1      SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
2*     .. Scalar Arguments ..
3      INTEGER INCX,N
4      CHARACTER DIAG,TRANS,UPLO
5*     ..
6*     .. Array Arguments ..
7      COMPLEX AP(*),X(*)
8*     ..
9*
10*  Purpose
11*  =======
12*
13*  CTPSV  solves one of the systems of equations
14*
15*     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
16*
17*  where b and x are n element vectors and A is an n by n unit, or
18*  non-unit, upper or lower triangular matrix, supplied in packed form.
19*
20*  No test for singularity or near-singularity is included in this
21*  routine. Such tests must be performed before calling this routine.
22*
23*  Arguments
24*  ==========
25*
26*  UPLO   - CHARACTER*1.
27*           On entry, UPLO specifies whether the matrix is an upper or
28*           lower triangular matrix as follows:
29*
30*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
31*
32*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
33*
34*           Unchanged on exit.
35*
36*  TRANS  - CHARACTER*1.
37*           On entry, TRANS specifies the equations to be solved as
38*           follows:
39*
40*              TRANS = 'N' or 'n'   A*x = b.
41*
42*              TRANS = 'T' or 't'   A'*x = b.
43*
44*              TRANS = 'C' or 'c'   conjg( A' )*x = b.
45*
46*           Unchanged on exit.
47*
48*  DIAG   - CHARACTER*1.
49*           On entry, DIAG specifies whether or not A is unit
50*           triangular as follows:
51*
52*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
53*
54*              DIAG = 'N' or 'n'   A is not assumed to be unit
55*                                  triangular.
56*
57*           Unchanged on exit.
58*
59*  N      - INTEGER.
60*           On entry, N specifies the order of the matrix A.
61*           N must be at least zero.
62*           Unchanged on exit.
63*
64*  AP     - COMPLEX          array of DIMENSION at least
65*           ( ( n*( n + 1 ) )/2 ).
66*           Before entry with  UPLO = 'U' or 'u', the array AP must
67*           contain the upper triangular matrix packed sequentially,
68*           column by column, so that AP( 1 ) contains a( 1, 1 ),
69*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
70*           respectively, and so on.
71*           Before entry with UPLO = 'L' or 'l', the array AP must
72*           contain the lower triangular matrix packed sequentially,
73*           column by column, so that AP( 1 ) contains a( 1, 1 ),
74*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
75*           respectively, and so on.
76*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
77*           A are not referenced, but are assumed to be unity.
78*           Unchanged on exit.
79*
80*  X      - COMPLEX          array of dimension at least
81*           ( 1 + ( n - 1 )*abs( INCX ) ).
82*           Before entry, the incremented array X must contain the n
83*           element right-hand side vector b. On exit, X is overwritten
84*           with the solution vector x.
85*
86*  INCX   - INTEGER.
87*           On entry, INCX specifies the increment for the elements of
88*           X. INCX must not be zero.
89*           Unchanged on exit.
90*
91*  Further Details
92*  ===============
93*
94*  Level 2 Blas routine.
95*
96*  -- Written on 22-October-1986.
97*     Jack Dongarra, Argonne National Lab.
98*     Jeremy Du Croz, Nag Central Office.
99*     Sven Hammarling, Nag Central Office.
100*     Richard Hanson, Sandia National Labs.
101*
102*  =====================================================================
103*
104*     .. Parameters ..
105      COMPLEX ZERO
106      PARAMETER (ZERO= (0.0E+0,0.0E+0))
107*     ..
108*     .. Local Scalars ..
109      COMPLEX TEMP
110      INTEGER I,INFO,IX,J,JX,K,KK,KX
111      LOGICAL NOCONJ,NOUNIT
112*     ..
113*     .. External Functions ..
114      LOGICAL LSAME
115      EXTERNAL LSAME
116*     ..
117*     .. External Subroutines ..
118      EXTERNAL XERBLA
119*     ..
120*     .. Intrinsic Functions ..
121      INTRINSIC CONJG
122*     ..
123*
124*     Test the input parameters.
125*
126      INFO = 0
127      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
128          INFO = 1
129      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
130     +         .NOT.LSAME(TRANS,'C')) THEN
131          INFO = 2
132      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
133          INFO = 3
134      ELSE IF (N.LT.0) THEN
135          INFO = 4
136      ELSE IF (INCX.EQ.0) THEN
137          INFO = 7
138      END IF
139      IF (INFO.NE.0) THEN
140          CALL XERBLA('CTPSV ',INFO)
141          RETURN
142      END IF
143*
144*     Quick return if possible.
145*
146      IF (N.EQ.0) RETURN
147*
148      NOCONJ = LSAME(TRANS,'T')
149      NOUNIT = LSAME(DIAG,'N')
150*
151*     Set up the start point in X if the increment is not unity. This
152*     will be  ( N - 1 )*INCX  too small for descending loops.
153*
154      IF (INCX.LE.0) THEN
155          KX = 1 - (N-1)*INCX
156      ELSE IF (INCX.NE.1) THEN
157          KX = 1
158      END IF
159*
160*     Start the operations. In this version the elements of AP are
161*     accessed sequentially with one pass through AP.
162*
163      IF (LSAME(TRANS,'N')) THEN
164*
165*        Form  x := inv( A )*x.
166*
167          IF (LSAME(UPLO,'U')) THEN
168              KK = (N* (N+1))/2
169              IF (INCX.EQ.1) THEN
170                  DO 20 J = N,1,-1
171                      IF (X(J).NE.ZERO) THEN
172                          IF (NOUNIT) X(J) = X(J)/AP(KK)
173                          TEMP = X(J)
174                          K = KK - 1
175                          DO 10 I = J - 1,1,-1
176                              X(I) = X(I) - TEMP*AP(K)
177                              K = K - 1
178   10                     CONTINUE
179                      END IF
180                      KK = KK - J
181   20             CONTINUE
182              ELSE
183                  JX = KX + (N-1)*INCX
184                  DO 40 J = N,1,-1
185                      IF (X(JX).NE.ZERO) THEN
186                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
187                          TEMP = X(JX)
188                          IX = JX
189                          DO 30 K = KK - 1,KK - J + 1,-1
190                              IX = IX - INCX
191                              X(IX) = X(IX) - TEMP*AP(K)
192   30                     CONTINUE
193                      END IF
194                      JX = JX - INCX
195                      KK = KK - J
196   40             CONTINUE
197              END IF
198          ELSE
199              KK = 1
200              IF (INCX.EQ.1) THEN
201                  DO 60 J = 1,N
202                      IF (X(J).NE.ZERO) THEN
203                          IF (NOUNIT) X(J) = X(J)/AP(KK)
204                          TEMP = X(J)
205                          K = KK + 1
206                          DO 50 I = J + 1,N
207                              X(I) = X(I) - TEMP*AP(K)
208                              K = K + 1
209   50                     CONTINUE
210                      END IF
211                      KK = KK + (N-J+1)
212   60             CONTINUE
213              ELSE
214                  JX = KX
215                  DO 80 J = 1,N
216                      IF (X(JX).NE.ZERO) THEN
217                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
218                          TEMP = X(JX)
219                          IX = JX
220                          DO 70 K = KK + 1,KK + N - J
221                              IX = IX + INCX
222                              X(IX) = X(IX) - TEMP*AP(K)
223   70                     CONTINUE
224                      END IF
225                      JX = JX + INCX
226                      KK = KK + (N-J+1)
227   80             CONTINUE
228              END IF
229          END IF
230      ELSE
231*
232*        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x.
233*
234          IF (LSAME(UPLO,'U')) THEN
235              KK = 1
236              IF (INCX.EQ.1) THEN
237                  DO 110 J = 1,N
238                      TEMP = X(J)
239                      K = KK
240                      IF (NOCONJ) THEN
241                          DO 90 I = 1,J - 1
242                              TEMP = TEMP - AP(K)*X(I)
243                              K = K + 1
244   90                     CONTINUE
245                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
246                      ELSE
247                          DO 100 I = 1,J - 1
248                              TEMP = TEMP - CONJG(AP(K))*X(I)
249                              K = K + 1
250  100                     CONTINUE
251                          IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
252                      END IF
253                      X(J) = TEMP
254                      KK = KK + J
255  110             CONTINUE
256              ELSE
257                  JX = KX
258                  DO 140 J = 1,N
259                      TEMP = X(JX)
260                      IX = KX
261                      IF (NOCONJ) THEN
262                          DO 120 K = KK,KK + J - 2
263                              TEMP = TEMP - AP(K)*X(IX)
264                              IX = IX + INCX
265  120                     CONTINUE
266                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
267                      ELSE
268                          DO 130 K = KK,KK + J - 2
269                              TEMP = TEMP - CONJG(AP(K))*X(IX)
270                              IX = IX + INCX
271  130                     CONTINUE
272                          IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
273                      END IF
274                      X(JX) = TEMP
275                      JX = JX + INCX
276                      KK = KK + J
277  140             CONTINUE
278              END IF
279          ELSE
280              KK = (N* (N+1))/2
281              IF (INCX.EQ.1) THEN
282                  DO 170 J = N,1,-1
283                      TEMP = X(J)
284                      K = KK
285                      IF (NOCONJ) THEN
286                          DO 150 I = N,J + 1,-1
287                              TEMP = TEMP - AP(K)*X(I)
288                              K = K - 1
289  150                     CONTINUE
290                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
291                      ELSE
292                          DO 160 I = N,J + 1,-1
293                              TEMP = TEMP - CONJG(AP(K))*X(I)
294                              K = K - 1
295  160                     CONTINUE
296                          IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
297                      END IF
298                      X(J) = TEMP
299                      KK = KK - (N-J+1)
300  170             CONTINUE
301              ELSE
302                  KX = KX + (N-1)*INCX
303                  JX = KX
304                  DO 200 J = N,1,-1
305                      TEMP = X(JX)
306                      IX = KX
307                      IF (NOCONJ) THEN
308                          DO 180 K = KK,KK - (N- (J+1)),-1
309                              TEMP = TEMP - AP(K)*X(IX)
310                              IX = IX - INCX
311  180                     CONTINUE
312                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
313                      ELSE
314                          DO 190 K = KK,KK - (N- (J+1)),-1
315                              TEMP = TEMP - CONJG(AP(K))*X(IX)
316                              IX = IX - INCX
317  190                     CONTINUE
318                          IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
319                      END IF
320                      X(JX) = TEMP
321                      JX = JX - INCX
322                      KK = KK - (N-J+1)
323  200             CONTINUE
324              END IF
325          END IF
326      END IF
327*
328      RETURN
329*
330*     End of CTPSV .
331*
332      END
333