1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
29#include "clang/Basic/OperatorKinds.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/ImmutableMap.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringRef.h"
36#include "llvm/Support/raw_ostream.h"
37#include <algorithm>
38#include <utility>
39#include <vector>
40
41using namespace clang;
42using namespace thread_safety;
43
44// Key method definition
45ThreadSafetyHandler::~ThreadSafetyHandler() {}
46
47namespace {
48
49/// SExpr implements a simple expression language that is used to store,
50/// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a SExpr
51/// does not capture surface syntax, and it does not distinguish between
52/// C++ concepts, like pointers and references, that have no real semantic
53/// differences.  This simplicity allows SExprs to be meaningfully compared,
54/// e.g.
55///        (x)          =  x
56///        (*this).foo  =  this->foo
57///        *&a          =  a
58///
59/// Thread-safety analysis works by comparing lock expressions.  Within the
60/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
61/// a particular mutex object at run-time.  Subsequent occurrences of the same
62/// expression (where "same" means syntactic equality) will refer to the same
63/// run-time object if three conditions hold:
64/// (1) Local variables in the expression, such as "x" have not changed.
65/// (2) Values on the heap that affect the expression have not changed.
66/// (3) The expression involves only pure function calls.
67///
68/// The current implementation assumes, but does not verify, that multiple uses
69/// of the same lock expression satisfies these criteria.
70class SExpr {
71private:
72  enum ExprOp {
73    EOP_Nop,       ///< No-op
74    EOP_Wildcard,  ///< Matches anything.
75    EOP_Universal, ///< Universal lock.
76    EOP_This,      ///< This keyword.
77    EOP_NVar,      ///< Named variable.
78    EOP_LVar,      ///< Local variable.
79    EOP_Dot,       ///< Field access
80    EOP_Call,      ///< Function call
81    EOP_MCall,     ///< Method call
82    EOP_Index,     ///< Array index
83    EOP_Unary,     ///< Unary operation
84    EOP_Binary,    ///< Binary operation
85    EOP_Unknown    ///< Catchall for everything else
86  };
87
88
89  class SExprNode {
90   private:
91    unsigned char  Op;     ///< Opcode of the root node
92    unsigned char  Flags;  ///< Additional opcode-specific data
93    unsigned short Sz;     ///< Number of child nodes
94    const void*    Data;   ///< Additional opcode-specific data
95
96   public:
97    SExprNode(ExprOp O, unsigned F, const void* D)
98      : Op(static_cast<unsigned char>(O)),
99        Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
100    { }
101
102    unsigned size() const        { return Sz; }
103    void     setSize(unsigned S) { Sz = S;    }
104
105    ExprOp   kind() const { return static_cast<ExprOp>(Op); }
106
107    const NamedDecl* getNamedDecl() const {
108      assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
109      return reinterpret_cast<const NamedDecl*>(Data);
110    }
111
112    const NamedDecl* getFunctionDecl() const {
113      assert(Op == EOP_Call || Op == EOP_MCall);
114      return reinterpret_cast<const NamedDecl*>(Data);
115    }
116
117    bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
118    void setArrow(bool A) { Flags = A ? 1 : 0; }
119
120    unsigned arity() const {
121      switch (Op) {
122        case EOP_Nop:       return 0;
123        case EOP_Wildcard:  return 0;
124        case EOP_Universal: return 0;
125        case EOP_NVar:      return 0;
126        case EOP_LVar:      return 0;
127        case EOP_This:      return 0;
128        case EOP_Dot:       return 1;
129        case EOP_Call:      return Flags+1;  // First arg is function.
130        case EOP_MCall:     return Flags+1;  // First arg is implicit obj.
131        case EOP_Index:     return 2;
132        case EOP_Unary:     return 1;
133        case EOP_Binary:    return 2;
134        case EOP_Unknown:   return Flags;
135      }
136      return 0;
137    }
138
139    bool operator==(const SExprNode& Other) const {
140      // Ignore flags and size -- they don't matter.
141      return (Op == Other.Op &&
142              Data == Other.Data);
143    }
144
145    bool operator!=(const SExprNode& Other) const {
146      return !(*this == Other);
147    }
148
149    bool matches(const SExprNode& Other) const {
150      return (*this == Other) ||
151             (Op == EOP_Wildcard) ||
152             (Other.Op == EOP_Wildcard);
153    }
154  };
155
156
157  /// \brief Encapsulates the lexical context of a function call.  The lexical
158  /// context includes the arguments to the call, including the implicit object
159  /// argument.  When an attribute containing a mutex expression is attached to
160  /// a method, the expression may refer to formal parameters of the method.
161  /// Actual arguments must be substituted for formal parameters to derive
162  /// the appropriate mutex expression in the lexical context where the function
163  /// is called.  PrevCtx holds the context in which the arguments themselves
164  /// should be evaluated; multiple calling contexts can be chained together
165  /// by the lock_returned attribute.
166  struct CallingContext {
167    const NamedDecl* AttrDecl;   // The decl to which the attribute is attached.
168    Expr*            SelfArg;    // Implicit object argument -- e.g. 'this'
169    bool             SelfArrow;  // is Self referred to with -> or .?
170    unsigned         NumArgs;    // Number of funArgs
171    Expr**           FunArgs;    // Function arguments
172    CallingContext*  PrevCtx;    // The previous context; or 0 if none.
173
174    CallingContext(const NamedDecl *D = 0, Expr *S = 0,
175                   unsigned N = 0, Expr **A = 0, CallingContext *P = 0)
176      : AttrDecl(D), SelfArg(S), SelfArrow(false),
177        NumArgs(N), FunArgs(A), PrevCtx(P)
178    { }
179  };
180
181  typedef SmallVector<SExprNode, 4> NodeVector;
182
183private:
184  // A SExpr is a list of SExprNodes in prefix order.  The Size field allows
185  // the list to be traversed as a tree.
186  NodeVector NodeVec;
187
188private:
189  unsigned makeNop() {
190    NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
191    return NodeVec.size()-1;
192  }
193
194  unsigned makeWildcard() {
195    NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
196    return NodeVec.size()-1;
197  }
198
199  unsigned makeUniversal() {
200    NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
201    return NodeVec.size()-1;
202  }
203
204  unsigned makeNamedVar(const NamedDecl *D) {
205    NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
206    return NodeVec.size()-1;
207  }
208
209  unsigned makeLocalVar(const NamedDecl *D) {
210    NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
211    return NodeVec.size()-1;
212  }
213
214  unsigned makeThis() {
215    NodeVec.push_back(SExprNode(EOP_This, 0, 0));
216    return NodeVec.size()-1;
217  }
218
219  unsigned makeDot(const NamedDecl *D, bool Arrow) {
220    NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
221    return NodeVec.size()-1;
222  }
223
224  unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
225    NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
226    return NodeVec.size()-1;
227  }
228
229  unsigned makeMCall(unsigned NumArgs, const NamedDecl *D) {
230    NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, D));
231    return NodeVec.size()-1;
232  }
233
234  unsigned makeIndex() {
235    NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
236    return NodeVec.size()-1;
237  }
238
239  unsigned makeUnary() {
240    NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
241    return NodeVec.size()-1;
242  }
243
244  unsigned makeBinary() {
245    NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
246    return NodeVec.size()-1;
247  }
248
249  unsigned makeUnknown(unsigned Arity) {
250    NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
251    return NodeVec.size()-1;
252  }
253
254  /// Build an SExpr from the given C++ expression.
255  /// Recursive function that terminates on DeclRefExpr.
256  /// Note: this function merely creates a SExpr; it does not check to
257  /// ensure that the original expression is a valid mutex expression.
258  ///
259  /// NDeref returns the number of Derefence and AddressOf operations
260  /// preceeding the Expr; this is used to decide whether to pretty-print
261  /// SExprs with . or ->.
262  unsigned buildSExpr(Expr *Exp, CallingContext* CallCtx, int* NDeref = 0) {
263    if (!Exp)
264      return 0;
265
266    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
267      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
268      ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
269      if (PV) {
270        FunctionDecl *FD =
271          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
272        unsigned i = PV->getFunctionScopeIndex();
273
274        if (CallCtx && CallCtx->FunArgs &&
275            FD == CallCtx->AttrDecl->getCanonicalDecl()) {
276          // Substitute call arguments for references to function parameters
277          assert(i < CallCtx->NumArgs);
278          return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
279        }
280        // Map the param back to the param of the original function declaration.
281        makeNamedVar(FD->getParamDecl(i));
282        return 1;
283      }
284      // Not a function parameter -- just store the reference.
285      makeNamedVar(ND);
286      return 1;
287    } else if (isa<CXXThisExpr>(Exp)) {
288      // Substitute parent for 'this'
289      if (CallCtx && CallCtx->SelfArg) {
290        if (!CallCtx->SelfArrow && NDeref)
291          // 'this' is a pointer, but self is not, so need to take address.
292          --(*NDeref);
293        return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
294      }
295      else {
296        makeThis();
297        return 1;
298      }
299    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
300      NamedDecl *ND = ME->getMemberDecl();
301      int ImplicitDeref = ME->isArrow() ? 1 : 0;
302      unsigned Root = makeDot(ND, false);
303      unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
304      NodeVec[Root].setArrow(ImplicitDeref > 0);
305      NodeVec[Root].setSize(Sz + 1);
306      return Sz + 1;
307    } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
308      // When calling a function with a lock_returned attribute, replace
309      // the function call with the expression in lock_returned.
310      CXXMethodDecl* MD =
311        cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl());
312      if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
313        CallingContext LRCallCtx(CMCE->getMethodDecl());
314        LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
315        LRCallCtx.SelfArrow =
316          dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
317        LRCallCtx.NumArgs = CMCE->getNumArgs();
318        LRCallCtx.FunArgs = CMCE->getArgs();
319        LRCallCtx.PrevCtx = CallCtx;
320        return buildSExpr(At->getArg(), &LRCallCtx);
321      }
322      // Hack to treat smart pointers and iterators as pointers;
323      // ignore any method named get().
324      if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
325          CMCE->getNumArgs() == 0) {
326        if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
327          ++(*NDeref);
328        return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
329      }
330      unsigned NumCallArgs = CMCE->getNumArgs();
331      unsigned Root =
332        makeMCall(NumCallArgs, CMCE->getMethodDecl()->getCanonicalDecl());
333      unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
334      Expr** CallArgs = CMCE->getArgs();
335      for (unsigned i = 0; i < NumCallArgs; ++i) {
336        Sz += buildSExpr(CallArgs[i], CallCtx);
337      }
338      NodeVec[Root].setSize(Sz + 1);
339      return Sz + 1;
340    } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
341      FunctionDecl* FD =
342        cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl());
343      if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
344        CallingContext LRCallCtx(CE->getDirectCallee());
345        LRCallCtx.NumArgs = CE->getNumArgs();
346        LRCallCtx.FunArgs = CE->getArgs();
347        LRCallCtx.PrevCtx = CallCtx;
348        return buildSExpr(At->getArg(), &LRCallCtx);
349      }
350      // Treat smart pointers and iterators as pointers;
351      // ignore the * and -> operators.
352      if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
353        OverloadedOperatorKind k = OE->getOperator();
354        if (k == OO_Star) {
355          if (NDeref) ++(*NDeref);
356          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
357        }
358        else if (k == OO_Arrow) {
359          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
360        }
361      }
362      unsigned NumCallArgs = CE->getNumArgs();
363      unsigned Root = makeCall(NumCallArgs, 0);
364      unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
365      Expr** CallArgs = CE->getArgs();
366      for (unsigned i = 0; i < NumCallArgs; ++i) {
367        Sz += buildSExpr(CallArgs[i], CallCtx);
368      }
369      NodeVec[Root].setSize(Sz+1);
370      return Sz+1;
371    } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
372      unsigned Root = makeBinary();
373      unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
374      Sz += buildSExpr(BOE->getRHS(), CallCtx);
375      NodeVec[Root].setSize(Sz);
376      return Sz;
377    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
378      // Ignore & and * operators -- they're no-ops.
379      // However, we try to figure out whether the expression is a pointer,
380      // so we can use . and -> appropriately in error messages.
381      if (UOE->getOpcode() == UO_Deref) {
382        if (NDeref) ++(*NDeref);
383        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
384      }
385      if (UOE->getOpcode() == UO_AddrOf) {
386        if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
387          if (DRE->getDecl()->isCXXInstanceMember()) {
388            // This is a pointer-to-member expression, e.g. &MyClass::mu_.
389            // We interpret this syntax specially, as a wildcard.
390            unsigned Root = makeDot(DRE->getDecl(), false);
391            makeWildcard();
392            NodeVec[Root].setSize(2);
393            return 2;
394          }
395        }
396        if (NDeref) --(*NDeref);
397        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
398      }
399      unsigned Root = makeUnary();
400      unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
401      NodeVec[Root].setSize(Sz);
402      return Sz;
403    } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
404      unsigned Root = makeIndex();
405      unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
406      Sz += buildSExpr(ASE->getIdx(), CallCtx);
407      NodeVec[Root].setSize(Sz);
408      return Sz;
409    } else if (AbstractConditionalOperator *CE =
410               dyn_cast<AbstractConditionalOperator>(Exp)) {
411      unsigned Root = makeUnknown(3);
412      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
413      Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
414      Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
415      NodeVec[Root].setSize(Sz);
416      return Sz;
417    } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
418      unsigned Root = makeUnknown(3);
419      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
420      Sz += buildSExpr(CE->getLHS(), CallCtx);
421      Sz += buildSExpr(CE->getRHS(), CallCtx);
422      NodeVec[Root].setSize(Sz);
423      return Sz;
424    } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
425      return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
426    } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
427      return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
428    } else if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
429      return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
430    } else if (CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
431      return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
432    } else if (isa<CharacterLiteral>(Exp) ||
433               isa<CXXNullPtrLiteralExpr>(Exp) ||
434               isa<GNUNullExpr>(Exp) ||
435               isa<CXXBoolLiteralExpr>(Exp) ||
436               isa<FloatingLiteral>(Exp) ||
437               isa<ImaginaryLiteral>(Exp) ||
438               isa<IntegerLiteral>(Exp) ||
439               isa<StringLiteral>(Exp) ||
440               isa<ObjCStringLiteral>(Exp)) {
441      makeNop();
442      return 1;  // FIXME: Ignore literals for now
443    } else {
444      makeNop();
445      return 1;  // Ignore.  FIXME: mark as invalid expression?
446    }
447  }
448
449  /// \brief Construct a SExpr from an expression.
450  /// \param MutexExp The original mutex expression within an attribute
451  /// \param DeclExp An expression involving the Decl on which the attribute
452  ///        occurs.
453  /// \param D  The declaration to which the lock/unlock attribute is attached.
454  void buildSExprFromExpr(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
455    CallingContext CallCtx(D);
456
457
458    if (MutexExp) {
459      if (StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
460        if (SLit->getString() == StringRef("*"))
461          // The "*" expr is a universal lock, which essentially turns off
462          // checks until it is removed from the lockset.
463          makeUniversal();
464        else
465          // Ignore other string literals for now.
466          makeNop();
467        return;
468      }
469    }
470
471    // If we are processing a raw attribute expression, with no substitutions.
472    if (DeclExp == 0) {
473      buildSExpr(MutexExp, 0);
474      return;
475    }
476
477    // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
478    // for formal parameters when we call buildMutexID later.
479    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
480      CallCtx.SelfArg   = ME->getBase();
481      CallCtx.SelfArrow = ME->isArrow();
482    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
483      CallCtx.SelfArg   = CE->getImplicitObjectArgument();
484      CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
485      CallCtx.NumArgs   = CE->getNumArgs();
486      CallCtx.FunArgs   = CE->getArgs();
487    } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
488      CallCtx.NumArgs = CE->getNumArgs();
489      CallCtx.FunArgs = CE->getArgs();
490    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
491      CallCtx.SelfArg = 0;  // FIXME -- get the parent from DeclStmt
492      CallCtx.NumArgs = CE->getNumArgs();
493      CallCtx.FunArgs = CE->getArgs();
494    } else if (D && isa<CXXDestructorDecl>(D)) {
495      // There's no such thing as a "destructor call" in the AST.
496      CallCtx.SelfArg = DeclExp;
497    }
498
499    // If the attribute has no arguments, then assume the argument is "this".
500    if (MutexExp == 0) {
501      buildSExpr(CallCtx.SelfArg, 0);
502      return;
503    }
504
505    // For most attributes.
506    buildSExpr(MutexExp, &CallCtx);
507  }
508
509  /// \brief Get index of next sibling of node i.
510  unsigned getNextSibling(unsigned i) const {
511    return i + NodeVec[i].size();
512  }
513
514public:
515  explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
516
517  /// \param MutexExp The original mutex expression within an attribute
518  /// \param DeclExp An expression involving the Decl on which the attribute
519  ///        occurs.
520  /// \param D  The declaration to which the lock/unlock attribute is attached.
521  /// Caller must check isValid() after construction.
522  SExpr(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
523    buildSExprFromExpr(MutexExp, DeclExp, D);
524  }
525
526  /// Return true if this is a valid decl sequence.
527  /// Caller must call this by hand after construction to handle errors.
528  bool isValid() const {
529    return !NodeVec.empty();
530  }
531
532  bool shouldIgnore() const {
533    // Nop is a mutex that we have decided to deliberately ignore.
534    assert(NodeVec.size() > 0 && "Invalid Mutex");
535    return NodeVec[0].kind() == EOP_Nop;
536  }
537
538  bool isUniversal() const {
539    assert(NodeVec.size() > 0 && "Invalid Mutex");
540    return NodeVec[0].kind() == EOP_Universal;
541  }
542
543  /// Issue a warning about an invalid lock expression
544  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
545                              Expr *DeclExp, const NamedDecl* D) {
546    SourceLocation Loc;
547    if (DeclExp)
548      Loc = DeclExp->getExprLoc();
549
550    // FIXME: add a note about the attribute location in MutexExp or D
551    if (Loc.isValid())
552      Handler.handleInvalidLockExp(Loc);
553  }
554
555  bool operator==(const SExpr &other) const {
556    return NodeVec == other.NodeVec;
557  }
558
559  bool operator!=(const SExpr &other) const {
560    return !(*this == other);
561  }
562
563  bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
564    if (NodeVec[i].matches(Other.NodeVec[j])) {
565      unsigned n = NodeVec[i].arity();
566      bool Result = true;
567      unsigned ci = i+1;  // first child of i
568      unsigned cj = j+1;  // first child of j
569      for (unsigned k = 0; k < n;
570           ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
571        Result = Result && matches(Other, ci, cj);
572      }
573      return Result;
574    }
575    return false;
576  }
577
578  // A partial match between a.mu and b.mu returns true a and b have the same
579  // type (and thus mu refers to the same mutex declaration), regardless of
580  // whether a and b are different objects or not.
581  bool partiallyMatches(const SExpr &Other) const {
582    if (NodeVec[0].kind() == EOP_Dot)
583      return NodeVec[0].matches(Other.NodeVec[0]);
584    return false;
585  }
586
587  /// \brief Pretty print a lock expression for use in error messages.
588  std::string toString(unsigned i = 0) const {
589    assert(isValid());
590    if (i >= NodeVec.size())
591      return "";
592
593    const SExprNode* N = &NodeVec[i];
594    switch (N->kind()) {
595      case EOP_Nop:
596        return "_";
597      case EOP_Wildcard:
598        return "(?)";
599      case EOP_Universal:
600        return "*";
601      case EOP_This:
602        return "this";
603      case EOP_NVar:
604      case EOP_LVar: {
605        return N->getNamedDecl()->getNameAsString();
606      }
607      case EOP_Dot: {
608        if (NodeVec[i+1].kind() == EOP_Wildcard) {
609          std::string S = "&";
610          S += N->getNamedDecl()->getQualifiedNameAsString();
611          return S;
612        }
613        std::string FieldName = N->getNamedDecl()->getNameAsString();
614        if (NodeVec[i+1].kind() == EOP_This)
615          return FieldName;
616
617        std::string S = toString(i+1);
618        if (N->isArrow())
619          return S + "->" + FieldName;
620        else
621          return S + "." + FieldName;
622      }
623      case EOP_Call: {
624        std::string S = toString(i+1) + "(";
625        unsigned NumArgs = N->arity()-1;
626        unsigned ci = getNextSibling(i+1);
627        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
628          S += toString(ci);
629          if (k+1 < NumArgs) S += ",";
630        }
631        S += ")";
632        return S;
633      }
634      case EOP_MCall: {
635        std::string S = "";
636        if (NodeVec[i+1].kind() != EOP_This)
637          S = toString(i+1) + ".";
638        if (const NamedDecl *D = N->getFunctionDecl())
639          S += D->getNameAsString() + "(";
640        else
641          S += "#(";
642        unsigned NumArgs = N->arity()-1;
643        unsigned ci = getNextSibling(i+1);
644        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
645          S += toString(ci);
646          if (k+1 < NumArgs) S += ",";
647        }
648        S += ")";
649        return S;
650      }
651      case EOP_Index: {
652        std::string S1 = toString(i+1);
653        std::string S2 = toString(i+1 + NodeVec[i+1].size());
654        return S1 + "[" + S2 + "]";
655      }
656      case EOP_Unary: {
657        std::string S = toString(i+1);
658        return "#" + S;
659      }
660      case EOP_Binary: {
661        std::string S1 = toString(i+1);
662        std::string S2 = toString(i+1 + NodeVec[i+1].size());
663        return "(" + S1 + "#" + S2 + ")";
664      }
665      case EOP_Unknown: {
666        unsigned NumChildren = N->arity();
667        if (NumChildren == 0)
668          return "(...)";
669        std::string S = "(";
670        unsigned ci = i+1;
671        for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
672          S += toString(ci);
673          if (j+1 < NumChildren) S += "#";
674        }
675        S += ")";
676        return S;
677      }
678    }
679    return "";
680  }
681};
682
683
684
685/// \brief A short list of SExprs
686class MutexIDList : public SmallVector<SExpr, 3> {
687public:
688  /// \brief Return true if the list contains the specified SExpr
689  /// Performs a linear search, because these lists are almost always very small.
690  bool contains(const SExpr& M) {
691    for (iterator I=begin(),E=end(); I != E; ++I)
692      if ((*I) == M) return true;
693    return false;
694  }
695
696  /// \brief Push M onto list, bud discard duplicates
697  void push_back_nodup(const SExpr& M) {
698    if (!contains(M)) push_back(M);
699  }
700};
701
702
703
704/// \brief This is a helper class that stores info about the most recent
705/// accquire of a Lock.
706///
707/// The main body of the analysis maps MutexIDs to LockDatas.
708struct LockData {
709  SourceLocation AcquireLoc;
710
711  /// \brief LKind stores whether a lock is held shared or exclusively.
712  /// Note that this analysis does not currently support either re-entrant
713  /// locking or lock "upgrading" and "downgrading" between exclusive and
714  /// shared.
715  ///
716  /// FIXME: add support for re-entrant locking and lock up/downgrading
717  LockKind LKind;
718  bool     Managed;            // for ScopedLockable objects
719  SExpr    UnderlyingMutex;    // for ScopedLockable objects
720
721  LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
722    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
723      UnderlyingMutex(Decl::EmptyShell())
724  {}
725
726  LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
727    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
728      UnderlyingMutex(Mu)
729  {}
730
731  bool operator==(const LockData &other) const {
732    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
733  }
734
735  bool operator!=(const LockData &other) const {
736    return !(*this == other);
737  }
738
739  void Profile(llvm::FoldingSetNodeID &ID) const {
740    ID.AddInteger(AcquireLoc.getRawEncoding());
741    ID.AddInteger(LKind);
742  }
743
744  bool isAtLeast(LockKind LK) {
745    return (LK == LK_Shared) || (LKind == LK_Exclusive);
746  }
747};
748
749
750/// \brief A FactEntry stores a single fact that is known at a particular point
751/// in the program execution.  Currently, this is information regarding a lock
752/// that is held at that point.
753struct FactEntry {
754  SExpr    MutID;
755  LockData LDat;
756
757  FactEntry(const SExpr& M, const LockData& L)
758    : MutID(M), LDat(L)
759  { }
760};
761
762
763typedef unsigned short FactID;
764
765/// \brief FactManager manages the memory for all facts that are created during
766/// the analysis of a single routine.
767class FactManager {
768private:
769  std::vector<FactEntry> Facts;
770
771public:
772  FactID newLock(const SExpr& M, const LockData& L) {
773    Facts.push_back(FactEntry(M,L));
774    return static_cast<unsigned short>(Facts.size() - 1);
775  }
776
777  const FactEntry& operator[](FactID F) const { return Facts[F]; }
778  FactEntry&       operator[](FactID F)       { return Facts[F]; }
779};
780
781
782/// \brief A FactSet is the set of facts that are known to be true at a
783/// particular program point.  FactSets must be small, because they are
784/// frequently copied, and are thus implemented as a set of indices into a
785/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
786/// locks, so we can get away with doing a linear search for lookup.  Note
787/// that a hashtable or map is inappropriate in this case, because lookups
788/// may involve partial pattern matches, rather than exact matches.
789class FactSet {
790private:
791  typedef SmallVector<FactID, 4> FactVec;
792
793  FactVec FactIDs;
794
795public:
796  typedef FactVec::iterator       iterator;
797  typedef FactVec::const_iterator const_iterator;
798
799  iterator       begin()       { return FactIDs.begin(); }
800  const_iterator begin() const { return FactIDs.begin(); }
801
802  iterator       end()       { return FactIDs.end(); }
803  const_iterator end() const { return FactIDs.end(); }
804
805  bool isEmpty() const { return FactIDs.size() == 0; }
806
807  FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
808    FactID F = FM.newLock(M, L);
809    FactIDs.push_back(F);
810    return F;
811  }
812
813  bool removeLock(FactManager& FM, const SExpr& M) {
814    unsigned n = FactIDs.size();
815    if (n == 0)
816      return false;
817
818    for (unsigned i = 0; i < n-1; ++i) {
819      if (FM[FactIDs[i]].MutID.matches(M)) {
820        FactIDs[i] = FactIDs[n-1];
821        FactIDs.pop_back();
822        return true;
823      }
824    }
825    if (FM[FactIDs[n-1]].MutID.matches(M)) {
826      FactIDs.pop_back();
827      return true;
828    }
829    return false;
830  }
831
832  LockData* findLock(FactManager &FM, const SExpr &M) const {
833    for (const_iterator I = begin(), E = end(); I != E; ++I) {
834      const SExpr &Exp = FM[*I].MutID;
835      if (Exp.matches(M))
836        return &FM[*I].LDat;
837    }
838    return 0;
839  }
840
841  LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
842    for (const_iterator I = begin(), E = end(); I != E; ++I) {
843      const SExpr &Exp = FM[*I].MutID;
844      if (Exp.matches(M) || Exp.isUniversal())
845        return &FM[*I].LDat;
846    }
847    return 0;
848  }
849
850  FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
851    for (const_iterator I=begin(), E=end(); I != E; ++I) {
852      const SExpr& Exp = FM[*I].MutID;
853      if (Exp.partiallyMatches(M)) return &FM[*I];
854    }
855    return 0;
856  }
857};
858
859
860
861/// A Lockset maps each SExpr (defined above) to information about how it has
862/// been locked.
863typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
864typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
865
866class LocalVariableMap;
867
868/// A side (entry or exit) of a CFG node.
869enum CFGBlockSide { CBS_Entry, CBS_Exit };
870
871/// CFGBlockInfo is a struct which contains all the information that is
872/// maintained for each block in the CFG.  See LocalVariableMap for more
873/// information about the contexts.
874struct CFGBlockInfo {
875  FactSet EntrySet;             // Lockset held at entry to block
876  FactSet ExitSet;              // Lockset held at exit from block
877  LocalVarContext EntryContext; // Context held at entry to block
878  LocalVarContext ExitContext;  // Context held at exit from block
879  SourceLocation EntryLoc;      // Location of first statement in block
880  SourceLocation ExitLoc;       // Location of last statement in block.
881  unsigned EntryIndex;          // Used to replay contexts later
882
883  const FactSet &getSet(CFGBlockSide Side) const {
884    return Side == CBS_Entry ? EntrySet : ExitSet;
885  }
886  SourceLocation getLocation(CFGBlockSide Side) const {
887    return Side == CBS_Entry ? EntryLoc : ExitLoc;
888  }
889
890private:
891  CFGBlockInfo(LocalVarContext EmptyCtx)
892    : EntryContext(EmptyCtx), ExitContext(EmptyCtx)
893  { }
894
895public:
896  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
897};
898
899
900
901// A LocalVariableMap maintains a map from local variables to their currently
902// valid definitions.  It provides SSA-like functionality when traversing the
903// CFG.  Like SSA, each definition or assignment to a variable is assigned a
904// unique name (an integer), which acts as the SSA name for that definition.
905// The total set of names is shared among all CFG basic blocks.
906// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
907// with their SSA-names.  Instead, we compute a Context for each point in the
908// code, which maps local variables to the appropriate SSA-name.  This map
909// changes with each assignment.
910//
911// The map is computed in a single pass over the CFG.  Subsequent analyses can
912// then query the map to find the appropriate Context for a statement, and use
913// that Context to look up the definitions of variables.
914class LocalVariableMap {
915public:
916  typedef LocalVarContext Context;
917
918  /// A VarDefinition consists of an expression, representing the value of the
919  /// variable, along with the context in which that expression should be
920  /// interpreted.  A reference VarDefinition does not itself contain this
921  /// information, but instead contains a pointer to a previous VarDefinition.
922  struct VarDefinition {
923  public:
924    friend class LocalVariableMap;
925
926    const NamedDecl *Dec;  // The original declaration for this variable.
927    const Expr *Exp;       // The expression for this variable, OR
928    unsigned Ref;          // Reference to another VarDefinition
929    Context Ctx;           // The map with which Exp should be interpreted.
930
931    bool isReference() { return !Exp; }
932
933  private:
934    // Create ordinary variable definition
935    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
936      : Dec(D), Exp(E), Ref(0), Ctx(C)
937    { }
938
939    // Create reference to previous definition
940    VarDefinition(const NamedDecl *D, unsigned R, Context C)
941      : Dec(D), Exp(0), Ref(R), Ctx(C)
942    { }
943  };
944
945private:
946  Context::Factory ContextFactory;
947  std::vector<VarDefinition> VarDefinitions;
948  std::vector<unsigned> CtxIndices;
949  std::vector<std::pair<Stmt*, Context> > SavedContexts;
950
951public:
952  LocalVariableMap() {
953    // index 0 is a placeholder for undefined variables (aka phi-nodes).
954    VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
955  }
956
957  /// Look up a definition, within the given context.
958  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
959    const unsigned *i = Ctx.lookup(D);
960    if (!i)
961      return 0;
962    assert(*i < VarDefinitions.size());
963    return &VarDefinitions[*i];
964  }
965
966  /// Look up the definition for D within the given context.  Returns
967  /// NULL if the expression is not statically known.  If successful, also
968  /// modifies Ctx to hold the context of the return Expr.
969  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
970    const unsigned *P = Ctx.lookup(D);
971    if (!P)
972      return 0;
973
974    unsigned i = *P;
975    while (i > 0) {
976      if (VarDefinitions[i].Exp) {
977        Ctx = VarDefinitions[i].Ctx;
978        return VarDefinitions[i].Exp;
979      }
980      i = VarDefinitions[i].Ref;
981    }
982    return 0;
983  }
984
985  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
986
987  /// Return the next context after processing S.  This function is used by
988  /// clients of the class to get the appropriate context when traversing the
989  /// CFG.  It must be called for every assignment or DeclStmt.
990  Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
991    if (SavedContexts[CtxIndex+1].first == S) {
992      CtxIndex++;
993      Context Result = SavedContexts[CtxIndex].second;
994      return Result;
995    }
996    return C;
997  }
998
999  void dumpVarDefinitionName(unsigned i) {
1000    if (i == 0) {
1001      llvm::errs() << "Undefined";
1002      return;
1003    }
1004    const NamedDecl *Dec = VarDefinitions[i].Dec;
1005    if (!Dec) {
1006      llvm::errs() << "<<NULL>>";
1007      return;
1008    }
1009    Dec->printName(llvm::errs());
1010    llvm::errs() << "." << i << " " << ((const void*) Dec);
1011  }
1012
1013  /// Dumps an ASCII representation of the variable map to llvm::errs()
1014  void dump() {
1015    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
1016      const Expr *Exp = VarDefinitions[i].Exp;
1017      unsigned Ref = VarDefinitions[i].Ref;
1018
1019      dumpVarDefinitionName(i);
1020      llvm::errs() << " = ";
1021      if (Exp) Exp->dump();
1022      else {
1023        dumpVarDefinitionName(Ref);
1024        llvm::errs() << "\n";
1025      }
1026    }
1027  }
1028
1029  /// Dumps an ASCII representation of a Context to llvm::errs()
1030  void dumpContext(Context C) {
1031    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1032      const NamedDecl *D = I.getKey();
1033      D->printName(llvm::errs());
1034      const unsigned *i = C.lookup(D);
1035      llvm::errs() << " -> ";
1036      dumpVarDefinitionName(*i);
1037      llvm::errs() << "\n";
1038    }
1039  }
1040
1041  /// Builds the variable map.
1042  void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
1043                     std::vector<CFGBlockInfo> &BlockInfo);
1044
1045protected:
1046  // Get the current context index
1047  unsigned getContextIndex() { return SavedContexts.size()-1; }
1048
1049  // Save the current context for later replay
1050  void saveContext(Stmt *S, Context C) {
1051    SavedContexts.push_back(std::make_pair(S,C));
1052  }
1053
1054  // Adds a new definition to the given context, and returns a new context.
1055  // This method should be called when declaring a new variable.
1056  Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1057    assert(!Ctx.contains(D));
1058    unsigned newID = VarDefinitions.size();
1059    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1060    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1061    return NewCtx;
1062  }
1063
1064  // Add a new reference to an existing definition.
1065  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
1066    unsigned newID = VarDefinitions.size();
1067    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1068    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
1069    return NewCtx;
1070  }
1071
1072  // Updates a definition only if that definition is already in the map.
1073  // This method should be called when assigning to an existing variable.
1074  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1075    if (Ctx.contains(D)) {
1076      unsigned newID = VarDefinitions.size();
1077      Context NewCtx = ContextFactory.remove(Ctx, D);
1078      NewCtx = ContextFactory.add(NewCtx, D, newID);
1079      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1080      return NewCtx;
1081    }
1082    return Ctx;
1083  }
1084
1085  // Removes a definition from the context, but keeps the variable name
1086  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
1087  Context clearDefinition(const NamedDecl *D, Context Ctx) {
1088    Context NewCtx = Ctx;
1089    if (NewCtx.contains(D)) {
1090      NewCtx = ContextFactory.remove(NewCtx, D);
1091      NewCtx = ContextFactory.add(NewCtx, D, 0);
1092    }
1093    return NewCtx;
1094  }
1095
1096  // Remove a definition entirely frmo the context.
1097  Context removeDefinition(const NamedDecl *D, Context Ctx) {
1098    Context NewCtx = Ctx;
1099    if (NewCtx.contains(D)) {
1100      NewCtx = ContextFactory.remove(NewCtx, D);
1101    }
1102    return NewCtx;
1103  }
1104
1105  Context intersectContexts(Context C1, Context C2);
1106  Context createReferenceContext(Context C);
1107  void intersectBackEdge(Context C1, Context C2);
1108
1109  friend class VarMapBuilder;
1110};
1111
1112
1113// This has to be defined after LocalVariableMap.
1114CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
1115  return CFGBlockInfo(M.getEmptyContext());
1116}
1117
1118
1119/// Visitor which builds a LocalVariableMap
1120class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
1121public:
1122  LocalVariableMap* VMap;
1123  LocalVariableMap::Context Ctx;
1124
1125  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
1126    : VMap(VM), Ctx(C) {}
1127
1128  void VisitDeclStmt(DeclStmt *S);
1129  void VisitBinaryOperator(BinaryOperator *BO);
1130};
1131
1132
1133// Add new local variables to the variable map
1134void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
1135  bool modifiedCtx = false;
1136  DeclGroupRef DGrp = S->getDeclGroup();
1137  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1138    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
1139      Expr *E = VD->getInit();
1140
1141      // Add local variables with trivial type to the variable map
1142      QualType T = VD->getType();
1143      if (T.isTrivialType(VD->getASTContext())) {
1144        Ctx = VMap->addDefinition(VD, E, Ctx);
1145        modifiedCtx = true;
1146      }
1147    }
1148  }
1149  if (modifiedCtx)
1150    VMap->saveContext(S, Ctx);
1151}
1152
1153// Update local variable definitions in variable map
1154void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
1155  if (!BO->isAssignmentOp())
1156    return;
1157
1158  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1159
1160  // Update the variable map and current context.
1161  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
1162    ValueDecl *VDec = DRE->getDecl();
1163    if (Ctx.lookup(VDec)) {
1164      if (BO->getOpcode() == BO_Assign)
1165        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
1166      else
1167        // FIXME -- handle compound assignment operators
1168        Ctx = VMap->clearDefinition(VDec, Ctx);
1169      VMap->saveContext(BO, Ctx);
1170    }
1171  }
1172}
1173
1174
1175// Computes the intersection of two contexts.  The intersection is the
1176// set of variables which have the same definition in both contexts;
1177// variables with different definitions are discarded.
1178LocalVariableMap::Context
1179LocalVariableMap::intersectContexts(Context C1, Context C2) {
1180  Context Result = C1;
1181  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1182    const NamedDecl *Dec = I.getKey();
1183    unsigned i1 = I.getData();
1184    const unsigned *i2 = C2.lookup(Dec);
1185    if (!i2)             // variable doesn't exist on second path
1186      Result = removeDefinition(Dec, Result);
1187    else if (*i2 != i1)  // variable exists, but has different definition
1188      Result = clearDefinition(Dec, Result);
1189  }
1190  return Result;
1191}
1192
1193// For every variable in C, create a new variable that refers to the
1194// definition in C.  Return a new context that contains these new variables.
1195// (We use this for a naive implementation of SSA on loop back-edges.)
1196LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
1197  Context Result = getEmptyContext();
1198  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1199    const NamedDecl *Dec = I.getKey();
1200    unsigned i = I.getData();
1201    Result = addReference(Dec, i, Result);
1202  }
1203  return Result;
1204}
1205
1206// This routine also takes the intersection of C1 and C2, but it does so by
1207// altering the VarDefinitions.  C1 must be the result of an earlier call to
1208// createReferenceContext.
1209void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
1210  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1211    const NamedDecl *Dec = I.getKey();
1212    unsigned i1 = I.getData();
1213    VarDefinition *VDef = &VarDefinitions[i1];
1214    assert(VDef->isReference());
1215
1216    const unsigned *i2 = C2.lookup(Dec);
1217    if (!i2 || (*i2 != i1))
1218      VDef->Ref = 0;    // Mark this variable as undefined
1219  }
1220}
1221
1222
1223// Traverse the CFG in topological order, so all predecessors of a block
1224// (excluding back-edges) are visited before the block itself.  At
1225// each point in the code, we calculate a Context, which holds the set of
1226// variable definitions which are visible at that point in execution.
1227// Visible variables are mapped to their definitions using an array that
1228// contains all definitions.
1229//
1230// At join points in the CFG, the set is computed as the intersection of
1231// the incoming sets along each edge, E.g.
1232//
1233//                       { Context                 | VarDefinitions }
1234//   int x = 0;          { x -> x1                 | x1 = 0 }
1235//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
1236//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
1237//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
1238//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
1239//
1240// This is essentially a simpler and more naive version of the standard SSA
1241// algorithm.  Those definitions that remain in the intersection are from blocks
1242// that strictly dominate the current block.  We do not bother to insert proper
1243// phi nodes, because they are not used in our analysis; instead, wherever
1244// a phi node would be required, we simply remove that definition from the
1245// context (E.g. x above).
1246//
1247// The initial traversal does not capture back-edges, so those need to be
1248// handled on a separate pass.  Whenever the first pass encounters an
1249// incoming back edge, it duplicates the context, creating new definitions
1250// that refer back to the originals.  (These correspond to places where SSA
1251// might have to insert a phi node.)  On the second pass, these definitions are
1252// set to NULL if the variable has changed on the back-edge (i.e. a phi
1253// node was actually required.)  E.g.
1254//
1255//                       { Context           | VarDefinitions }
1256//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
1257//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
1258//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
1259//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
1260//
1261void LocalVariableMap::traverseCFG(CFG *CFGraph,
1262                                   PostOrderCFGView *SortedGraph,
1263                                   std::vector<CFGBlockInfo> &BlockInfo) {
1264  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1265
1266  CtxIndices.resize(CFGraph->getNumBlockIDs());
1267
1268  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1269       E = SortedGraph->end(); I!= E; ++I) {
1270    const CFGBlock *CurrBlock = *I;
1271    int CurrBlockID = CurrBlock->getBlockID();
1272    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1273
1274    VisitedBlocks.insert(CurrBlock);
1275
1276    // Calculate the entry context for the current block
1277    bool HasBackEdges = false;
1278    bool CtxInit = true;
1279    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1280         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1281      // if *PI -> CurrBlock is a back edge, so skip it
1282      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
1283        HasBackEdges = true;
1284        continue;
1285      }
1286
1287      int PrevBlockID = (*PI)->getBlockID();
1288      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1289
1290      if (CtxInit) {
1291        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
1292        CtxInit = false;
1293      }
1294      else {
1295        CurrBlockInfo->EntryContext =
1296          intersectContexts(CurrBlockInfo->EntryContext,
1297                            PrevBlockInfo->ExitContext);
1298      }
1299    }
1300
1301    // Duplicate the context if we have back-edges, so we can call
1302    // intersectBackEdges later.
1303    if (HasBackEdges)
1304      CurrBlockInfo->EntryContext =
1305        createReferenceContext(CurrBlockInfo->EntryContext);
1306
1307    // Create a starting context index for the current block
1308    saveContext(0, CurrBlockInfo->EntryContext);
1309    CurrBlockInfo->EntryIndex = getContextIndex();
1310
1311    // Visit all the statements in the basic block.
1312    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
1313    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1314         BE = CurrBlock->end(); BI != BE; ++BI) {
1315      switch (BI->getKind()) {
1316        case CFGElement::Statement: {
1317          const CFGStmt *CS = cast<CFGStmt>(&*BI);
1318          VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1319          break;
1320        }
1321        default:
1322          break;
1323      }
1324    }
1325    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
1326
1327    // Mark variables on back edges as "unknown" if they've been changed.
1328    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1329         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1330      // if CurrBlock -> *SI is *not* a back edge
1331      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1332        continue;
1333
1334      CFGBlock *FirstLoopBlock = *SI;
1335      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
1336      Context LoopEnd   = CurrBlockInfo->ExitContext;
1337      intersectBackEdge(LoopBegin, LoopEnd);
1338    }
1339  }
1340
1341  // Put an extra entry at the end of the indexed context array
1342  unsigned exitID = CFGraph->getExit().getBlockID();
1343  saveContext(0, BlockInfo[exitID].ExitContext);
1344}
1345
1346/// Find the appropriate source locations to use when producing diagnostics for
1347/// each block in the CFG.
1348static void findBlockLocations(CFG *CFGraph,
1349                               PostOrderCFGView *SortedGraph,
1350                               std::vector<CFGBlockInfo> &BlockInfo) {
1351  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1352       E = SortedGraph->end(); I!= E; ++I) {
1353    const CFGBlock *CurrBlock = *I;
1354    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
1355
1356    // Find the source location of the last statement in the block, if the
1357    // block is not empty.
1358    if (const Stmt *S = CurrBlock->getTerminator()) {
1359      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
1360    } else {
1361      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
1362           BE = CurrBlock->rend(); BI != BE; ++BI) {
1363        // FIXME: Handle other CFGElement kinds.
1364        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1365          CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
1366          break;
1367        }
1368      }
1369    }
1370
1371    if (!CurrBlockInfo->ExitLoc.isInvalid()) {
1372      // This block contains at least one statement. Find the source location
1373      // of the first statement in the block.
1374      for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1375           BE = CurrBlock->end(); BI != BE; ++BI) {
1376        // FIXME: Handle other CFGElement kinds.
1377        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1378          CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
1379          break;
1380        }
1381      }
1382    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
1383               CurrBlock != &CFGraph->getExit()) {
1384      // The block is empty, and has a single predecessor. Use its exit
1385      // location.
1386      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
1387          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
1388    }
1389  }
1390}
1391
1392/// \brief Class which implements the core thread safety analysis routines.
1393class ThreadSafetyAnalyzer {
1394  friend class BuildLockset;
1395
1396  ThreadSafetyHandler       &Handler;
1397  LocalVariableMap          LocalVarMap;
1398  FactManager               FactMan;
1399  std::vector<CFGBlockInfo> BlockInfo;
1400
1401public:
1402  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
1403
1404  void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
1405  void removeLock(FactSet &FSet, const SExpr &Mutex,
1406                  SourceLocation UnlockLoc, bool FullyRemove=false);
1407
1408  template <typename AttrType>
1409  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1410                   const NamedDecl *D);
1411
1412  template <class AttrType>
1413  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1414                   const NamedDecl *D,
1415                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1416                   Expr *BrE, bool Neg);
1417
1418  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1419                                     bool &Negate);
1420
1421  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1422                      const CFGBlock* PredBlock,
1423                      const CFGBlock *CurrBlock);
1424
1425  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1426                        SourceLocation JoinLoc,
1427                        LockErrorKind LEK1, LockErrorKind LEK2,
1428                        bool Modify=true);
1429
1430  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1431                        SourceLocation JoinLoc, LockErrorKind LEK1,
1432                        bool Modify=true) {
1433    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1434  }
1435
1436  void runAnalysis(AnalysisDeclContext &AC);
1437};
1438
1439
1440/// \brief Add a new lock to the lockset, warning if the lock is already there.
1441/// \param Mutex -- the Mutex expression for the lock
1442/// \param LDat  -- the LockData for the lock
1443void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
1444                                   const LockData &LDat) {
1445  // FIXME: deal with acquired before/after annotations.
1446  // FIXME: Don't always warn when we have support for reentrant locks.
1447  if (Mutex.shouldIgnore())
1448    return;
1449
1450  if (FSet.findLock(FactMan, Mutex)) {
1451    Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
1452  } else {
1453    FSet.addLock(FactMan, Mutex, LDat);
1454  }
1455}
1456
1457
1458/// \brief Remove a lock from the lockset, warning if the lock is not there.
1459/// \param Mutex The lock expression corresponding to the lock to be removed
1460/// \param UnlockLoc The source location of the unlock (only used in error msg)
1461void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
1462                                      const SExpr &Mutex,
1463                                      SourceLocation UnlockLoc,
1464                                      bool FullyRemove) {
1465  if (Mutex.shouldIgnore())
1466    return;
1467
1468  const LockData *LDat = FSet.findLock(FactMan, Mutex);
1469  if (!LDat) {
1470    Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
1471    return;
1472  }
1473
1474  if (LDat->UnderlyingMutex.isValid()) {
1475    // This is scoped lockable object, which manages the real mutex.
1476    if (FullyRemove) {
1477      // We're destroying the managing object.
1478      // Remove the underlying mutex if it exists; but don't warn.
1479      if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
1480        FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1481    } else {
1482      // We're releasing the underlying mutex, but not destroying the
1483      // managing object.  Warn on dual release.
1484      if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
1485        Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
1486                                      UnlockLoc);
1487      }
1488      FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1489      return;
1490    }
1491  }
1492  FSet.removeLock(FactMan, Mutex);
1493}
1494
1495
1496/// \brief Extract the list of mutexIDs from the attribute on an expression,
1497/// and push them onto Mtxs, discarding any duplicates.
1498template <typename AttrType>
1499void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1500                                       Expr *Exp, const NamedDecl *D) {
1501  typedef typename AttrType::args_iterator iterator_type;
1502
1503  if (Attr->args_size() == 0) {
1504    // The mutex held is the "this" object.
1505    SExpr Mu(0, Exp, D);
1506    if (!Mu.isValid())
1507      SExpr::warnInvalidLock(Handler, 0, Exp, D);
1508    else
1509      Mtxs.push_back_nodup(Mu);
1510    return;
1511  }
1512
1513  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1514    SExpr Mu(*I, Exp, D);
1515    if (!Mu.isValid())
1516      SExpr::warnInvalidLock(Handler, *I, Exp, D);
1517    else
1518      Mtxs.push_back_nodup(Mu);
1519  }
1520}
1521
1522
1523/// \brief Extract the list of mutexIDs from a trylock attribute.  If the
1524/// trylock applies to the given edge, then push them onto Mtxs, discarding
1525/// any duplicates.
1526template <class AttrType>
1527void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1528                                       Expr *Exp, const NamedDecl *D,
1529                                       const CFGBlock *PredBlock,
1530                                       const CFGBlock *CurrBlock,
1531                                       Expr *BrE, bool Neg) {
1532  // Find out which branch has the lock
1533  bool branch = 0;
1534  if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1535    branch = BLE->getValue();
1536  }
1537  else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1538    branch = ILE->getValue().getBoolValue();
1539  }
1540  int branchnum = branch ? 0 : 1;
1541  if (Neg) branchnum = !branchnum;
1542
1543  // If we've taken the trylock branch, then add the lock
1544  int i = 0;
1545  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1546       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1547    if (*SI == CurrBlock && i == branchnum) {
1548      getMutexIDs(Mtxs, Attr, Exp, D);
1549    }
1550  }
1551}
1552
1553
1554bool getStaticBooleanValue(Expr* E, bool& TCond) {
1555  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1556    TCond = false;
1557    return true;
1558  } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1559    TCond = BLE->getValue();
1560    return true;
1561  } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1562    TCond = ILE->getValue().getBoolValue();
1563    return true;
1564  } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1565    return getStaticBooleanValue(CE->getSubExpr(), TCond);
1566  }
1567  return false;
1568}
1569
1570
1571// If Cond can be traced back to a function call, return the call expression.
1572// The negate variable should be called with false, and will be set to true
1573// if the function call is negated, e.g. if (!mu.tryLock(...))
1574const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1575                                                         LocalVarContext C,
1576                                                         bool &Negate) {
1577  if (!Cond)
1578    return 0;
1579
1580  if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1581    return CallExp;
1582  }
1583  else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1584    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1585  }
1586  else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1587    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1588  }
1589  else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
1590    return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1591  }
1592  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1593    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1594    return getTrylockCallExpr(E, C, Negate);
1595  }
1596  else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1597    if (UOP->getOpcode() == UO_LNot) {
1598      Negate = !Negate;
1599      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1600    }
1601    return 0;
1602  }
1603  else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1604    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1605      if (BOP->getOpcode() == BO_NE)
1606        Negate = !Negate;
1607
1608      bool TCond = false;
1609      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1610        if (!TCond) Negate = !Negate;
1611        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1612      }
1613      else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1614        if (!TCond) Negate = !Negate;
1615        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1616      }
1617      return 0;
1618    }
1619    return 0;
1620  }
1621  // FIXME -- handle && and || as well.
1622  return 0;
1623}
1624
1625
1626/// \brief Find the lockset that holds on the edge between PredBlock
1627/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1628/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1629void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1630                                          const FactSet &ExitSet,
1631                                          const CFGBlock *PredBlock,
1632                                          const CFGBlock *CurrBlock) {
1633  Result = ExitSet;
1634
1635  if (!PredBlock->getTerminatorCondition())
1636    return;
1637
1638  bool Negate = false;
1639  const Stmt *Cond = PredBlock->getTerminatorCondition();
1640  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1641  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1642
1643  CallExpr *Exp =
1644    const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1645  if (!Exp)
1646    return;
1647
1648  NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1649  if(!FunDecl || !FunDecl->hasAttrs())
1650    return;
1651
1652
1653  MutexIDList ExclusiveLocksToAdd;
1654  MutexIDList SharedLocksToAdd;
1655
1656  // If the condition is a call to a Trylock function, then grab the attributes
1657  AttrVec &ArgAttrs = FunDecl->getAttrs();
1658  for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1659    Attr *Attr = ArgAttrs[i];
1660    switch (Attr->getKind()) {
1661      case attr::ExclusiveTrylockFunction: {
1662        ExclusiveTrylockFunctionAttr *A =
1663          cast<ExclusiveTrylockFunctionAttr>(Attr);
1664        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1665                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1666        break;
1667      }
1668      case attr::SharedTrylockFunction: {
1669        SharedTrylockFunctionAttr *A =
1670          cast<SharedTrylockFunctionAttr>(Attr);
1671        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1672                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1673        break;
1674      }
1675      default:
1676        break;
1677    }
1678  }
1679
1680  // Add and remove locks.
1681  SourceLocation Loc = Exp->getExprLoc();
1682  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1683    addLock(Result, ExclusiveLocksToAdd[i],
1684            LockData(Loc, LK_Exclusive));
1685  }
1686  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1687    addLock(Result, SharedLocksToAdd[i],
1688            LockData(Loc, LK_Shared));
1689  }
1690}
1691
1692
1693/// \brief We use this class to visit different types of expressions in
1694/// CFGBlocks, and build up the lockset.
1695/// An expression may cause us to add or remove locks from the lockset, or else
1696/// output error messages related to missing locks.
1697/// FIXME: In future, we may be able to not inherit from a visitor.
1698class BuildLockset : public StmtVisitor<BuildLockset> {
1699  friend class ThreadSafetyAnalyzer;
1700
1701  ThreadSafetyAnalyzer *Analyzer;
1702  FactSet FSet;
1703  LocalVariableMap::Context LVarCtx;
1704  unsigned CtxIndex;
1705
1706  // Helper functions
1707  const ValueDecl *getValueDecl(Expr *Exp);
1708
1709  void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
1710                          Expr *MutexExp, ProtectedOperationKind POK);
1711  void warnIfMutexHeld(const NamedDecl *D, Expr *Exp, Expr *MutexExp);
1712
1713  void checkAccess(Expr *Exp, AccessKind AK);
1714  void checkDereference(Expr *Exp, AccessKind AK);
1715  void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
1716
1717public:
1718  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1719    : StmtVisitor<BuildLockset>(),
1720      Analyzer(Anlzr),
1721      FSet(Info.EntrySet),
1722      LVarCtx(Info.EntryContext),
1723      CtxIndex(Info.EntryIndex)
1724  {}
1725
1726  void VisitUnaryOperator(UnaryOperator *UO);
1727  void VisitBinaryOperator(BinaryOperator *BO);
1728  void VisitCastExpr(CastExpr *CE);
1729  void VisitCallExpr(CallExpr *Exp);
1730  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1731  void VisitDeclStmt(DeclStmt *S);
1732};
1733
1734
1735/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1736const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1737  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1738    return DR->getDecl();
1739
1740  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1741    return ME->getMemberDecl();
1742
1743  return 0;
1744}
1745
1746/// \brief Warn if the LSet does not contain a lock sufficient to protect access
1747/// of at least the passed in AccessKind.
1748void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1749                                      AccessKind AK, Expr *MutexExp,
1750                                      ProtectedOperationKind POK) {
1751  LockKind LK = getLockKindFromAccessKind(AK);
1752
1753  SExpr Mutex(MutexExp, Exp, D);
1754  if (!Mutex.isValid()) {
1755    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1756    return;
1757  } else if (Mutex.shouldIgnore()) {
1758    return;
1759  }
1760
1761  LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
1762  bool NoError = true;
1763  if (!LDat) {
1764    // No exact match found.  Look for a partial match.
1765    FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
1766    if (FEntry) {
1767      // Warn that there's no precise match.
1768      LDat = &FEntry->LDat;
1769      std::string PartMatchStr = FEntry->MutID.toString();
1770      StringRef   PartMatchName(PartMatchStr);
1771      Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1772                                           Exp->getExprLoc(), &PartMatchName);
1773    } else {
1774      // Warn that there's no match at all.
1775      Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1776                                           Exp->getExprLoc());
1777    }
1778    NoError = false;
1779  }
1780  // Make sure the mutex we found is the right kind.
1781  if (NoError && LDat && !LDat->isAtLeast(LK))
1782    Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1783                                         Exp->getExprLoc());
1784}
1785
1786/// \brief Warn if the LSet contains the given lock.
1787void BuildLockset::warnIfMutexHeld(const NamedDecl *D, Expr* Exp,
1788                                   Expr *MutexExp) {
1789  SExpr Mutex(MutexExp, Exp, D);
1790  if (!Mutex.isValid()) {
1791    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1792    return;
1793  }
1794
1795  LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
1796  if (LDat)
1797    Analyzer->Handler.handleFunExcludesLock(D->getName(), Mutex.toString(),
1798                                            Exp->getExprLoc());
1799}
1800
1801
1802/// \brief This method identifies variable dereferences and checks pt_guarded_by
1803/// and pt_guarded_var annotations. Note that we only check these annotations
1804/// at the time a pointer is dereferenced.
1805/// FIXME: We need to check for other types of pointer dereferences
1806/// (e.g. [], ->) and deal with them here.
1807/// \param Exp An expression that has been read or written.
1808void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1809  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1810  if (!UO || UO->getOpcode() != clang::UO_Deref)
1811    return;
1812  Exp = UO->getSubExpr()->IgnoreParenCasts();
1813
1814  const ValueDecl *D = getValueDecl(Exp);
1815  if(!D || !D->hasAttrs())
1816    return;
1817
1818  if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
1819    Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1820                                        Exp->getExprLoc());
1821
1822  const AttrVec &ArgAttrs = D->getAttrs();
1823  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1824    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1825      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1826}
1827
1828/// \brief Checks guarded_by and guarded_var attributes.
1829/// Whenever we identify an access (read or write) of a DeclRefExpr or
1830/// MemberExpr, we need to check whether there are any guarded_by or
1831/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1832void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1833  const ValueDecl *D = getValueDecl(Exp);
1834  if(!D || !D->hasAttrs())
1835    return;
1836
1837  if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
1838    Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1839                                        Exp->getExprLoc());
1840
1841  const AttrVec &ArgAttrs = D->getAttrs();
1842  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1843    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1844      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1845}
1846
1847/// \brief Process a function call, method call, constructor call,
1848/// or destructor call.  This involves looking at the attributes on the
1849/// corresponding function/method/constructor/destructor, issuing warnings,
1850/// and updating the locksets accordingly.
1851///
1852/// FIXME: For classes annotated with one of the guarded annotations, we need
1853/// to treat const method calls as reads and non-const method calls as writes,
1854/// and check that the appropriate locks are held. Non-const method calls with
1855/// the same signature as const method calls can be also treated as reads.
1856///
1857void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1858  const AttrVec &ArgAttrs = D->getAttrs();
1859  MutexIDList ExclusiveLocksToAdd;
1860  MutexIDList SharedLocksToAdd;
1861  MutexIDList LocksToRemove;
1862
1863  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1864    Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1865    switch (At->getKind()) {
1866      // When we encounter an exclusive lock function, we need to add the lock
1867      // to our lockset with kind exclusive.
1868      case attr::ExclusiveLockFunction: {
1869        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
1870        Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D);
1871        break;
1872      }
1873
1874      // When we encounter a shared lock function, we need to add the lock
1875      // to our lockset with kind shared.
1876      case attr::SharedLockFunction: {
1877        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
1878        Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D);
1879        break;
1880      }
1881
1882      // When we encounter an unlock function, we need to remove unlocked
1883      // mutexes from the lockset, and flag a warning if they are not there.
1884      case attr::UnlockFunction: {
1885        UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
1886        Analyzer->getMutexIDs(LocksToRemove, A, Exp, D);
1887        break;
1888      }
1889
1890      case attr::ExclusiveLocksRequired: {
1891        ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
1892
1893        for (ExclusiveLocksRequiredAttr::args_iterator
1894             I = A->args_begin(), E = A->args_end(); I != E; ++I)
1895          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1896        break;
1897      }
1898
1899      case attr::SharedLocksRequired: {
1900        SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
1901
1902        for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
1903             E = A->args_end(); I != E; ++I)
1904          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1905        break;
1906      }
1907
1908      case attr::LocksExcluded: {
1909        LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
1910
1911        for (LocksExcludedAttr::args_iterator I = A->args_begin(),
1912            E = A->args_end(); I != E; ++I) {
1913          warnIfMutexHeld(D, Exp, *I);
1914        }
1915        break;
1916      }
1917
1918      // Ignore other (non thread-safety) attributes
1919      default:
1920        break;
1921    }
1922  }
1923
1924  // Figure out if we're calling the constructor of scoped lockable class
1925  bool isScopedVar = false;
1926  if (VD) {
1927    if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1928      const CXXRecordDecl* PD = CD->getParent();
1929      if (PD && PD->getAttr<ScopedLockableAttr>())
1930        isScopedVar = true;
1931    }
1932  }
1933
1934  // Add locks.
1935  SourceLocation Loc = Exp->getExprLoc();
1936  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1937    Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
1938                            LockData(Loc, LK_Exclusive, isScopedVar));
1939  }
1940  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1941    Analyzer->addLock(FSet, SharedLocksToAdd[i],
1942                            LockData(Loc, LK_Shared, isScopedVar));
1943  }
1944
1945  // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1946  // FIXME -- this doesn't work if we acquire multiple locks.
1947  if (isScopedVar) {
1948    SourceLocation MLoc = VD->getLocation();
1949    DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
1950    SExpr SMutex(&DRE, 0, 0);
1951
1952    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1953      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
1954                                               ExclusiveLocksToAdd[i]));
1955    }
1956    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1957      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
1958                                               SharedLocksToAdd[i]));
1959    }
1960  }
1961
1962  // Remove locks.
1963  // FIXME -- should only fully remove if the attribute refers to 'this'.
1964  bool Dtor = isa<CXXDestructorDecl>(D);
1965  for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
1966    Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
1967  }
1968}
1969
1970
1971/// \brief For unary operations which read and write a variable, we need to
1972/// check whether we hold any required mutexes. Reads are checked in
1973/// VisitCastExpr.
1974void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1975  switch (UO->getOpcode()) {
1976    case clang::UO_PostDec:
1977    case clang::UO_PostInc:
1978    case clang::UO_PreDec:
1979    case clang::UO_PreInc: {
1980      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1981      checkAccess(SubExp, AK_Written);
1982      checkDereference(SubExp, AK_Written);
1983      break;
1984    }
1985    default:
1986      break;
1987  }
1988}
1989
1990/// For binary operations which assign to a variable (writes), we need to check
1991/// whether we hold any required mutexes.
1992/// FIXME: Deal with non-primitive types.
1993void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1994  if (!BO->isAssignmentOp())
1995    return;
1996
1997  // adjust the context
1998  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1999
2000  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
2001  checkAccess(LHSExp, AK_Written);
2002  checkDereference(LHSExp, AK_Written);
2003}
2004
2005/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2006/// need to ensure we hold any required mutexes.
2007/// FIXME: Deal with non-primitive types.
2008void BuildLockset::VisitCastExpr(CastExpr *CE) {
2009  if (CE->getCastKind() != CK_LValueToRValue)
2010    return;
2011  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
2012  checkAccess(SubExp, AK_Read);
2013  checkDereference(SubExp, AK_Read);
2014}
2015
2016
2017void BuildLockset::VisitCallExpr(CallExpr *Exp) {
2018  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2019  if(!D || !D->hasAttrs())
2020    return;
2021  handleCall(Exp, D);
2022}
2023
2024void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
2025  // FIXME -- only handles constructors in DeclStmt below.
2026}
2027
2028void BuildLockset::VisitDeclStmt(DeclStmt *S) {
2029  // adjust the context
2030  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2031
2032  DeclGroupRef DGrp = S->getDeclGroup();
2033  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
2034    Decl *D = *I;
2035    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
2036      Expr *E = VD->getInit();
2037      // handle constructors that involve temporaries
2038      if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
2039        E = EWC->getSubExpr();
2040
2041      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
2042        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2043        if (!CtorD || !CtorD->hasAttrs())
2044          return;
2045        handleCall(CE, CtorD, VD);
2046      }
2047    }
2048  }
2049}
2050
2051
2052
2053/// \brief Compute the intersection of two locksets and issue warnings for any
2054/// locks in the symmetric difference.
2055///
2056/// This function is used at a merge point in the CFG when comparing the lockset
2057/// of each branch being merged. For example, given the following sequence:
2058/// A; if () then B; else C; D; we need to check that the lockset after B and C
2059/// are the same. In the event of a difference, we use the intersection of these
2060/// two locksets at the start of D.
2061///
2062/// \param FSet1 The first lockset.
2063/// \param FSet2 The second lockset.
2064/// \param JoinLoc The location of the join point for error reporting
2065/// \param LEK1 The error message to report if a mutex is missing from LSet1
2066/// \param LEK2 The error message to report if a mutex is missing from Lset2
2067void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2068                                            const FactSet &FSet2,
2069                                            SourceLocation JoinLoc,
2070                                            LockErrorKind LEK1,
2071                                            LockErrorKind LEK2,
2072                                            bool Modify) {
2073  FactSet FSet1Orig = FSet1;
2074
2075  for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
2076       I != E; ++I) {
2077    const SExpr &FSet2Mutex = FactMan[*I].MutID;
2078    const LockData &LDat2 = FactMan[*I].LDat;
2079
2080    if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
2081      if (LDat1->LKind != LDat2.LKind) {
2082        Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
2083                                         LDat2.AcquireLoc,
2084                                         LDat1->AcquireLoc);
2085        if (Modify && LDat1->LKind != LK_Exclusive) {
2086          FSet1.removeLock(FactMan, FSet2Mutex);
2087          FSet1.addLock(FactMan, FSet2Mutex, LDat2);
2088        }
2089      }
2090    } else {
2091      if (LDat2.UnderlyingMutex.isValid()) {
2092        if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
2093          // If this is a scoped lock that manages another mutex, and if the
2094          // underlying mutex is still held, then warn about the underlying
2095          // mutex.
2096          Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
2097                                            LDat2.AcquireLoc,
2098                                            JoinLoc, LEK1);
2099        }
2100      }
2101      else if (!LDat2.Managed && !FSet2Mutex.isUniversal())
2102        Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
2103                                          LDat2.AcquireLoc,
2104                                          JoinLoc, LEK1);
2105    }
2106  }
2107
2108  for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
2109       I != E; ++I) {
2110    const SExpr &FSet1Mutex = FactMan[*I].MutID;
2111    const LockData &LDat1 = FactMan[*I].LDat;
2112
2113    if (!FSet2.findLock(FactMan, FSet1Mutex)) {
2114      if (LDat1.UnderlyingMutex.isValid()) {
2115        if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
2116          // If this is a scoped lock that manages another mutex, and if the
2117          // underlying mutex is still held, then warn about the underlying
2118          // mutex.
2119          Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
2120                                            LDat1.AcquireLoc,
2121                                            JoinLoc, LEK1);
2122        }
2123      }
2124      else if (!LDat1.Managed && !FSet1Mutex.isUniversal())
2125        Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
2126                                          LDat1.AcquireLoc,
2127                                          JoinLoc, LEK2);
2128      if (Modify)
2129        FSet1.removeLock(FactMan, FSet1Mutex);
2130    }
2131  }
2132}
2133
2134
2135
2136/// \brief Check a function's CFG for thread-safety violations.
2137///
2138/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2139/// at the end of each block, and issue warnings for thread safety violations.
2140/// Each block in the CFG is traversed exactly once.
2141void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2142  CFG *CFGraph = AC.getCFG();
2143  if (!CFGraph) return;
2144  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
2145
2146  // AC.dumpCFG(true);
2147
2148  if (!D)
2149    return;  // Ignore anonymous functions for now.
2150  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
2151    return;
2152  // FIXME: Do something a bit more intelligent inside constructor and
2153  // destructor code.  Constructors and destructors must assume unique access
2154  // to 'this', so checks on member variable access is disabled, but we should
2155  // still enable checks on other objects.
2156  if (isa<CXXConstructorDecl>(D))
2157    return;  // Don't check inside constructors.
2158  if (isa<CXXDestructorDecl>(D))
2159    return;  // Don't check inside destructors.
2160
2161  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2162    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2163
2164  // We need to explore the CFG via a "topological" ordering.
2165  // That way, we will be guaranteed to have information about required
2166  // predecessor locksets when exploring a new block.
2167  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
2168  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2169
2170  // Compute SSA names for local variables
2171  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2172
2173  // Fill in source locations for all CFGBlocks.
2174  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2175
2176  // Add locks from exclusive_locks_required and shared_locks_required
2177  // to initial lockset. Also turn off checking for lock and unlock functions.
2178  // FIXME: is there a more intelligent way to check lock/unlock functions?
2179  if (!SortedGraph->empty() && D->hasAttrs()) {
2180    const CFGBlock *FirstBlock = *SortedGraph->begin();
2181    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2182    const AttrVec &ArgAttrs = D->getAttrs();
2183
2184    MutexIDList ExclusiveLocksToAdd;
2185    MutexIDList SharedLocksToAdd;
2186
2187    SourceLocation Loc = D->getLocation();
2188    for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
2189      Attr *Attr = ArgAttrs[i];
2190      Loc = Attr->getLocation();
2191      if (ExclusiveLocksRequiredAttr *A
2192            = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
2193        getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2194      } else if (SharedLocksRequiredAttr *A
2195                   = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
2196        getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
2197      } else if (isa<UnlockFunctionAttr>(Attr)) {
2198        // Don't try to check unlock functions for now
2199        return;
2200      } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
2201        // Don't try to check lock functions for now
2202        return;
2203      } else if (isa<SharedLockFunctionAttr>(Attr)) {
2204        // Don't try to check lock functions for now
2205        return;
2206      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2207        // Don't try to check trylock functions for now
2208        return;
2209      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2210        // Don't try to check trylock functions for now
2211        return;
2212      }
2213    }
2214
2215    // FIXME -- Loc can be wrong here.
2216    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2217      addLock(InitialLockset, ExclusiveLocksToAdd[i],
2218              LockData(Loc, LK_Exclusive));
2219    }
2220    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2221      addLock(InitialLockset, SharedLocksToAdd[i],
2222              LockData(Loc, LK_Shared));
2223    }
2224  }
2225
2226  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
2227       E = SortedGraph->end(); I!= E; ++I) {
2228    const CFGBlock *CurrBlock = *I;
2229    int CurrBlockID = CurrBlock->getBlockID();
2230    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2231
2232    // Use the default initial lockset in case there are no predecessors.
2233    VisitedBlocks.insert(CurrBlock);
2234
2235    // Iterate through the predecessor blocks and warn if the lockset for all
2236    // predecessors is not the same. We take the entry lockset of the current
2237    // block to be the intersection of all previous locksets.
2238    // FIXME: By keeping the intersection, we may output more errors in future
2239    // for a lock which is not in the intersection, but was in the union. We
2240    // may want to also keep the union in future. As an example, let's say
2241    // the intersection contains Mutex L, and the union contains L and M.
2242    // Later we unlock M. At this point, we would output an error because we
2243    // never locked M; although the real error is probably that we forgot to
2244    // lock M on all code paths. Conversely, let's say that later we lock M.
2245    // In this case, we should compare against the intersection instead of the
2246    // union because the real error is probably that we forgot to unlock M on
2247    // all code paths.
2248    bool LocksetInitialized = false;
2249    llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
2250    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2251         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2252
2253      // if *PI -> CurrBlock is a back edge
2254      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
2255        continue;
2256
2257      // Ignore edges from blocks that can't return.
2258      if ((*PI)->hasNoReturnElement())
2259        continue;
2260
2261      // If the previous block ended in a 'continue' or 'break' statement, then
2262      // a difference in locksets is probably due to a bug in that block, rather
2263      // than in some other predecessor. In that case, keep the other
2264      // predecessor's lockset.
2265      if (const Stmt *Terminator = (*PI)->getTerminator()) {
2266        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2267          SpecialBlocks.push_back(*PI);
2268          continue;
2269        }
2270      }
2271
2272      int PrevBlockID = (*PI)->getBlockID();
2273      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2274      FactSet PrevLockset;
2275      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2276
2277      if (!LocksetInitialized) {
2278        CurrBlockInfo->EntrySet = PrevLockset;
2279        LocksetInitialized = true;
2280      } else {
2281        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2282                         CurrBlockInfo->EntryLoc,
2283                         LEK_LockedSomePredecessors);
2284      }
2285    }
2286
2287    // Process continue and break blocks. Assume that the lockset for the
2288    // resulting block is unaffected by any discrepancies in them.
2289    for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
2290         SpecialI < SpecialN; ++SpecialI) {
2291      CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
2292      int PrevBlockID = PrevBlock->getBlockID();
2293      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2294
2295      if (!LocksetInitialized) {
2296        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2297        LocksetInitialized = true;
2298      } else {
2299        // Determine whether this edge is a loop terminator for diagnostic
2300        // purposes. FIXME: A 'break' statement might be a loop terminator, but
2301        // it might also be part of a switch. Also, a subsequent destructor
2302        // might add to the lockset, in which case the real issue might be a
2303        // double lock on the other path.
2304        const Stmt *Terminator = PrevBlock->getTerminator();
2305        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2306
2307        FactSet PrevLockset;
2308        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2309                       PrevBlock, CurrBlock);
2310
2311        // Do not update EntrySet.
2312        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2313                         PrevBlockInfo->ExitLoc,
2314                         IsLoop ? LEK_LockedSomeLoopIterations
2315                                : LEK_LockedSomePredecessors,
2316                         false);
2317      }
2318    }
2319
2320    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2321
2322    // Visit all the statements in the basic block.
2323    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2324         BE = CurrBlock->end(); BI != BE; ++BI) {
2325      switch (BI->getKind()) {
2326        case CFGElement::Statement: {
2327          const CFGStmt *CS = cast<CFGStmt>(&*BI);
2328          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
2329          break;
2330        }
2331        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2332        case CFGElement::AutomaticObjectDtor: {
2333          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
2334          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
2335            AD->getDestructorDecl(AC.getASTContext()));
2336          if (!DD->hasAttrs())
2337            break;
2338
2339          // Create a dummy expression,
2340          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
2341          DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
2342                          AD->getTriggerStmt()->getLocEnd());
2343          LocksetBuilder.handleCall(&DRE, DD);
2344          break;
2345        }
2346        default:
2347          break;
2348      }
2349    }
2350    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2351
2352    // For every back edge from CurrBlock (the end of the loop) to another block
2353    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2354    // the one held at the beginning of FirstLoopBlock. We can look up the
2355    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2356    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2357         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2358
2359      // if CurrBlock -> *SI is *not* a back edge
2360      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
2361        continue;
2362
2363      CFGBlock *FirstLoopBlock = *SI;
2364      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2365      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2366      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2367                       PreLoop->EntryLoc,
2368                       LEK_LockedSomeLoopIterations,
2369                       false);
2370    }
2371  }
2372
2373  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2374  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2375
2376  // FIXME: Should we call this function for all blocks which exit the function?
2377  intersectAndWarn(Initial->EntrySet, Final->ExitSet,
2378                   Final->ExitLoc,
2379                   LEK_LockedAtEndOfFunction,
2380                   LEK_NotLockedAtEndOfFunction,
2381                   false);
2382}
2383
2384} // end anonymous namespace
2385
2386
2387namespace clang {
2388namespace thread_safety {
2389
2390/// \brief Check a function's CFG for thread-safety violations.
2391///
2392/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2393/// at the end of each block, and issue warnings for thread safety violations.
2394/// Each block in the CFG is traversed exactly once.
2395void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2396                             ThreadSafetyHandler &Handler) {
2397  ThreadSafetyAnalyzer Analyzer(Handler);
2398  Analyzer.runAnalysis(AC);
2399}
2400
2401/// \brief Helper function that returns a LockKind required for the given level
2402/// of access.
2403LockKind getLockKindFromAccessKind(AccessKind AK) {
2404  switch (AK) {
2405    case AK_Read :
2406      return LK_Shared;
2407    case AK_Written :
2408      return LK_Exclusive;
2409  }
2410  llvm_unreachable("Unknown AccessKind");
2411}
2412
2413}} // end namespace clang::thread_safety
2414