1//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for calls and returns.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ExprEngine"
15
16#include "clang/Analysis/Analyses/LiveVariables.h"
17#include "clang/StaticAnalyzer/Core/CheckerManager.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/ParentMap.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/SaveAndRestore.h"
25
26using namespace clang;
27using namespace ento;
28
29STATISTIC(NumOfDynamicDispatchPathSplits,
30  "The # of times we split the path due to imprecise dynamic dispatch info");
31
32STATISTIC(NumInlinedCalls,
33  "The # of times we inlined a call");
34
35void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
36  // Get the entry block in the CFG of the callee.
37  const StackFrameContext *calleeCtx = CE.getCalleeContext();
38  const CFG *CalleeCFG = calleeCtx->getCFG();
39  const CFGBlock *Entry = &(CalleeCFG->getEntry());
40
41  // Validate the CFG.
42  assert(Entry->empty());
43  assert(Entry->succ_size() == 1);
44
45  // Get the solitary sucessor.
46  const CFGBlock *Succ = *(Entry->succ_begin());
47
48  // Construct an edge representing the starting location in the callee.
49  BlockEdge Loc(Entry, Succ, calleeCtx);
50
51  ProgramStateRef state = Pred->getState();
52
53  // Construct a new node and add it to the worklist.
54  bool isNew;
55  ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
56  Node->addPredecessor(Pred, G);
57  if (isNew)
58    Engine.getWorkList()->enqueue(Node);
59}
60
61// Find the last statement on the path to the exploded node and the
62// corresponding Block.
63static std::pair<const Stmt*,
64                 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
65  const Stmt *S = 0;
66  const StackFrameContext *SF =
67          Node->getLocation().getLocationContext()->getCurrentStackFrame();
68
69  // Back up through the ExplodedGraph until we reach a statement node in this
70  // stack frame.
71  while (Node) {
72    const ProgramPoint &PP = Node->getLocation();
73
74    if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
75      if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
76        S = SP->getStmt();
77        break;
78      } else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&PP)) {
79        S = CEE->getCalleeContext()->getCallSite();
80        if (S)
81          break;
82
83        // If there is no statement, this is an implicitly-generated call.
84        // We'll walk backwards over it and then continue the loop to find
85        // an actual statement.
86        const CallEnter *CE;
87        do {
88          Node = Node->getFirstPred();
89          CE = Node->getLocationAs<CallEnter>();
90        } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
91
92        // Continue searching the graph.
93      }
94    } else if (const CallEnter *CE = dyn_cast<CallEnter>(&PP)) {
95      // If we reached the CallEnter for this function, it has no statements.
96      if (CE->getCalleeContext() == SF)
97        break;
98    }
99
100    Node = *Node->pred_begin();
101  }
102
103  const CFGBlock *Blk = 0;
104  if (S) {
105    // Now, get the enclosing basic block.
106    while (Node && Node->pred_size() >=1 ) {
107      const ProgramPoint &PP = Node->getLocation();
108      if (isa<BlockEdge>(PP) &&
109          (PP.getLocationContext()->getCurrentStackFrame() == SF)) {
110        BlockEdge &EPP = cast<BlockEdge>(PP);
111        Blk = EPP.getDst();
112        break;
113      }
114      Node = *Node->pred_begin();
115    }
116  }
117
118  return std::pair<const Stmt*, const CFGBlock*>(S, Blk);
119}
120
121/// The call exit is simulated with a sequence of nodes, which occur between
122/// CallExitBegin and CallExitEnd. The following operations occur between the
123/// two program points:
124/// 1. CallExitBegin (triggers the start of call exit sequence)
125/// 2. Bind the return value
126/// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
127/// 4. CallExitEnd (switch to the caller context)
128/// 5. PostStmt<CallExpr>
129void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
130  // Step 1 CEBNode was generated before the call.
131
132  const StackFrameContext *calleeCtx =
133      CEBNode->getLocationContext()->getCurrentStackFrame();
134
135  // The parent context might not be a stack frame, so make sure we
136  // look up the first enclosing stack frame.
137  const StackFrameContext *callerCtx =
138    calleeCtx->getParent()->getCurrentStackFrame();
139
140  const Stmt *CE = calleeCtx->getCallSite();
141  ProgramStateRef state = CEBNode->getState();
142  // Find the last statement in the function and the corresponding basic block.
143  const Stmt *LastSt = 0;
144  const CFGBlock *Blk = 0;
145  llvm::tie(LastSt, Blk) = getLastStmt(CEBNode);
146
147  // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
148
149  // If the callee returns an expression, bind its value to CallExpr.
150  if (CE) {
151    if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
152      const LocationContext *LCtx = CEBNode->getLocationContext();
153      SVal V = state->getSVal(RS, LCtx);
154      state = state->BindExpr(CE, callerCtx, V);
155    }
156
157    // Bind the constructed object value to CXXConstructExpr.
158    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
159      loc::MemRegionVal This =
160        svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
161      SVal ThisV = state->getSVal(This);
162
163      // Always bind the region to the CXXConstructExpr.
164      state = state->BindExpr(CCE, callerCtx, ThisV);
165    }
166  }
167
168  // Generate a CallEvent /before/ cleaning the state, so that we can get the
169  // correct value for 'this' (if necessary).
170  CallEventManager &CEMgr = getStateManager().getCallEventManager();
171  CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
172
173  // Step 3: BindedRetNode -> CleanedNodes
174  // If we can find a statement and a block in the inlined function, run remove
175  // dead bindings before returning from the call. This is important to ensure
176  // that we report the issues such as leaks in the stack contexts in which
177  // they occurred.
178  ExplodedNodeSet CleanedNodes;
179  if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
180    static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value");
181    PostStmt Loc(LastSt, calleeCtx, &retValBind);
182    bool isNew;
183    ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
184    BindedRetNode->addPredecessor(CEBNode, G);
185    if (!isNew)
186      return;
187
188    NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
189    currBldrCtx = &Ctx;
190    // Here, we call the Symbol Reaper with 0 statement and caller location
191    // context, telling it to clean up everything in the callee's context
192    // (and it's children). We use LastStmt as a diagnostic statement, which
193    // which the PreStmtPurge Dead point will be associated.
194    removeDead(BindedRetNode, CleanedNodes, 0, callerCtx, LastSt,
195               ProgramPoint::PostStmtPurgeDeadSymbolsKind);
196    currBldrCtx = 0;
197  } else {
198    CleanedNodes.Add(CEBNode);
199  }
200
201  for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
202                                 E = CleanedNodes.end(); I != E; ++I) {
203
204    // Step 4: Generate the CallExit and leave the callee's context.
205    // CleanedNodes -> CEENode
206    CallExitEnd Loc(calleeCtx, callerCtx);
207    bool isNew;
208    ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
209    ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
210    CEENode->addPredecessor(*I, G);
211    if (!isNew)
212      return;
213
214    // Step 5: Perform the post-condition check of the CallExpr and enqueue the
215    // result onto the work list.
216    // CEENode -> Dst -> WorkList
217    NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
218    SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
219        &Ctx);
220    SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
221
222    CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
223
224    ExplodedNodeSet DstPostCall;
225    getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
226                                               *UpdatedCall, *this,
227                                               /*WasInlined=*/true);
228
229    ExplodedNodeSet Dst;
230    if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
231      getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
232                                                        *this,
233                                                        /*WasInlined=*/true);
234    } else if (CE) {
235      getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
236                                                 *this, /*WasInlined=*/true);
237    } else {
238      Dst.insert(DstPostCall);
239    }
240
241    // Enqueue the next element in the block.
242    for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
243                                   PSI != PSE; ++PSI) {
244      Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
245                                    calleeCtx->getIndex()+1);
246    }
247  }
248}
249
250static unsigned getNumberStackFrames(const LocationContext *LCtx) {
251  unsigned count = 0;
252  while (LCtx) {
253    if (isa<StackFrameContext>(LCtx))
254      ++count;
255    LCtx = LCtx->getParent();
256  }
257  return count;
258}
259
260static bool IsInStdNamespace(const FunctionDecl *FD) {
261  const DeclContext *DC = FD->getEnclosingNamespaceContext();
262  const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
263  if (!ND)
264    return false;
265
266  while (const DeclContext *Parent = ND->getParent()) {
267    if (!isa<NamespaceDecl>(Parent))
268      break;
269    ND = cast<NamespaceDecl>(Parent);
270  }
271
272  return ND->getName() == "std";
273}
274
275// Determine if we should inline the call.
276bool ExprEngine::shouldInlineDecl(const Decl *D, ExplodedNode *Pred) {
277  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
278  const CFG *CalleeCFG = CalleeADC->getCFG();
279
280  // It is possible that the CFG cannot be constructed.
281  // Be safe, and check if the CalleeCFG is valid.
282  if (!CalleeCFG)
283    return false;
284
285  if (getNumberStackFrames(Pred->getLocationContext())
286        == AMgr.options.InlineMaxStackDepth)
287    return false;
288
289  if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D))
290    return false;
291
292  if (CalleeCFG->getNumBlockIDs() > AMgr.options.InlineMaxFunctionSize)
293    return false;
294
295  // Do not inline variadic calls (for now).
296  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
297    if (BD->isVariadic())
298      return false;
299  }
300  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
301    if (FD->isVariadic())
302      return false;
303  }
304
305  if (getContext().getLangOpts().CPlusPlus) {
306    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
307      // Conditionally allow the inlining of template functions.
308      if (!getAnalysisManager().options.mayInlineTemplateFunctions())
309        if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
310          return false;
311
312      // Conditionally allow the inlining of C++ standard library functions.
313      if (!getAnalysisManager().options.mayInlineCXXStandardLibrary())
314        if (getContext().getSourceManager().isInSystemHeader(FD->getLocation()))
315          if (IsInStdNamespace(FD))
316            return false;
317    }
318  }
319
320  // It is possible that the live variables analysis cannot be
321  // run.  If so, bail out.
322  if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
323    return false;
324
325  return true;
326}
327
328/// The GDM component containing the dynamic dispatch bifurcation info. When
329/// the exact type of the receiver is not known, we want to explore both paths -
330/// one on which we do inline it and the other one on which we don't. This is
331/// done to ensure we do not drop coverage.
332/// This is the map from the receiver region to a bool, specifying either we
333/// consider this region's information precise or not along the given path.
334namespace clang {
335namespace ento {
336enum DynamicDispatchMode { DynamicDispatchModeInlined = 1,
337                           DynamicDispatchModeConservative };
338
339struct DynamicDispatchBifurcationMap {};
340typedef llvm::ImmutableMap<const MemRegion*,
341                           unsigned int> DynamicDispatchBifur;
342template<> struct ProgramStateTrait<DynamicDispatchBifurcationMap>
343    :  public ProgramStatePartialTrait<DynamicDispatchBifur> {
344  static void *GDMIndex() { static int index; return &index; }
345};
346
347}}
348
349bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
350                            NodeBuilder &Bldr, ExplodedNode *Pred,
351                            ProgramStateRef State) {
352  assert(D);
353
354  const LocationContext *CurLC = Pred->getLocationContext();
355  const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
356  const LocationContext *ParentOfCallee = 0;
357
358  const AnalyzerOptions &Opts = getAnalysisManager().options;
359
360  // FIXME: Refactor this check into a hypothetical CallEvent::canInline.
361  switch (Call.getKind()) {
362  case CE_Function:
363    break;
364  case CE_CXXMember:
365  case CE_CXXMemberOperator:
366    if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
367      return false;
368    break;
369  case CE_CXXConstructor: {
370    if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
371      return false;
372
373    const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
374
375    // FIXME: We don't handle constructors or destructors for arrays properly.
376    const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
377    if (Target && isa<ElementRegion>(Target))
378      return false;
379
380    // FIXME: This is a hack. We don't use the correct region for a new
381    // expression, so if we inline the constructor its result will just be
382    // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
383    // and the longer-term possible fix is discussed in PR12014.
384    const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
385    if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
386      if (isa<CXXNewExpr>(Parent))
387        return false;
388
389    // Inlining constructors requires including initializers in the CFG.
390    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
391    assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
392    (void)ADC;
393
394    // If the destructor is trivial, it's always safe to inline the constructor.
395    if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
396      break;
397
398    // For other types, only inline constructors if destructor inlining is
399    // also enabled.
400    if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
401      return false;
402
403    // FIXME: This is a hack. We don't handle temporary destructors
404    // right now, so we shouldn't inline their constructors.
405    if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
406      if (!Target || !isa<DeclRegion>(Target))
407        return false;
408
409    break;
410  }
411  case CE_CXXDestructor: {
412    if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
413      return false;
414
415    // Inlining destructors requires building the CFG correctly.
416    const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
417    assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
418    (void)ADC;
419
420    const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
421
422    // FIXME: We don't handle constructors or destructors for arrays properly.
423    const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
424    if (Target && isa<ElementRegion>(Target))
425      return false;
426
427    break;
428  }
429  case CE_CXXAllocator:
430    // Do not inline allocators until we model deallocators.
431    // This is unfortunate, but basically necessary for smart pointers and such.
432    return false;
433  case CE_Block: {
434    const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
435    assert(BR && "If we have the block definition we should have its region");
436    AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
437    ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
438                                                         cast<BlockDecl>(D),
439                                                         BR);
440    break;
441  }
442  case CE_ObjCMessage:
443    if (!(getAnalysisManager().options.IPAMode == DynamicDispatch ||
444          getAnalysisManager().options.IPAMode == DynamicDispatchBifurcate))
445      return false;
446    break;
447  }
448
449  if (!shouldInlineDecl(D, Pred))
450    return false;
451
452  if (!ParentOfCallee)
453    ParentOfCallee = CallerSFC;
454
455  // This may be NULL, but that's fine.
456  const Expr *CallE = Call.getOriginExpr();
457
458  // Construct a new stack frame for the callee.
459  AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
460  const StackFrameContext *CalleeSFC =
461    CalleeADC->getStackFrame(ParentOfCallee, CallE,
462                             currBldrCtx->getBlock(),
463                             currStmtIdx);
464
465  CallEnter Loc(CallE, CalleeSFC, CurLC);
466
467  // Construct a new state which contains the mapping from actual to
468  // formal arguments.
469  State = State->enterStackFrame(Call, CalleeSFC);
470
471  bool isNew;
472  if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
473    N->addPredecessor(Pred, G);
474    if (isNew)
475      Engine.getWorkList()->enqueue(N);
476  }
477
478  // If we decided to inline the call, the successor has been manually
479  // added onto the work list so remove it from the node builder.
480  Bldr.takeNodes(Pred);
481
482  NumInlinedCalls++;
483
484  // Mark the decl as visited.
485  if (VisitedCallees)
486    VisitedCallees->insert(D);
487
488  return true;
489}
490
491static ProgramStateRef getInlineFailedState(ProgramStateRef State,
492                                            const Stmt *CallE) {
493  void *ReplayState = State->get<ReplayWithoutInlining>();
494  if (!ReplayState)
495    return 0;
496
497  assert(ReplayState == (const void*)CallE && "Backtracked to the wrong call.");
498  (void)CallE;
499
500  return State->remove<ReplayWithoutInlining>();
501}
502
503void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
504                               ExplodedNodeSet &dst) {
505  // Perform the previsit of the CallExpr.
506  ExplodedNodeSet dstPreVisit;
507  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
508
509  // Get the call in its initial state. We use this as a template to perform
510  // all the checks.
511  CallEventManager &CEMgr = getStateManager().getCallEventManager();
512  CallEventRef<> CallTemplate
513    = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
514
515  // Evaluate the function call.  We try each of the checkers
516  // to see if the can evaluate the function call.
517  ExplodedNodeSet dstCallEvaluated;
518  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
519       I != E; ++I) {
520    evalCall(dstCallEvaluated, *I, *CallTemplate);
521  }
522
523  // Finally, perform the post-condition check of the CallExpr and store
524  // the created nodes in 'Dst'.
525  // Note that if the call was inlined, dstCallEvaluated will be empty.
526  // The post-CallExpr check will occur in processCallExit.
527  getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
528                                             *this);
529}
530
531void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
532                          const CallEvent &Call) {
533  // WARNING: At this time, the state attached to 'Call' may be older than the
534  // state in 'Pred'. This is a minor optimization since CheckerManager will
535  // use an updated CallEvent instance when calling checkers, but if 'Call' is
536  // ever used directly in this function all callers should be updated to pass
537  // the most recent state. (It is probably not worth doing the work here since
538  // for some callers this will not be necessary.)
539
540  // Run any pre-call checks using the generic call interface.
541  ExplodedNodeSet dstPreVisit;
542  getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
543
544  // Actually evaluate the function call.  We try each of the checkers
545  // to see if the can evaluate the function call, and get a callback at
546  // defaultEvalCall if all of them fail.
547  ExplodedNodeSet dstCallEvaluated;
548  getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
549                                             Call, *this);
550
551  // Finally, run any post-call checks.
552  getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
553                                             Call, *this);
554}
555
556ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
557                                            const LocationContext *LCtx,
558                                            ProgramStateRef State) {
559  const Expr *E = Call.getOriginExpr();
560  if (!E)
561    return State;
562
563  // Some method families have known return values.
564  if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
565    switch (Msg->getMethodFamily()) {
566    default:
567      break;
568    case OMF_autorelease:
569    case OMF_retain:
570    case OMF_self: {
571      // These methods return their receivers.
572      return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
573    }
574    }
575  } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
576    return State->BindExpr(E, LCtx, C->getCXXThisVal());
577  }
578
579  // Conjure a symbol if the return value is unknown.
580  QualType ResultTy = Call.getResultType();
581  SValBuilder &SVB = getSValBuilder();
582  unsigned Count = currBldrCtx->blockCount();
583  SVal R = SVB.conjureSymbolVal(0, E, LCtx, ResultTy, Count);
584  return State->BindExpr(E, LCtx, R);
585}
586
587// Conservatively evaluate call by invalidating regions and binding
588// a conjured return value.
589void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
590                                      ExplodedNode *Pred, ProgramStateRef State) {
591  State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
592  State = bindReturnValue(Call, Pred->getLocationContext(), State);
593
594  // And make the result node.
595  Bldr.generateNode(Call.getProgramPoint(), State, Pred);
596}
597
598void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
599                                 const CallEvent &CallTemplate) {
600  // Make sure we have the most recent state attached to the call.
601  ProgramStateRef State = Pred->getState();
602  CallEventRef<> Call = CallTemplate.cloneWithState(State);
603
604  if (!getAnalysisManager().shouldInlineCall()) {
605    conservativeEvalCall(*Call, Bldr, Pred, State);
606    return;
607  }
608  // Try to inline the call.
609  // The origin expression here is just used as a kind of checksum;
610  // this should still be safe even for CallEvents that don't come from exprs.
611  const Expr *E = Call->getOriginExpr();
612  ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
613
614  if (InlinedFailedState) {
615    // If we already tried once and failed, make sure we don't retry later.
616    State = InlinedFailedState;
617  } else {
618    RuntimeDefinition RD = Call->getRuntimeDefinition();
619    const Decl *D = RD.getDecl();
620    if (D) {
621      if (RD.mayHaveOtherDefinitions()) {
622        // Explore with and without inlining the call.
623        if (getAnalysisManager().options.IPAMode == DynamicDispatchBifurcate) {
624          BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
625          return;
626        }
627
628        // Don't inline if we're not in any dynamic dispatch mode.
629        if (getAnalysisManager().options.IPAMode != DynamicDispatch) {
630          conservativeEvalCall(*Call, Bldr, Pred, State);
631          return;
632        }
633      }
634
635      // We are not bifurcating and we do have a Decl, so just inline.
636      if (inlineCall(*Call, D, Bldr, Pred, State))
637        return;
638    }
639  }
640
641  // If we can't inline it, handle the return value and invalidate the regions.
642  conservativeEvalCall(*Call, Bldr, Pred, State);
643}
644
645void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
646                               const CallEvent &Call, const Decl *D,
647                               NodeBuilder &Bldr, ExplodedNode *Pred) {
648  assert(BifurReg);
649  BifurReg = BifurReg->StripCasts();
650
651  // Check if we've performed the split already - note, we only want
652  // to split the path once per memory region.
653  ProgramStateRef State = Pred->getState();
654  const unsigned int *BState =
655                        State->get<DynamicDispatchBifurcationMap>(BifurReg);
656  if (BState) {
657    // If we are on "inline path", keep inlining if possible.
658    if (*BState == DynamicDispatchModeInlined)
659      if (inlineCall(Call, D, Bldr, Pred, State))
660        return;
661    // If inline failed, or we are on the path where we assume we
662    // don't have enough info about the receiver to inline, conjure the
663    // return value and invalidate the regions.
664    conservativeEvalCall(Call, Bldr, Pred, State);
665    return;
666  }
667
668  // If we got here, this is the first time we process a message to this
669  // region, so split the path.
670  ProgramStateRef IState =
671      State->set<DynamicDispatchBifurcationMap>(BifurReg,
672                                               DynamicDispatchModeInlined);
673  inlineCall(Call, D, Bldr, Pred, IState);
674
675  ProgramStateRef NoIState =
676      State->set<DynamicDispatchBifurcationMap>(BifurReg,
677                                               DynamicDispatchModeConservative);
678  conservativeEvalCall(Call, Bldr, Pred, NoIState);
679
680  NumOfDynamicDispatchPathSplits++;
681  return;
682}
683
684
685void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
686                                 ExplodedNodeSet &Dst) {
687
688  ExplodedNodeSet dstPreVisit;
689  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
690
691  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
692
693  if (RS->getRetValue()) {
694    for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
695                                  ei = dstPreVisit.end(); it != ei; ++it) {
696      B.generateNode(RS, *it, (*it)->getState());
697    }
698  }
699}
700