1#include <tommath.h> 2#include <time.h> 3 4ulong64 _tt; 5 6#ifdef IOWNANATHLON 7#include <unistd.h> 8#define SLEEP sleep(4) 9#else 10#define SLEEP 11#endif 12 13 14void ndraw(mp_int * a, char *name) 15{ 16 char buf[4096]; 17 18 printf("%s: ", name); 19 mp_toradix(a, buf, 64); 20 printf("%s\n", buf); 21} 22 23static void draw(mp_int * a) 24{ 25 ndraw(a, ""); 26} 27 28 29unsigned long lfsr = 0xAAAAAAAAUL; 30 31int lbit(void) 32{ 33 if (lfsr & 0x80000000UL) { 34 lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL; 35 return 1; 36 } else { 37 lfsr <<= 1; 38 return 0; 39 } 40} 41 42/* RDTSC from Scott Duplichan */ 43static ulong64 TIMFUNC(void) 44{ 45#if defined __GNUC__ 46#if defined(__i386__) || defined(__x86_64__) 47 unsigned long long a; 48 __asm__ __volatile__("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n":: 49 "m"(a):"%eax", "%edx"); 50 return a; 51#else /* gcc-IA64 version */ 52 unsigned long result; 53 __asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory"); 54 55 while (__builtin_expect((int) result == -1, 0)) 56 __asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory"); 57 58 return result; 59#endif 60 61 // Microsoft and Intel Windows compilers 62#elif defined _M_IX86 63 __asm rdtsc 64#elif defined _M_AMD64 65 return __rdtsc(); 66#elif defined _M_IA64 67#if defined __INTEL_COMPILER 68#include <ia64intrin.h> 69#endif 70 return __getReg(3116); 71#else 72#error need rdtsc function for this build 73#endif 74} 75 76#define DO(x) x; x; 77//#define DO4(x) DO2(x); DO2(x); 78//#define DO8(x) DO4(x); DO4(x); 79//#define DO(x) DO8(x); DO8(x); 80 81int main(void) 82{ 83 ulong64 tt, gg, CLK_PER_SEC; 84 FILE *log, *logb, *logc, *logd; 85 mp_int a, b, c, d, e, f; 86 int n, cnt, ix, old_kara_m, old_kara_s; 87 unsigned rr; 88 89 mp_init(&a); 90 mp_init(&b); 91 mp_init(&c); 92 mp_init(&d); 93 mp_init(&e); 94 mp_init(&f); 95 96 srand(time(NULL)); 97 98 99 /* temp. turn off TOOM */ 100 TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000; 101 102 CLK_PER_SEC = TIMFUNC(); 103 sleep(1); 104 CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC; 105 106 printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC); 107 goto exptmod; 108 log = fopen("logs/add.log", "w"); 109 for (cnt = 8; cnt <= 128; cnt += 8) { 110 SLEEP; 111 mp_rand(&a, cnt); 112 mp_rand(&b, cnt); 113 rr = 0; 114 tt = -1; 115 do { 116 gg = TIMFUNC(); 117 DO(mp_add(&a, &b, &c)); 118 gg = (TIMFUNC() - gg) >> 1; 119 if (tt > gg) 120 tt = gg; 121 } while (++rr < 100000); 122 printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n", 123 mp_count_bits(&a), CLK_PER_SEC / tt, tt); 124 fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); 125 fflush(log); 126 } 127 fclose(log); 128 129 log = fopen("logs/sub.log", "w"); 130 for (cnt = 8; cnt <= 128; cnt += 8) { 131 SLEEP; 132 mp_rand(&a, cnt); 133 mp_rand(&b, cnt); 134 rr = 0; 135 tt = -1; 136 do { 137 gg = TIMFUNC(); 138 DO(mp_sub(&a, &b, &c)); 139 gg = (TIMFUNC() - gg) >> 1; 140 if (tt > gg) 141 tt = gg; 142 } while (++rr < 100000); 143 144 printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n", 145 mp_count_bits(&a), CLK_PER_SEC / tt, tt); 146 fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); 147 fflush(log); 148 } 149 fclose(log); 150 151 /* do mult/square twice, first without karatsuba and second with */ 152 multtest: 153 old_kara_m = KARATSUBA_MUL_CUTOFF; 154 old_kara_s = KARATSUBA_SQR_CUTOFF; 155 for (ix = 0; ix < 2; ix++) { 156 printf("With%s Karatsuba\n", (ix == 0) ? "out" : ""); 157 158 KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m; 159 KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s; 160 161 log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w"); 162 for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) { 163 SLEEP; 164 mp_rand(&a, cnt); 165 mp_rand(&b, cnt); 166 rr = 0; 167 tt = -1; 168 do { 169 gg = TIMFUNC(); 170 DO(mp_mul(&a, &b, &c)); 171 gg = (TIMFUNC() - gg) >> 1; 172 if (tt > gg) 173 tt = gg; 174 } while (++rr < 100); 175 printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n", 176 mp_count_bits(&a), CLK_PER_SEC / tt, tt); 177 fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); 178 fflush(log); 179 } 180 fclose(log); 181 182 log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w"); 183 for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) { 184 SLEEP; 185 mp_rand(&a, cnt); 186 rr = 0; 187 tt = -1; 188 do { 189 gg = TIMFUNC(); 190 DO(mp_sqr(&a, &b)); 191 gg = (TIMFUNC() - gg) >> 1; 192 if (tt > gg) 193 tt = gg; 194 } while (++rr < 100); 195 printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n", 196 mp_count_bits(&a), CLK_PER_SEC / tt, tt); 197 fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); 198 fflush(log); 199 } 200 fclose(log); 201 202 } 203 exptmod: 204 205 { 206 char *primes[] = { 207 /* 2K large moduli */ 208 "179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217", 209 "32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169", 210 "1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283", 211 /* 2K moduli mersenne primes */ 212 "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 213 "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127", 214 "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087", 215 "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007", 216 "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071", 217 "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991", 218 219 /* DR moduli */ 220 "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079", 221 "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039", 222 "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431", 223 "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783", 224 "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147", 225 "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503", 226 "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679", 227 228 /* generic unrestricted moduli */ 229 "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203", 230 "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487", 231 "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", 232 "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887", 233 "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227", 234 "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207", 235 "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979", 236 NULL 237 }; 238 log = fopen("logs/expt.log", "w"); 239 logb = fopen("logs/expt_dr.log", "w"); 240 logc = fopen("logs/expt_2k.log", "w"); 241 logd = fopen("logs/expt_2kl.log", "w"); 242 for (n = 0; primes[n]; n++) { 243 SLEEP; 244 mp_read_radix(&a, primes[n], 10); 245 mp_zero(&b); 246 for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) { 247 mp_mul_2(&b, &b); 248 b.dp[0] |= lbit(); 249 b.used += 1; 250 } 251 mp_sub_d(&a, 1, &c); 252 mp_mod(&b, &c, &b); 253 mp_set(&c, 3); 254 rr = 0; 255 tt = -1; 256 do { 257 gg = TIMFUNC(); 258 DO(mp_exptmod(&c, &b, &a, &d)); 259 gg = (TIMFUNC() - gg) >> 1; 260 if (tt > gg) 261 tt = gg; 262 } while (++rr < 10); 263 mp_sub_d(&a, 1, &e); 264 mp_sub(&e, &b, &b); 265 mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */ 266 mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */ 267 if (mp_cmp_d(&d, 1)) { 268 printf("Different (%d)!!!\n", mp_count_bits(&a)); 269 draw(&d); 270 exit(0); 271 } 272 printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n", 273 mp_count_bits(&a), CLK_PER_SEC / tt, tt); 274 fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log, 275 "%d %9llu\n", mp_count_bits(&a), tt); 276 } 277 } 278 fclose(log); 279 fclose(logb); 280 fclose(logc); 281 fclose(logd); 282 283 log = fopen("logs/invmod.log", "w"); 284 for (cnt = 4; cnt <= 128; cnt += 4) { 285 SLEEP; 286 mp_rand(&a, cnt); 287 mp_rand(&b, cnt); 288 289 do { 290 mp_add_d(&b, 1, &b); 291 mp_gcd(&a, &b, &c); 292 } while (mp_cmp_d(&c, 1) != MP_EQ); 293 294 rr = 0; 295 tt = -1; 296 do { 297 gg = TIMFUNC(); 298 DO(mp_invmod(&b, &a, &c)); 299 gg = (TIMFUNC() - gg) >> 1; 300 if (tt > gg) 301 tt = gg; 302 } while (++rr < 1000); 303 mp_mulmod(&b, &c, &a, &d); 304 if (mp_cmp_d(&d, 1) != MP_EQ) { 305 printf("Failed to invert\n"); 306 return 0; 307 } 308 printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n", 309 mp_count_bits(&a), CLK_PER_SEC / tt, tt); 310 fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); 311 } 312 fclose(log); 313 314 return 0; 315} 316 317/* $Source: /cvs/libtom/libtommath/demo/timing.c,v $ */ 318/* $Revision: 1.2 $ */ 319/* $Date: 2005/05/05 14:38:47 $ */ 320