());
1526
1527  return 0;
1528}
1529
1530TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
1531  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
1532    return MSI->getTemplateSpecializationKind();
1533
1534  return TSK_Undeclared;
1535}
1536
1537MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
1538  return getASTContext().getInstantiatedFromStaticDataMember(this);
1539}
1540
1541void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1542                                         SourceLocation PointOfInstantiation) {
1543  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
1544  assert(MSI && "Not an instantiated static data member?");
1545  MSI->setTemplateSpecializationKind(TSK);
1546  if (TSK != TSK_ExplicitSpecialization &&
1547      PointOfInstantiation.isValid() &&
1548      MSI->getPointOfInstantiation().isInvalid())
1549    MSI->setPointOfInstantiation(PointOfInstantiation);
1550}
1551
1552//===----------------------------------------------------------------------===//
1553// ParmVarDecl Implementation
1554//===----------------------------------------------------------------------===//
1555
1556ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
1557                                 SourceLocation StartLoc,
1558                                 SourceLocation IdLoc, IdentifierInfo *Id,
1559                                 QualType T, TypeSourceInfo *TInfo,
1560                                 StorageClass S, StorageClass SCAsWritten,
1561                                 Expr *DefArg) {
1562  return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
1563                             S, SCAsWritten, DefArg);
1564}
1565
1566ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1567  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
1568  return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
1569                               0, QualType(), 0, SC_None, SC_None, 0);
1570}
1571
1572SourceRange ParmVarDecl::getSourceRange() const {
1573  if (!hasInheritedDefaultArg()) {
1574    SourceRange ArgRange = getDefaultArgRange();
1575    if (ArgRange.isValid())
1576      return SourceRange(getOuterLocStart(), ArgRange.getEnd());
1577  }
1578
1579  return DeclaratorDecl::getSourceRange();
1580}
1581
1582Expr *ParmVarDecl::getDefaultArg() {
1583  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
1584  assert(!hasUninstantiatedDefaultArg() &&
1585         "Default argument is not yet instantiated!");
1586
1587  Expr *Arg = getInit();
1588  if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
1589    return E->getSubExpr();
1590
1591  return Arg;
1592}
1593
1594SourceRange ParmVarDecl::getDefaultArgRange() const {
1595  if (const Expr *E = getInit())
1596    return E->getSourceRange();
1597
1598  if (hasUninstantiatedDefaultArg())
1599    return getUninstantiatedDefaultArg()->getSourceRange();
1600
1601  return SourceRange();
1602}
1603
1604bool ParmVarDecl::isParameterPack() const {
1605  return isa<PackExpansionType>(getType());
1606}
1607
1608void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
1609  getASTContext().setParameterIndex(this, parameterIndex);
1610  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
1611}
1612
1613unsigned ParmVarDecl::getParameterIndexLarge() const {
1614  return getASTContext().getParameterIndex(this);
1615}
1616
1617//===----------------------------------------------------------------------===//
1618// FunctionDecl Implementation
1619//===----------------------------------------------------------------------===//
1620
1621void FunctionDecl::getNameForDiagnostic(std::string &S,
1622                                        const PrintingPolicy &Policy,
1623                                        bool Qualified) const {
1624  NamedDecl::getNameForDiagnostic(S, Policy, Qualified);
1625  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
1626  if (TemplateArgs)
1627    S += TemplateSpecializationType::PrintTemplateArgumentList(
1628                                                         TemplateArgs->data(),
1629                                                         TemplateArgs->size(),
1630                                                               Policy);
1631
1632}
1633
1634bool FunctionDecl::isVariadic() const {
1635  if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
1636    return FT->isVariadic();
1637  return false;
1638}
1639
1640bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
1641  for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1642    if (I->Body || I->IsLateTemplateParsed) {
1643      Definition = *I;
1644      return true;
1645    }
1646  }
1647
1648  return false;
1649}
1650
1651bool FunctionDecl::hasTrivialBody() const
1652{
1653  Stmt *S = getBody();
1654  if (!S) {
1655    // Since we don't have a body for this function, we don't know if it's
1656    // trivial or not.
1657    return false;
1658  }
1659
1660  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
1661    return true;
1662  return false;
1663}
1664
1665bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
1666  for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1667    if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
1668      Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
1669      return true;
1670    }
1671  }
1672
1673  return false;
1674}
1675
1676Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
1677  for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
1678    if (I->Body) {
1679      Definition = *I;
1680      return I->Body.get(getASTContext().getExternalSource());
1681    } else if (I->IsLateTemplateParsed) {
1682      Definition = *I;
1683      return 0;
1684    }
1685  }
1686
1687  return 0;
1688}
1689
1690void FunctionDecl::setBody(Stmt *B) {
1691  Body = B;
1692  if (B)
1693    EndRangeLoc = B->getLocEnd();
1694}
1695
1696void FunctionDecl::setPure(bool P) {
1697  IsPure = P;
1698  if (P)
1699    if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
1700      Parent->markedVirtualFunctionPure();
1701}
1702
1703void FunctionDecl::setConstexpr(bool IC) {
1704  IsConstexpr = IC;
1705  CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(this);
1706  if (IC && CD)
1707    CD->getParent()->markedConstructorConstexpr(CD);
1708}
1709
1710bool FunctionDecl::isMain() const {
1711  const TranslationUnitDecl *tunit =
1712    dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
1713  return tunit &&
1714         !tunit->getASTContext().getLangOpts().Freestanding &&
1715         getIdentifier() &&
1716         getIdentifier()->isStr("main");
1717}
1718
1719bool FunctionDecl::isReservedGlobalPlacementOperator() const {
1720  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
1721  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
1722         getDeclName().getCXXOverloadedOperator() == OO_Delete ||
1723         getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
1724         getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
1725
1726  if (isa<CXXRecordDecl>(getDeclContext())) return false;
1727  assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
1728
1729  const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
1730  if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
1731
1732  ASTContext &Context =
1733    cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
1734      ->getASTContext();
1735
1736  // The result type and first argument type are constant across all
1737  // these operators.  The second argument must be exactly void*.
1738  return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
1739}
1740
1741bool FunctionDecl::isExternC() const {
1742  if (getLinkage() != ExternalLinkage)
1743    return false;
1744
1745  if (getAttr<OverloadableAttr>())
1746    return false;
1747
1748  const DeclContext *DC = getDeclContext();
1749  if (DC->isRecord())
1750    return false;
1751
1752  ASTContext &Context = getASTContext();
1753  if (!Context.getLangOpts().CPlusPlus)
1754    return true;
1755
1756  return isMain() || DC->isExternCContext();
1757}
1758
1759bool FunctionDecl::isGlobal() const {
1760  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
1761    return Method->isStatic();
1762
1763  if (getStorageClass() == SC_Static)
1764    return false;
1765
1766  for (const DeclContext *DC = getDeclContext();
1767       DC->isNamespace();
1768       DC = DC->getParent()) {
1769    if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
1770      if (!Namespace->getDeclName())
1771        return false;
1772      break;
1773    }
1774  }
1775
1776  return true;
1777}
1778
1779void
1780FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
1781  redeclarable_base::setPreviousDeclaration(PrevDecl);
1782
1783  if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
1784    FunctionTemplateDecl *PrevFunTmpl
1785      = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
1786    assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
1787    FunTmpl->setPreviousDeclaration(PrevFunTmpl);
1788  }
1789
1790  if (PrevDecl && PrevDecl->IsInline)
1791    IsInline = true;
1792}
1793
1794const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
1795  return getFirstDeclaration();
1796}
1797
1798FunctionDecl *FunctionDecl::getCanonicalDecl() {
1799  return getFirstDeclaration();
1800}
1801
1802void FunctionDecl::setStorageClass(StorageClass SC) {
1803  assert(isLegalForFunction(SC));
1804  if (getStorageClass() != SC)
1805    ClearLinkageCache();
1806
1807  SClass = SC;
1808}
1809
1810/// \brief Returns a value indicating whether this function
1811/// corresponds to a builtin function.
1812///
1813/// The function corresponds to a built-in function if it is
1814/// declared at translation scope or within an extern "C" block and
1815/// its name matches with the name of a builtin. The returned value
1816/// will be 0 for functions that do not correspond to a builtin, a
1817/// value of type \c Builtin::ID if in the target-independent range
1818/// \c [1,Builtin::First), or a target-specific builtin value.
1819unsigned FunctionDecl::getBuiltinID() const {
1820  if (!getIdentifier())
1821    return 0;
1822
1823  unsigned BuiltinID = getIdentifier()->getBuiltinID();
1824  if (!BuiltinID)
1825    return 0;
1826
1827  ASTContext &Context = getASTContext();
1828  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1829    return BuiltinID;
1830
1831  // This function has the name of a known C library
1832  // function. Determine whether it actually refers to the C library
1833  // function or whether it just has the same name.
1834
1835  // If this is a static function, it's not a builtin.
1836  if (getStorageClass() == SC_Static)
1837    return 0;
1838
1839  // If this function is at translation-unit scope and we're not in
1840  // C++, it refers to the C library function.
1841  if (!Context.getLangOpts().CPlusPlus &&
1842      getDeclContext()->isTranslationUnit())
1843    return BuiltinID;
1844
1845  // If the function is in an extern "C" linkage specification and is
1846  // not marked "overloadable", it's the real function.
1847  if (isa<LinkageSpecDecl>(getDeclContext()) &&
1848      cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
1849        == LinkageSpecDecl::lang_c &&
1850      !getAttr<OverloadableAttr>())
1851    return BuiltinID;
1852
1853  // Not a builtin
1854  return 0;
1855}
1856
1857
1858/// getNumParams - Return the number of parameters this function must have
1859/// based on its FunctionType.  This is the length of the ParamInfo array
1860/// after it has been created.
1861unsigned FunctionDecl::getNumParams() const {
1862  const FunctionType *FT = getType()->castAs<FunctionType>();
1863  if (isa<FunctionNoProtoType>(FT))
1864    return 0;
1865  return cast<FunctionProtoType>(FT)->getNumArgs();
1866
1867}
1868
1869void FunctionDecl::setParams(ASTContext &C,
1870                             llvm::ArrayRef<ParmVarDecl *> NewParamInfo) {
1871  assert(ParamInfo == 0 && "Already has param info!");
1872  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
1873
1874  // Zero params -> null pointer.
1875  if (!NewParamInfo.empty()) {
1876    ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
1877    std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
1878  }
1879}
1880
1881void FunctionDecl::setDeclsInPrototypeScope(llvm::ArrayRef<NamedDecl *> NewDecls) {
1882  assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
1883
1884  if (!NewDecls.empty()) {
1885    NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
1886    std::copy(NewDecls.begin(), NewDecls.end(), A);
1887    DeclsInPrototypeScope = llvm::ArrayRef<NamedDecl*>(A, NewDecls.size());
1888  }
1889}
1890
1891/// getMinRequiredArguments - Returns the minimum number of arguments
1892/// needed to call this function. This may be fewer than the number of
1893/// function parameters, if some of the parameters have default
1894/// arguments (in C++) or the last parameter is a parameter pack.
1895unsigned FunctionDecl::getMinRequiredArguments() const {
1896  if (!getASTContext().getLangOpts().CPlusPlus)
1897    return getNumParams();
1898
1899  unsigned NumRequiredArgs = getNumParams();
1900
1901  // If the last parameter is a parameter pack, we don't need an argument for
1902  // it.
1903  if (NumRequiredArgs > 0 &&
1904      getParamDecl(NumRequiredArgs - 1)->isParameterPack())
1905    --NumRequiredArgs;
1906
1907  // If this parameter has a default argument, we don't need an argument for
1908  // it.
1909  while (NumRequiredArgs > 0 &&
1910         getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
1911    --NumRequiredArgs;
1912
1913  // We might have parameter packs before the end. These can't be deduced,
1914  // but they can still handle multiple arguments.
1915  unsigned ArgIdx = NumRequiredArgs;
1916  while (ArgIdx > 0) {
1917    if (getParamDecl(ArgIdx - 1)->isParameterPack())
1918      NumRequiredArgs = ArgIdx;
1919
1920    --ArgIdx;
1921  }
1922
1923  return NumRequiredArgs;
1924}
1925
1926bool FunctionDecl::isInlined() const {
1927  if (IsInline)
1928    return true;
1929
1930  if (isa<CXXMethodDecl>(this)) {
1931    if (!isOutOfLine() || getCanonicalDecl()->isInlineSpecified())
1932      return true;
1933  }
1934
1935  switch (getTemplateSpecializationKind()) {
1936  case TSK_Undeclared:
1937  case TSK_ExplicitSpecialization:
1938    return false;
1939
1940  case TSK_ImplicitInstantiation:
1941  case TSK_ExplicitInstantiationDeclaration:
1942  case TSK_ExplicitInstantiationDefinition:
1943    // Handle below.
1944    break;
1945  }
1946
1947  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
1948  bool HasPattern = false;
1949  if (PatternDecl)
1950    HasPattern = PatternDecl->hasBody(PatternDecl);
1951
1952  if (HasPattern && PatternDecl)
1953    return PatternDecl->isInlined();
1954
1955  return false;
1956}
1957
1958static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
1959  // Only consider file-scope declarations in this test.
1960  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
1961    return false;
1962
1963  // Only consider explicit declarations; the presence of a builtin for a
1964  // libcall shouldn't affect whether a definition is externally visible.
1965  if (Redecl->isImplicit())
1966    return false;
1967
1968  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
1969    return true; // Not an inline definition
1970
1971  return false;
1972}
1973
1974/// \brief For a function declaration in C or C++, determine whether this
1975/// declaration causes the definition to be externally visible.
1976///
1977/// Specifically, this determines if adding the current declaration to the set
1978/// of redeclarations of the given functions causes
1979/// isInlineDefinitionExternallyVisible to change from false to true.
1980bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
1981  assert(!doesThisDeclarationHaveABody() &&
1982         "Must have a declaration without a body.");
1983
1984  ASTContext &Context = getASTContext();
1985
1986  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
1987    // With GNU inlining, a declaration with 'inline' but not 'extern', forces
1988    // an externally visible definition.
1989    //
1990    // FIXME: What happens if gnu_inline gets added on after the first
1991    // declaration?
1992    if (!isInlineSpecified() || getStorageClassAsWritten() == SC_Extern)
1993      return false;
1994
1995    const FunctionDecl *Prev = this;
1996    bool FoundBody = false;
1997    while ((Prev = Prev->getPreviousDecl())) {
1998      FoundBody |= Prev->Body;
1999
2000      if (Prev->Body) {
2001        // If it's not the case that both 'inline' and 'extern' are
2002        // specified on the definition, then it is always externally visible.
2003        if (!Prev->isInlineSpecified() ||
2004            Prev->getStorageClassAsWritten() != SC_Extern)
2005          return false;
2006      } else if (Prev->isInlineSpecified() &&
2007                 Prev->getStorageClassAsWritten() != SC_Extern) {
2008        return false;
2009      }
2010    }
2011    return FoundBody;
2012  }
2013
2014  if (Context.getLangOpts().CPlusPlus)
2015    return false;
2016
2017  // C99 6.7.4p6:
2018  //   [...] If all of the file scope declarations for a function in a
2019  //   translation unit include the inline function specifier without extern,
2020  //   then the definition in that translation unit is an inline definition.
2021  if (isInlineSpecified() && getStorageClass() != SC_Extern)
2022    return false;
2023  const FunctionDecl *Prev = this;
2024  bool FoundBody = false;
2025  while ((Prev = Prev->getPreviousDecl())) {
2026    FoundBody |= Prev->Body;
2027    if (RedeclForcesDefC99(Prev))
2028      return false;
2029  }
2030  return FoundBody;
2031}
2032
2033/// \brief For an inline function definition in C or C++, determine whether the
2034/// definition will be externally visible.
2035///
2036/// Inline function definitions are always available for inlining optimizations.
2037/// However, depending on the language dialect, declaration specifiers, and
2038/// attributes, the definition of an inline function may or may not be
2039/// "externally" visible to other translation units in the program.
2040///
2041/// In C99, inline definitions are not externally visible by default. However,
2042/// if even one of the global-scope declarations is marked "extern inline", the
2043/// inline definition becomes externally visible (C99 6.7.4p6).
2044///
2045/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2046/// definition, we use the GNU semantics for inline, which are nearly the
2047/// opposite of C99 semantics. In particular, "inline" by itself will create
2048/// an externally visible symbol, but "extern inline" will not create an
2049/// externally visible symbol.
2050bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2051  assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2052  assert(isInlined() && "Function must be inline");
2053  ASTContext &Context = getASTContext();
2054
2055  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2056    // Note: If you change the logic here, please change
2057    // doesDeclarationForceExternallyVisibleDefinition as well.
2058    //
2059    // If it's not the case that both 'inline' and 'extern' are
2060    // specified on the definition, then this inline definition is
2061    // externally visible.
2062    if (!(isInlineSpecified() && getStorageClassAsWritten() == SC_Extern))
2063      return true;
2064
2065    // If any declaration is 'inline' but not 'extern', then this definition
2066    // is externally visible.
2067    for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2068         Redecl != RedeclEnd;
2069         ++Redecl) {
2070      if (Redecl->isInlineSpecified() &&
2071          Redecl->getStorageClassAsWritten() != SC_Extern)
2072        return true;
2073    }
2074
2075    return false;
2076  }
2077
2078  // C99 6.7.4p6:
2079  //   [...] If all of the file scope declarations for a function in a
2080  //   translation unit include the inline function specifier without extern,
2081  //   then the definition in that translation unit is an inline definition.
2082  for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2083       Redecl != RedeclEnd;
2084       ++Redecl) {
2085    if (RedeclForcesDefC99(*Redecl))
2086      return true;
2087  }
2088
2089  // C99 6.7.4p6:
2090  //   An inline definition does not provide an external definition for the
2091  //   function, and does not forbid an external definition in another
2092  //   translation unit.
2093  return false;
2094}
2095
2096/// getOverloadedOperator - Which C++ overloaded operator this
2097/// function represents, if any.
2098OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2099  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2100    return getDeclName().getCXXOverloadedOperator();
2101  else
2102    return OO_None;
2103}
2104
2105/// getLiteralIdentifier - The literal suffix identifier this function
2106/// represents, if any.
2107const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2108  if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2109    return getDeclName().getCXXLiteralIdentifier();
2110  else
2111    return 0;
2112}
2113
2114FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2115  if (TemplateOrSpecialization.isNull())
2116    return TK_NonTemplate;
2117  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2118    return TK_FunctionTemplate;
2119  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2120    return TK_MemberSpecialization;
2121  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2122    return TK_FunctionTemplateSpecialization;
2123  if (TemplateOrSpecialization.is
2124                               <DependentFunctionTemplateSpecializationInfo*>())
2125    return TK_DependentFunctionTemplateSpecialization;
2126
2127  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2128}
2129
2130FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2131  if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2132    return cast<FunctionDecl>(Info->getInstantiatedFrom());
2133
2134  return 0;
2135}
2136
2137MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
2138  return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
2139}
2140
2141void
2142FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2143                                               FunctionDecl *FD,
2144                                               TemplateSpecializationKind TSK) {
2145  assert(TemplateOrSpecialization.isNull() &&
2146         "Member function is already a specialization");
2147  MemberSpecializationInfo *Info
2148    = new (C) MemberSpecializationInfo(FD, TSK);
2149  TemplateOrSpecialization = Info;
2150}
2151
2152bool FunctionDecl::isImplicitlyInstantiable() const {
2153  // If the function is invalid, it can't be implicitly instantiated.
2154  if (isInvalidDecl())
2155    return false;
2156
2157  switch (getTemplateSpecializationKind()) {
2158  case TSK_Undeclared:
2159  case TSK_ExplicitInstantiationDefinition:
2160    return false;
2161
2162  case TSK_ImplicitInstantiation:
2163    return true;
2164
2165  // It is possible to instantiate TSK_ExplicitSpecialization kind
2166  // if the FunctionDecl has a class scope specialization pattern.
2167  case TSK_ExplicitSpecialization:
2168    return getClassScopeSpecializationPattern() != 0;
2169
2170  case TSK_ExplicitInstantiationDeclaration:
2171    // Handled below.
2172    break;
2173  }
2174
2175  // Find the actual template from which we will instantiate.
2176  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2177  bool HasPattern = false;
2178  if (PatternDecl)
2179    HasPattern = PatternDecl->hasBody(PatternDecl);
2180
2181  // C++0x [temp.explicit]p9:
2182  //   Except for inline functions, other explicit instantiation declarations
2183  //   have the effect of suppressing the implicit instantiation of the entity
2184  //   to which they refer.
2185  if (!HasPattern || !PatternDecl)
2186    return true;
2187
2188  return PatternDecl->isInlined();
2189}
2190
2191bool FunctionDecl::isTemplateInstantiation() const {
2192  switch (getTemplateSpecializationKind()) {
2193    case TSK_Undeclared:
2194    case TSK_ExplicitSpecialization:
2195      return false;
2196    case TSK_ImplicitInstantiation:
2197    case TSK_ExplicitInstantiationDeclaration:
2198    case TSK_ExplicitInstantiationDefinition:
2199      return true;
2200  }
2201  llvm_unreachable("All TSK values handled.");
2202}
2203
2204FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
2205  // Handle class scope explicit specialization special case.
2206  if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
2207    return getClassScopeSpecializationPattern();
2208
2209  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
2210    while (Primary->getInstantiatedFromMemberTemplate()) {
2211      // If we have hit a point where the user provided a specialization of
2212      // this template, we're done looking.
2213      if (Primary->isMemberSpecialization())
2214        break;
2215
2216      Primary = Primary->getInstantiatedFromMemberTemplate();
2217    }
2218
2219    return Primary->getTemplatedDecl();
2220  }
2221
2222  return getInstantiatedFromMemberFunction();
2223}
2224
2225FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
2226  if (FunctionTemplateSpecializationInfo *Info
2227        = TemplateOrSpecialization
2228            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2229    return Info->Template.getPointer();
2230  }
2231  return 0;
2232}
2233
2234FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
2235    return getASTContext().getClassScopeSpecializationPattern(this);
2236}
2237
2238const TemplateArgumentList *
2239FunctionDecl::getTemplateSpecializationArgs() const {
2240  if (FunctionTemplateSpecializationInfo *Info
2241        = TemplateOrSpecialization
2242            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2243    return Info->TemplateArguments;
2244  }
2245  return 0;
2246}
2247
2248const ASTTemplateArgumentListInfo *
2249FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
2250  if (FunctionTemplateSpecializationInfo *Info
2251        = TemplateOrSpecialization
2252            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2253    return Info->TemplateArgumentsAsWritten;
2254  }
2255  return 0;
2256}
2257
2258void
2259FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
2260                                                FunctionTemplateDecl *Template,
2261                                     const TemplateArgumentList *TemplateArgs,
2262                                                void *InsertPos,
2263                                                TemplateSpecializationKind TSK,
2264                        const TemplateArgumentListInfo *TemplateArgsAsWritten,
2265                                          SourceLocation PointOfInstantiation) {
2266  assert(TSK != TSK_Undeclared &&
2267         "Must specify the type of function template specialization");
2268  FunctionTemplateSpecializationInfo *Info
2269    = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2270  if (!Info)
2271    Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
2272                                                      TemplateArgs,
2273                                                      TemplateArgsAsWritten,
2274                                                      PointOfInstantiation);
2275  TemplateOrSpecialization = Info;
2276  Template->addSpecialization(Info, InsertPos);
2277}
2278
2279void
2280FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
2281                                    const UnresolvedSetImpl &Templates,
2282                             const TemplateArgumentListInfo &TemplateArgs) {
2283  assert(TemplateOrSpecialization.isNull());
2284  size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
2285  Size += Templates.size() * sizeof(FunctionTemplateDecl*);
2286  Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
2287  void *Buffer = Context.Allocate(Size);
2288  DependentFunctionTemplateSpecializationInfo *Info =
2289    new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
2290                                                             TemplateArgs);
2291  TemplateOrSpecialization = Info;
2292}
2293
2294DependentFunctionTemplateSpecializationInfo::
2295DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
2296                                      const TemplateArgumentListInfo &TArgs)
2297  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
2298
2299  d.NumTemplates = Ts.size();
2300  d.NumArgs = TArgs.size();
2301
2302  FunctionTemplateDecl **TsArray =
2303    const_cast<FunctionTemplateDecl**>(getTemplates());
2304  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
2305    TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
2306
2307  TemplateArgumentLoc *ArgsArray =
2308    const_cast<TemplateArgumentLoc*>(getTemplateArgs());
2309  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
2310    new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
2311}
2312
2313TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
2314  // For a function template specialization, query the specialization
2315  // information object.
2316  FunctionTemplateSpecializationInfo *FTSInfo
2317    = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2318  if (FTSInfo)
2319    return FTSInfo->getTemplateSpecializationKind();
2320
2321  MemberSpecializationInfo *MSInfo
2322    = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
2323  if (MSInfo)
2324    return MSInfo->getTemplateSpecializationKind();
2325
2326  return TSK_Undeclared;
2327}
2328
2329void
2330FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2331                                          SourceLocation PointOfInstantiation) {
2332  if (FunctionTemplateSpecializationInfo *FTSInfo
2333        = TemplateOrSpecialization.dyn_cast<
2334                                    FunctionTemplateSpecializationInfo*>()) {
2335    FTSInfo->setTemplateSpecializationKind(TSK);
2336    if (TSK != TSK_ExplicitSpecialization &&
2337        PointOfInstantiation.isValid() &&
2338        FTSInfo->getPointOfInstantiation().isInvalid())
2339      FTSInfo->setPointOfInstantiation(PointOfInstantiation);
2340  } else if (MemberSpecializationInfo *MSInfo
2341             = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
2342    MSInfo->setTemplateSpecializationKind(TSK);
2343    if (TSK != TSK_ExplicitSpecialization &&
2344        PointOfInstantiation.isValid() &&
2345        MSInfo->getPointOfInstantiation().isInvalid())
2346      MSInfo->setPointOfInstantiation(PointOfInstantiation);
2347  } else
2348    llvm_unreachable("Function cannot have a template specialization kind");
2349}
2350
2351SourceLocation FunctionDecl::getPointOfInstantiation() const {
2352  if (FunctionTemplateSpecializationInfo *FTSInfo
2353        = TemplateOrSpecialization.dyn_cast<
2354                                        FunctionTemplateSpecializationInfo*>())
2355    return FTSInfo->getPointOfInstantiation();
2356  else if (MemberSpecializationInfo *MSInfo
2357             = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
2358    return MSInfo->getPointOfInstantiation();
2359
2360  return SourceLocation();
2361}
2362
2363bool FunctionDecl::isOutOfLine() const {
2364  if (Decl::isOutOfLine())
2365    return true;
2366
2367  // If this function was instantiated from a member function of a
2368  // class template, check whether that member function was defined out-of-line.
2369  if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
2370    const FunctionDecl *Definition;
2371    if (FD->hasBody(Definition))
2372      return Definition->isOutOfLine();
2373  }
2374
2375  // If this function was instantiated from a function template,
2376  // check whether that function template was defined out-of-line.
2377  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
2378    const FunctionDecl *Definition;
2379    if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
2380      return Definition->isOutOfLine();
2381  }
2382
2383  return false;
2384}
2385
2386SourceRange FunctionDecl::getSourceRange() const {
2387  return SourceRange(getOuterLocStart(), EndRangeLoc);
2388}
2389
2390unsigned FunctionDecl::getMemoryFunctionKind() const {
2391  IdentifierInfo *FnInfo = getIdentifier();
2392
2393  if (!FnInfo)
2394    return 0;
2395
2396  // Builtin handling.
2397  switch (getBuiltinID()) {
2398  case Builtin::BI__builtin_memset:
2399  case Builtin::BI__builtin___memset_chk:
2400  case Builtin::BImemset:
2401    return Builtin::BImemset;
2402
2403  case Builtin::BI__builtin_memcpy:
2404  case Builtin::BI__builtin___memcpy_chk:
2405  case Builtin::BImemcpy:
2406    return Builtin::BImemcpy;
2407
2408  case Builtin::BI__builtin_memmove:
2409  case Builtin::BI__builtin___memmove_chk:
2410  case Builtin::BImemmove:
2411    return Builtin::BImemmove;
2412
2413  case Builtin::BIstrlcpy:
2414    return Builtin::BIstrlcpy;
2415  case Builtin::BIstrlcat:
2416    return Builtin::BIstrlcat;
2417
2418  case Builtin::BI__builtin_memcmp:
2419  case Builtin::BImemcmp:
2420    return Builtin::BImemcmp;
2421
2422  case Builtin::BI__builtin_strncpy:
2423  case Builtin::BI__builtin___strncpy_chk:
2424  case Builtin::BIstrncpy:
2425    return Builtin::BIstrncpy;
2426
2427  case Builtin::BI__builtin_strncmp:
2428  case Builtin::BIstrncmp:
2429    return Builtin::BIstrncmp;
2430
2431  case Builtin::BI__builtin_strncasecmp:
2432  case Builtin::BIstrncasecmp:
2433    return Builtin::BIstrncasecmp;
2434
2435  case Builtin::BI__builtin_strncat:
2436  case Builtin::BI__builtin___strncat_chk:
2437  case Builtin::BIstrncat:
2438    return Builtin::BIstrncat;
2439
2440  case Builtin::BI__builtin_strndup:
2441  case Builtin::BIstrndup:
2442    return Builtin::BIstrndup;
2443
2444  case Builtin::BI__builtin_strlen:
2445  case Builtin::BIstrlen:
2446    return Builtin::BIstrlen;
2447
2448  default:
2449    if (isExternC()) {
2450      if (FnInfo->isStr("memset"))
2451        return Builtin::BImemset;
2452      else if (FnInfo->isStr("memcpy"))
2453        return Builtin::BImemcpy;
2454      else if (FnInfo->isStr("memmove"))
2455        return Builtin::BImemmove;
2456      else if (FnInfo->isStr("memcmp"))
2457        return Builtin::BImemcmp;
2458      else if (FnInfo->isStr("strncpy"))
2459        return Builtin::BIstrncpy;
2460      else if (FnInfo->isStr("strncmp"))
2461        return Builtin::BIstrncmp;
2462      else if (FnInfo->isStr("strncasecmp"))
2463        return Builtin::BIstrncasecmp;
2464      else if (FnInfo->isStr("strncat"))
2465        return Builtin::BIstrncat;
2466      else if (FnInfo->isStr("strndup"))
2467        return Builtin::BIstrndup;
2468      else if (FnInfo->isStr("strlen"))
2469        return Builtin::BIstrlen;
2470    }
2471    break;
2472  }
2473  return 0;
2474}
2475
2476//===----------------------------------------------------------------------===//
2477// FieldDecl Implementation
2478//===----------------------------------------------------------------------===//
2479
2480FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
2481                             SourceLocation StartLoc, SourceLocation IdLoc,
2482                             IdentifierInfo *Id, QualType T,
2483                             TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2484                             InClassInitStyle InitStyle) {
2485  return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
2486                           BW, Mutable, InitStyle);
2487}
2488
2489FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2490  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
2491  return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
2492                             0, QualType(), 0, 0, false, ICIS_NoInit);
2493}
2494
2495bool FieldDecl::isAnonymousStructOrUnion() const {
2496  if (!isImplicit() || getDeclName())
2497    return false;
2498
2499  if (const RecordType *Record = getType()->getAs<RecordType>())
2500    return Record->getDecl()->isAnonymousStructOrUnion();
2501
2502  return false;
2503}
2504
2505unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
2506  assert(isBitField() && "not a bitfield");
2507  Expr *BitWidth = InitializerOrBitWidth.getPointer();
2508  return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
2509}
2510
2511unsigned FieldDecl::getFieldIndex() const {
2512  if (CachedFieldIndex) return CachedFieldIndex - 1;
2513
2514  unsigned Index = 0;
2515  const RecordDecl *RD = getParent();
2516  const FieldDecl *LastFD = 0;
2517  bool IsMsStruct = RD->hasAttr<MsStructAttr>();
2518
2519  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
2520       I != E; ++I, ++Index) {
2521    I->CachedFieldIndex = Index + 1;
2522
2523    if (IsMsStruct) {
2524      // Zero-length bitfields following non-bitfield members are ignored.
2525      if (getASTContext().ZeroBitfieldFollowsNonBitfield(*I, LastFD)) {
2526        --Index;
2527        continue;
2528      }
2529      LastFD = *I;
2530    }
2531  }
2532
2533  assert(CachedFieldIndex && "failed to find field in parent");
2534  return CachedFieldIndex - 1;
2535}
2536
2537SourceRange FieldDecl::getSourceRange() const {
2538  if (const Expr *E = InitializerOrBitWidth.getPointer())
2539    return SourceRange(getInnerLocStart(), E->getLocEnd());
2540  return DeclaratorDecl::getSourceRange();
2541}
2542
2543void FieldDecl::setBitWidth(Expr *Width) {
2544  assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
2545         "bit width or initializer already set");
2546  InitializerOrBitWidth.setPointer(Width);
2547}
2548
2549void FieldDecl::setInClassInitializer(Expr *Init) {
2550  assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
2551         "bit width or initializer already set");
2552  InitializerOrBitWidth.setPointer(Init);
2553}
2554
2555//===----------------------------------------------------------------------===//
2556// TagDecl Implementation
2557//===----------------------------------------------------------------------===//
2558
2559SourceLocation TagDecl::getOuterLocStart() const {
2560  return getTemplateOrInnerLocStart(this);
2561}
2562
2563SourceRange TagDecl::getSourceRange() const {
2564  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
2565  return SourceRange(getOuterLocStart(), E);
2566}
2567
2568TagDecl* TagDecl::getCanonicalDecl() {
2569  return getFirstDeclaration();
2570}
2571
2572void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
2573  TypedefNameDeclOrQualifier = TDD;
2574  if (TypeForDecl)
2575    const_cast<Type*>(TypeForDecl)->ClearLinkageCache();
2576  ClearLinkageCache();
2577}
2578
2579void TagDecl::startDefinition() {
2580  IsBeingDefined = true;
2581
2582  if (isa<CXXRecordDecl>(this)) {
2583    CXXRecordDecl *D = cast<CXXRecordDecl>(this);
2584    struct CXXRecordDecl::DefinitionData *Data =
2585      new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
2586    for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
2587      cast<CXXRecordDecl>(*I)->DefinitionData = Data;
2588  }
2589}
2590
2591void TagDecl::completeDefinition() {
2592  assert((!isa<CXXRecordDecl>(this) ||
2593          cast<CXXRecordDecl>(this)->hasDefinition()) &&
2594         "definition completed but not started");
2595
2596  IsCompleteDefinition = true;
2597  IsBeingDefined = false;
2598
2599  if (ASTMutationListener *L = getASTMutationListener())
2600    L->CompletedTagDefinition(this);
2601}
2602
2603TagDecl *TagDecl::getDefinition() const {
2604  if (isCompleteDefinition())
2605    return const_cast<TagDecl *>(this);
2606  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
2607    return CXXRD->getDefinition();
2608
2609  for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
2610       R != REnd; ++R)
2611    if (R->isCompleteDefinition())
2612      return *R;
2613
2614  return 0;
2615}
2616
2617void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
2618  if (QualifierLoc) {
2619    // Make sure the extended qualifier info is allocated.
2620    if (!hasExtInfo())
2621      TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
2622    // Set qualifier info.
2623    getExtInfo()->QualifierLoc = QualifierLoc;
2624  } else {
2625    // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
2626    if (hasExtInfo()) {
2627      if (getExtInfo()->NumTemplParamLists == 0) {
2628        getASTContext().Deallocate(getExtInfo());
2629        TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
2630      }
2631      else
2632        getExtInfo()->QualifierLoc = QualifierLoc;
2633    }
2634  }
2635}
2636
2637void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
2638                                            unsigned NumTPLists,
2639                                            TemplateParameterList **TPLists) {
2640  assert(NumTPLists > 0);
2641  // Make sure the extended decl info is allocated.
2642  if (!hasExtInfo())
2643    // Allocate external info struct.
2644    TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
2645  // Set the template parameter lists info.
2646  getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
2647}
2648
2649//===----------------------------------------------------------------------===//
2650// EnumDecl Implementation
2651//===----------------------------------------------------------------------===//
2652
2653void EnumDecl::anchor() { }
2654
2655EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
2656                           SourceLocation StartLoc, SourceLocation IdLoc,
2657                           IdentifierInfo *Id,
2658                           EnumDecl *PrevDecl, bool IsScoped,
2659                           bool IsScopedUsingClassTag, bool IsFixed) {
2660  EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
2661                                    IsScoped, IsScopedUsingClassTag, IsFixed);
2662  C.getTypeDeclType(Enum, PrevDecl);
2663  return Enum;
2664}
2665
2666EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2667  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
2668  return new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(), 0, 0,
2669                            false, false, false);
2670}
2671
2672void EnumDecl::completeDefinition(QualType NewType,
2673                                  QualType NewPromotionType,
2674                                  unsigned NumPositiveBits,
2675                                  unsigned NumNegativeBits) {
2676  assert(!isCompleteDefinition() && "Cannot redefine enums!");
2677  if (!IntegerType)
2678    IntegerType = NewType.getTypePtr();
2679  PromotionType = NewPromotionType;
2680  setNumPositiveBits(NumPositiveBits);
2681  setNumNegativeBits(NumNegativeBits);
2682  TagDecl::completeDefinition();
2683}
2684
2685TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
2686  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2687    return MSI->getTemplateSpecializationKind();
2688
2689  return TSK_Undeclared;
2690}
2691
2692void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2693                                         SourceLocation PointOfInstantiation) {
2694  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
2695  assert(MSI && "Not an instantiated member enumeration?");
2696  MSI->setTemplateSpecializationKind(TSK);
2697  if (TSK != TSK_ExplicitSpecialization &&
2698      PointOfInstantiation.isValid() &&
2699      MSI->getPointOfInstantiation().isInvalid())
2700    MSI->setPointOfInstantiation(PointOfInstantiation);
2701}
2702
2703EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
2704  if (SpecializationInfo)
2705    return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
2706
2707  return 0;
2708}
2709
2710void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
2711                                            TemplateSpecializationKind TSK) {
2712  assert(!SpecializationInfo && "Member enum is already a specialization");
2713  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
2714}
2715
2716//===----------------------------------------------------------------------===//
2717// RecordDecl Implementation
2718//===----------------------------------------------------------------------===//
2719
2720RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
2721                       SourceLocation StartLoc, SourceLocation IdLoc,
2722                       IdentifierInfo *Id, RecordDecl *PrevDecl)
2723  : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
2724  HasFlexibleArrayMember = false;
2725  AnonymousStructOrUnion = false;
2726  HasObjectMember = false;
2727  LoadedFieldsFromExternalStorage = false;
2728  assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
2729}
2730
2731RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
2732                               SourceLocation StartLoc, SourceLocation IdLoc,
2733                               IdentifierInfo *Id, RecordDecl* PrevDecl) {
2734  RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
2735                                     PrevDecl);
2736  C.getTypeDeclType(R, PrevDecl);
2737  return R;
2738}
2739
2740RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
2741  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
2742  return new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
2743                              SourceLocation(), 0, 0);
2744}
2745
2746bool RecordDecl::isInjectedClassName() const {
2747  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
2748    cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
2749}
2750
2751RecordDecl::field_iterator RecordDecl::field_begin() const {
2752  if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
2753    LoadFieldsFromExternalStorage();
2754
2755  return field_iterator(decl_iterator(FirstDecl));
2756}
2757
2758/// completeDefinition - Notes that the definition of this type is now
2759/// complete.
2760void RecordDecl::completeDefinition() {
2761  assert(!isCompleteDefinition() && "Cannot redefine record!");
2762  TagDecl::completeDefinition();
2763}
2764
2765static bool isFieldOrIndirectField(Decl::Kind K) {
2766  return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
2767}
2768
2769void RecordDecl::LoadFieldsFromExternalStorage() const {
2770  ExternalASTSource *Source = getASTContext().getExternalSource();
2771  assert(hasExternalLexicalStorage() && Source && "No external storage?");
2772
2773  // Notify that we have a RecordDecl doing some initialization.
2774  ExternalASTSource::Deserializing TheFields(Source);
2775
2776  SmallVector<Decl*, 64> Decls;
2777  LoadedFieldsFromExternalStorage = true;
2778  switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
2779                                           Decls)) {
2780  case ELR_Success:
2781    break;
2782
2783  case ELR_AlreadyLoaded:
2784  case ELR_Failure:
2785    return;
2786  }
2787
2788#ifndef NDEBUG
2789  // Check that all decls we got were FieldDecls.
2790  for (unsigned i=0, e=Decls.size(); i != e; ++i)
2791    assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
2792#endif
2793
2794  if (Decls.empty())
2795    return;
2796
2797  llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
2798                                                 /*FieldsAlreadyLoaded=*/false);
2799}
2800
2801//===----------------------------------------------------------------------===//
2802// BlockDecl Implementation
2803//===----------------------------------------------------------------------===//
2804
2805void BlockDecl::setParams(llvm::ArrayRef<ParmVarDecl *> NewParamInfo) {
2806  assert(ParamInfo == 0 && "Already has param info!");
2807
2808  // Zero params -> null pointer.
2809  if (!NewParamInfo.empty()) {
2810    NumParams = NewParamInfo.size();
2811    ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
2812    std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2813  }
2814}
2815
2816void BlockDecl::setCaptures(ASTContext &Context,
2817                            const Capture *begin,
2818                            const Capture *end,
2819                            bool capturesCXXThis) {
2820  CapturesCXXThis = capturesCXXThis;
2821
2822  if (begin == end) {
2823    NumCaptures = 0;
2824    Captures = 0;
2825    return;
2826  }
2827
2828  NumCaptures = end - begin;
2829
2830  // Avoid new Capture[] because we don't want to provide a default
2831  // constructor.
2832  size_t allocationSize = NumCaptures * sizeof(Capture);
2833  void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
2834  memcpy(buffer, begin, allocationSize);
2835  Captures = static_cast<Capture*>(buffer);
2836}
2837
2838bool BlockDecl::capturesVariable(const VarDecl *variable) const {
2839  for (capture_const_iterator
2840         i = capture_begin(), e = capture_end(); i != e; ++i)
2841    // Only auto vars can be captured, so no redeclaration worries.
2842    if (i->getVariable() == variable)
2843      return true;
2844
2845  return false;
2846}
2847
2848SourceRange BlockDecl::getSourceRange() const {
2849  return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
2850}
2851
2852//===----------------------------------------------------------------------===//
2853// Other Decl Allocation/Deallocation Method Implementations
2854//===----------------------------------------------------------------------===//
2855
2856void TranslationUnitDecl::anchor() { }
2857
2858TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
2859  return new (C) TranslationUnitDecl(C);
2860}
2861
2862void LabelDecl::anchor() { }
2863
2864LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
2865                             SourceLocation IdentL, IdentifierInfo *II) {
2866  return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
2867}
2868
2869LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
2870                             SourceLocation IdentL, IdentifierInfo *II,
2871                             SourceLocation GnuLabelL) {
2872  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
2873  return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
2874}
2875
2876LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2877  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
2878  return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
2879}
2880
2881void ValueDecl::anchor() { }
2882
2883void ImplicitParamDecl::anchor() { }
2884
2885ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
2886                                             SourceLocation IdLoc,
2887                                             IdentifierInfo *Id,
2888                                             QualType Type) {
2889  return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
2890}
2891
2892ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
2893                                                         unsigned ID) {
2894  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
2895  return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
2896}
2897
2898FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
2899                                   SourceLocation StartLoc,
2900                                   const DeclarationNameInfo &NameInfo,
2901                                   QualType T, TypeSourceInfo *TInfo,
2902                                   StorageClass SC, StorageClass SCAsWritten,
2903                                   bool isInlineSpecified,
2904                                   bool hasWrittenPrototype,
2905                                   bool isConstexprSpecified) {
2906  FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
2907                                           T, TInfo, SC, SCAsWritten,
2908                                           isInlineSpecified,
2909                                           isConstexprSpecified);
2910  New->HasWrittenPrototype = hasWrittenPrototype;
2911  return New;
2912}
2913
2914FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2915  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
2916  return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
2917                                DeclarationNameInfo(), QualType(), 0,
2918                                SC_None, SC_None, false, false);
2919}
2920
2921BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
2922  return new (C) BlockDecl(DC, L);
2923}
2924
2925BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2926  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
2927  return new (Mem) BlockDecl(0, SourceLocation());
2928}
2929
2930EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
2931                                           SourceLocation L,
2932                                           IdentifierInfo *Id, QualType T,
2933                                           Expr *E, const llvm::APSInt &V) {
2934  return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
2935}
2936
2937EnumConstantDecl *
2938EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2939  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
2940  return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
2941                                    llvm::APSInt());
2942}
2943
2944void IndirectFieldDecl::anchor() { }
2945
2946IndirectFieldDecl *
2947IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
2948                          IdentifierInfo *Id, QualType T, NamedDecl **CH,
2949                          unsigned CHS) {
2950  return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
2951}
2952
2953IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
2954                                                         unsigned ID) {
2955  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
2956  return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
2957                                     QualType(), 0, 0);
2958}
2959
2960SourceRange EnumConstantDecl::getSourceRange() const {
2961  SourceLocation End = getLocation();
2962  if (Init)
2963    End = Init->getLocEnd();
2964  return SourceRange(getLocation(), End);
2965}
2966
2967void TypeDecl::anchor() { }
2968
2969TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
2970                                 SourceLocation StartLoc, SourceLocation IdLoc,
2971                                 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
2972  return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
2973}
2974
2975void TypedefNameDecl::anchor() { }
2976
2977TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2978  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
2979  return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
2980}
2981
2982TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
2983                                     SourceLocation StartLoc,
2984                                     SourceLocation IdLoc, IdentifierInfo *Id,
2985                                     TypeSourceInfo *TInfo) {
2986  return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
2987}
2988
2989TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2990  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
2991  return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
2992}
2993
2994SourceRange TypedefDecl::getSourceRange() const {
2995  SourceLocation RangeEnd = getLocation();
2996  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2997    if (typeIsPostfix(TInfo->getType()))
2998      RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2999  }
3000  return SourceRange(getLocStart(), RangeEnd);
3001}
3002
3003SourceRange TypeAliasDecl::getSourceRange() const {
3004  SourceLocation RangeEnd = getLocStart();
3005  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3006    RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3007  return SourceRange(getLocStart(), RangeEnd);
3008}
3009
3010void FileScopeAsmDecl::anchor() { }
3011
3012FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3013                                           StringLiteral *Str,
3014                                           SourceLocation AsmLoc,
3015                                           SourceLocation RParenLoc) {
3016  return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3017}
3018
3019FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3020                                                       unsigned ID) {
3021  void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
3022  return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
3023}
3024
3025//===----------------------------------------------------------------------===//
3026// ImportDecl Implementation
3027//===----------------------------------------------------------------------===//
3028
3029/// \brief Retrieve the number of module identifiers needed to name the given
3030/// module.
3031static unsigned getNumModuleIdentifiers(Module *Mod) {
3032  unsigned Result = 1;
3033  while (Mod->Parent) {
3034    Mod = Mod->Parent;
3035    ++Result;
3036  }
3037  return Result;
3038}
3039
3040ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3041                       Module *Imported,
3042                       ArrayRef<SourceLocation> IdentifierLocs)
3043  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
3044    NextLocalImport()
3045{
3046  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
3047  SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
3048  memcpy(StoredLocs, IdentifierLocs.data(),
3049         IdentifierLocs.size() * sizeof(SourceLocation));
3050}
3051
3052ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3053                       Module *Imported, SourceLocation EndLoc)
3054  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
3055    NextLocalImport()
3056{
3057  *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
3058}
3059
3060ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
3061                               SourceLocation StartLoc, Module *Imported,
3062                               ArrayRef<SourceLocation> IdentifierLocs) {
3063  void *Mem = C.Allocate(sizeof(ImportDecl) +
3064                         IdentifierLocs.size() * sizeof(SourceLocation));
3065  return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
3066}
3067
3068ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
3069                                       SourceLocation StartLoc,
3070                                       Module *Imported,
3071                                       SourceLocation EndLoc) {
3072  void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
3073  ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
3074  Import->setImplicit();
3075  return Import;
3076}
3077
3078ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3079                                           unsigned NumLocations) {
3080  void *Mem = AllocateDeserializedDecl(C, ID,
3081                                       (sizeof(ImportDecl) +
3082                                        NumLocations * sizeof(SourceLocation)));
3083  return new (Mem) ImportDecl(EmptyShell());
3084}
3085
3086ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
3087  if (!ImportedAndComplete.getInt())
3088    return ArrayRef<SourceLocation>();
3089
3090  const SourceLocation *StoredLocs
3091    = reinterpret_cast<const SourceLocation *>(this + 1);
3092  return ArrayRef<SourceLocation>(StoredLocs,
3093                                  getNumModuleIdentifiers(getImportedModule()));
3094}
3095
3096SourceRange ImportDecl::getSourceRange() const {
3097  if (!ImportedAndComplete.getInt())
3098    return SourceRange(getLocation(),
3099                       *reinterpret_cast<const SourceLocation *>(this + 1));
3100
3101  return SourceRange(getLocation(), getIdentifierLocs().back());
3102}
3103