1/* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10 */
11
12/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
13 *
14 * All curves taken from NIST recommendation paper of July 1999
15 * Available at http://csrc.nist.gov/cryptval/dss.htm
16 */
17#include "tomcrypt.h"
18
19/**
20  @file ltc_ecc_projective_dbl_point.c
21  ECC Crypto, Tom St Denis
22*/
23
24#if defined(MECC) && (!defined(MECC_ACCEL) || defined(LTM_DESC))
25
26/**
27   Double an ECC point
28   @param P   The point to double
29   @param R   [out] The destination of the double
30   @param modulus  The modulus of the field the ECC curve is in
31   @param mp       The "b" value from montgomery_setup()
32   @return CRYPT_OK on success
33*/
34int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp)
35{
36   void *t1, *t2;
37   int   err;
38
39   LTC_ARGCHK(P       != NULL);
40   LTC_ARGCHK(R       != NULL);
41   LTC_ARGCHK(modulus != NULL);
42   LTC_ARGCHK(mp      != NULL);
43
44   if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) {
45      return err;
46   }
47
48   if (P != R) {
49      if ((err = mp_copy(P->x, R->x)) != CRYPT_OK)                                { goto done; }
50      if ((err = mp_copy(P->y, R->y)) != CRYPT_OK)                                { goto done; }
51      if ((err = mp_copy(P->z, R->z)) != CRYPT_OK)                                { goto done; }
52   }
53
54   /* t1 = Z * Z */
55   if ((err = mp_sqr(R->z, t1)) != CRYPT_OK)                                      { goto done; }
56   if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)                 { goto done; }
57   /* Z = Y * Z */
58   if ((err = mp_mul(R->z, R->y, R->z)) != CRYPT_OK)                              { goto done; }
59   if ((err = mp_montgomery_reduce(R->z, modulus, mp)) != CRYPT_OK)               { goto done; }
60   /* Z = 2Z */
61   if ((err = mp_add(R->z, R->z, R->z)) != CRYPT_OK)                              { goto done; }
62   if (mp_cmp(R->z, modulus) != LTC_MP_LT) {
63      if ((err = mp_sub(R->z, modulus, R->z)) != CRYPT_OK)                        { goto done; }
64   }
65
66   /* T2 = X - T1 */
67   if ((err = mp_sub(R->x, t1, t2)) != CRYPT_OK)                                  { goto done; }
68   if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
69      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                            { goto done; }
70   }
71   /* T1 = X + T1 */
72   if ((err = mp_add(t1, R->x, t1)) != CRYPT_OK)                                  { goto done; }
73   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
74      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
75   }
76   /* T2 = T1 * T2 */
77   if ((err = mp_mul(t1, t2, t2)) != CRYPT_OK)                                    { goto done; }
78   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)                 { goto done; }
79   /* T1 = 2T2 */
80   if ((err = mp_add(t2, t2, t1)) != CRYPT_OK)                                    { goto done; }
81   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
82      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
83   }
84   /* T1 = T1 + T2 */
85   if ((err = mp_add(t1, t2, t1)) != CRYPT_OK)                                    { goto done; }
86   if (mp_cmp(t1, modulus) != LTC_MP_LT) {
87      if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                            { goto done; }
88   }
89
90   /* Y = 2Y */
91   if ((err = mp_add(R->y, R->y, R->y)) != CRYPT_OK)                              { goto done; }
92   if (mp_cmp(R->y, modulus) != LTC_MP_LT) {
93      if ((err = mp_sub(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
94   }
95   /* Y = Y * Y */
96   if ((err = mp_sqr(R->y, R->y)) != CRYPT_OK)                                    { goto done; }
97   if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
98   /* T2 = Y * Y */
99   if ((err = mp_sqr(R->y, t2)) != CRYPT_OK)                                      { goto done; }
100   if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)                 { goto done; }
101   /* T2 = T2/2 */
102   if (mp_isodd(t2)) {
103      if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                            { goto done; }
104   }
105   if ((err = mp_div_2(t2, t2)) != CRYPT_OK)                                      { goto done; }
106   /* Y = Y * X */
107   if ((err = mp_mul(R->y, R->x, R->y)) != CRYPT_OK)                              { goto done; }
108   if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
109
110   /* X  = T1 * T1 */
111   if ((err = mp_sqr(t1, R->x)) != CRYPT_OK)                                      { goto done; }
112   if ((err = mp_montgomery_reduce(R->x, modulus, mp)) != CRYPT_OK)               { goto done; }
113   /* X = X - Y */
114   if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK)                              { goto done; }
115   if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
116      if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK)                        { goto done; }
117   }
118   /* X = X - Y */
119   if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK)                              { goto done; }
120   if (mp_cmp_d(R->x, 0) == LTC_MP_LT) {
121      if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK)                        { goto done; }
122   }
123
124   /* Y = Y - X */
125   if ((err = mp_sub(R->y, R->x, R->y)) != CRYPT_OK)                              { goto done; }
126   if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
127      if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
128   }
129   /* Y = Y * T1 */
130   if ((err = mp_mul(R->y, t1, R->y)) != CRYPT_OK)                                { goto done; }
131   if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK)               { goto done; }
132   /* Y = Y - T2 */
133   if ((err = mp_sub(R->y, t2, R->y)) != CRYPT_OK)                                { goto done; }
134   if (mp_cmp_d(R->y, 0) == LTC_MP_LT) {
135      if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK)                        { goto done; }
136   }
137
138   err = CRYPT_OK;
139done:
140   mp_clear_multi(t1, t2, NULL);
141   return err;
142}
143#endif
144/* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_projective_dbl_point.c,v $ */
145/* $Revision: 1.8 $ */
146/* $Date: 2006/12/04 05:07:59 $ */
147
148