1      SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP)
2*     .. Scalar Arguments ..
3      REAL ALPHA
4      INTEGER INCX,N
5      CHARACTER UPLO
6*     ..
7*     .. Array Arguments ..
8      REAL AP(*),X(*)
9*     ..
10*
11*  Purpose
12*  =======
13*
14*  SSPR    performs the symmetric rank 1 operation
15*
16*     A := alpha*x*x' + A,
17*
18*  where alpha is a real scalar, x is an n element vector and A is an
19*  n by n symmetric matrix, supplied in packed form.
20*
21*  Arguments
22*  ==========
23*
24*  UPLO   - CHARACTER*1.
25*           On entry, UPLO specifies whether the upper or lower
26*           triangular part of the matrix A is supplied in the packed
27*           array AP as follows:
28*
29*              UPLO = 'U' or 'u'   The upper triangular part of A is
30*                                  supplied in AP.
31*
32*              UPLO = 'L' or 'l'   The lower triangular part of A is
33*                                  supplied in AP.
34*
35*           Unchanged on exit.
36*
37*  N      - INTEGER.
38*           On entry, N specifies the order of the matrix A.
39*           N must be at least zero.
40*           Unchanged on exit.
41*
42*  ALPHA  - REAL            .
43*           On entry, ALPHA specifies the scalar alpha.
44*           Unchanged on exit.
45*
46*  X      - REAL             array of dimension at least
47*           ( 1 + ( n - 1 )*abs( INCX ) ).
48*           Before entry, the incremented array X must contain the n
49*           element vector x.
50*           Unchanged on exit.
51*
52*  INCX   - INTEGER.
53*           On entry, INCX specifies the increment for the elements of
54*           X. INCX must not be zero.
55*           Unchanged on exit.
56*
57*  AP     - REAL             array of DIMENSION at least
58*           ( ( n*( n + 1 ) )/2 ).
59*           Before entry with  UPLO = 'U' or 'u', the array AP must
60*           contain the upper triangular part of the symmetric matrix
61*           packed sequentially, column by column, so that AP( 1 )
62*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
63*           and a( 2, 2 ) respectively, and so on. On exit, the array
64*           AP is overwritten by the upper triangular part of the
65*           updated matrix.
66*           Before entry with UPLO = 'L' or 'l', the array AP must
67*           contain the lower triangular part of the symmetric matrix
68*           packed sequentially, column by column, so that AP( 1 )
69*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
70*           and a( 3, 1 ) respectively, and so on. On exit, the array
71*           AP is overwritten by the lower triangular part of the
72*           updated matrix.
73*
74*  Further Details
75*  ===============
76*
77*  Level 2 Blas routine.
78*
79*  -- Written on 22-October-1986.
80*     Jack Dongarra, Argonne National Lab.
81*     Jeremy Du Croz, Nag Central Office.
82*     Sven Hammarling, Nag Central Office.
83*     Richard Hanson, Sandia National Labs.
84*
85*  =====================================================================
86*
87*     .. Parameters ..
88      REAL ZERO
89      PARAMETER (ZERO=0.0E+0)
90*     ..
91*     .. Local Scalars ..
92      REAL TEMP
93      INTEGER I,INFO,IX,J,JX,K,KK,KX
94*     ..
95*     .. External Functions ..
96      LOGICAL LSAME
97      EXTERNAL LSAME
98*     ..
99*     .. External Subroutines ..
100      EXTERNAL XERBLA
101*     ..
102*
103*     Test the input parameters.
104*
105      INFO = 0
106      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
107          INFO = 1
108      ELSE IF (N.LT.0) THEN
109          INFO = 2
110      ELSE IF (INCX.EQ.0) THEN
111          INFO = 5
112      END IF
113      IF (INFO.NE.0) THEN
114          CALL XERBLA('SSPR  ',INFO)
115          RETURN
116      END IF
117*
118*     Quick return if possible.
119*
120      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
121*
122*     Set the start point in X if the increment is not unity.
123*
124      IF (INCX.LE.0) THEN
125          KX = 1 - (N-1)*INCX
126      ELSE IF (INCX.NE.1) THEN
127          KX = 1
128      END IF
129*
130*     Start the operations. In this version the elements of the array AP
131*     are accessed sequentially with one pass through AP.
132*
133      KK = 1
134      IF (LSAME(UPLO,'U')) THEN
135*
136*        Form  A  when upper triangle is stored in AP.
137*
138          IF (INCX.EQ.1) THEN
139              DO 20 J = 1,N
140                  IF (X(J).NE.ZERO) THEN
141                      TEMP = ALPHA*X(J)
142                      K = KK
143                      DO 10 I = 1,J
144                          AP(K) = AP(K) + X(I)*TEMP
145                          K = K + 1
146   10                 CONTINUE
147                  END IF
148                  KK = KK + J
149   20         CONTINUE
150          ELSE
151              JX = KX
152              DO 40 J = 1,N
153                  IF (X(JX).NE.ZERO) THEN
154                      TEMP = ALPHA*X(JX)
155                      IX = KX
156                      DO 30 K = KK,KK + J - 1
157                          AP(K) = AP(K) + X(IX)*TEMP
158                          IX = IX + INCX
159   30                 CONTINUE
160                  END IF
161                  JX = JX + INCX
162                  KK = KK + J
163   40         CONTINUE
164          END IF
165      ELSE
166*
167*        Form  A  when lower triangle is stored in AP.
168*
169          IF (INCX.EQ.1) THEN
170              DO 60 J = 1,N
171                  IF (X(J).NE.ZERO) THEN
172                      TEMP = ALPHA*X(J)
173                      K = KK
174                      DO 50 I = J,N
175                          AP(K) = AP(K) + X(I)*TEMP
176                          K = K + 1
177   50                 CONTINUE
178                  END IF
179                  KK = KK + N - J + 1
180   60         CONTINUE
181          ELSE
182              JX = KX
183              DO 80 J = 1,N
184                  IF (X(JX).NE.ZERO) THEN
185                      TEMP = ALPHA*X(JX)
186                      IX = JX
187                      DO 70 K = KK,KK + N - J
188                          AP(K) = AP(K) + X(IX)*TEMP
189                          IX = IX + INCX
190   70                 CONTINUE
191                  END IF
192                  JX = JX + INCX
193                  KK = KK + N - J + 1
194   80         CONTINUE
195          END IF
196      END IF
197*
198      RETURN
199*
200*     End of SSPR  .
201*
202      END
203