1      SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP)
2*     .. Scalar Arguments ..
3      DOUBLE PRECISION ALPHA
4      INTEGER INCX,N
5      CHARACTER UPLO
6*     ..
7*     .. Array Arguments ..
8      DOUBLE COMPLEX AP(*),X(*)
9*     ..
10*
11*  Purpose
12*  =======
13*
14*  ZHPR    performs the hermitian rank 1 operation
15*
16*     A := alpha*x*conjg( x' ) + A,
17*
18*  where alpha is a real scalar, x is an n element vector and A is an
19*  n by n hermitian matrix, supplied in packed form.
20*
21*  Arguments
22*  ==========
23*
24*  UPLO   - CHARACTER*1.
25*           On entry, UPLO specifies whether the upper or lower
26*           triangular part of the matrix A is supplied in the packed
27*           array AP as follows:
28*
29*              UPLO = 'U' or 'u'   The upper triangular part of A is
30*                                  supplied in AP.
31*
32*              UPLO = 'L' or 'l'   The lower triangular part of A is
33*                                  supplied in AP.
34*
35*           Unchanged on exit.
36*
37*  N      - INTEGER.
38*           On entry, N specifies the order of the matrix A.
39*           N must be at least zero.
40*           Unchanged on exit.
41*
42*  ALPHA  - DOUBLE PRECISION.
43*           On entry, ALPHA specifies the scalar alpha.
44*           Unchanged on exit.
45*
46*  X      - COMPLEX*16       array of dimension at least
47*           ( 1 + ( n - 1 )*abs( INCX ) ).
48*           Before entry, the incremented array X must contain the n
49*           element vector x.
50*           Unchanged on exit.
51*
52*  INCX   - INTEGER.
53*           On entry, INCX specifies the increment for the elements of
54*           X. INCX must not be zero.
55*           Unchanged on exit.
56*
57*  AP     - COMPLEX*16       array of DIMENSION at least
58*           ( ( n*( n + 1 ) )/2 ).
59*           Before entry with  UPLO = 'U' or 'u', the array AP must
60*           contain the upper triangular part of the hermitian matrix
61*           packed sequentially, column by column, so that AP( 1 )
62*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
63*           and a( 2, 2 ) respectively, and so on. On exit, the array
64*           AP is overwritten by the upper triangular part of the
65*           updated matrix.
66*           Before entry with UPLO = 'L' or 'l', the array AP must
67*           contain the lower triangular part of the hermitian matrix
68*           packed sequentially, column by column, so that AP( 1 )
69*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
70*           and a( 3, 1 ) respectively, and so on. On exit, the array
71*           AP is overwritten by the lower triangular part of the
72*           updated matrix.
73*           Note that the imaginary parts of the diagonal elements need
74*           not be set, they are assumed to be zero, and on exit they
75*           are set to zero.
76*
77*  Further Details
78*  ===============
79*
80*  Level 2 Blas routine.
81*
82*  -- Written on 22-October-1986.
83*     Jack Dongarra, Argonne National Lab.
84*     Jeremy Du Croz, Nag Central Office.
85*     Sven Hammarling, Nag Central Office.
86*     Richard Hanson, Sandia National Labs.
87*
88*  =====================================================================
89*
90*     .. Parameters ..
91      DOUBLE COMPLEX ZERO
92      PARAMETER (ZERO= (0.0D+0,0.0D+0))
93*     ..
94*     .. Local Scalars ..
95      DOUBLE COMPLEX TEMP
96      INTEGER I,INFO,IX,J,JX,K,KK,KX
97*     ..
98*     .. External Functions ..
99      LOGICAL LSAME
100      EXTERNAL LSAME
101*     ..
102*     .. External Subroutines ..
103      EXTERNAL XERBLA
104*     ..
105*     .. Intrinsic Functions ..
106      INTRINSIC DBLE,DCONJG
107*     ..
108*
109*     Test the input parameters.
110*
111      INFO = 0
112      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
113          INFO = 1
114      ELSE IF (N.LT.0) THEN
115          INFO = 2
116      ELSE IF (INCX.EQ.0) THEN
117          INFO = 5
118      END IF
119      IF (INFO.NE.0) THEN
120          CALL XERBLA('ZHPR  ',INFO)
121          RETURN
122      END IF
123*
124*     Quick return if possible.
125*
126      IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
127*
128*     Set the start point in X if the increment is not unity.
129*
130      IF (INCX.LE.0) THEN
131          KX = 1 - (N-1)*INCX
132      ELSE IF (INCX.NE.1) THEN
133          KX = 1
134      END IF
135*
136*     Start the operations. In this version the elements of the array AP
137*     are accessed sequentially with one pass through AP.
138*
139      KK = 1
140      IF (LSAME(UPLO,'U')) THEN
141*
142*        Form  A  when upper triangle is stored in AP.
143*
144          IF (INCX.EQ.1) THEN
145              DO 20 J = 1,N
146                  IF (X(J).NE.ZERO) THEN
147                      TEMP = ALPHA*DCONJG(X(J))
148                      K = KK
149                      DO 10 I = 1,J - 1
150                          AP(K) = AP(K) + X(I)*TEMP
151                          K = K + 1
152   10                 CONTINUE
153                      AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(J)*TEMP)
154                  ELSE
155                      AP(KK+J-1) = DBLE(AP(KK+J-1))
156                  END IF
157                  KK = KK + J
158   20         CONTINUE
159          ELSE
160              JX = KX
161              DO 40 J = 1,N
162                  IF (X(JX).NE.ZERO) THEN
163                      TEMP = ALPHA*DCONJG(X(JX))
164                      IX = KX
165                      DO 30 K = KK,KK + J - 2
166                          AP(K) = AP(K) + X(IX)*TEMP
167                          IX = IX + INCX
168   30                 CONTINUE
169                      AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(JX)*TEMP)
170                  ELSE
171                      AP(KK+J-1) = DBLE(AP(KK+J-1))
172                  END IF
173                  JX = JX + INCX
174                  KK = KK + J
175   40         CONTINUE
176          END IF
177      ELSE
178*
179*        Form  A  when lower triangle is stored in AP.
180*
181          IF (INCX.EQ.1) THEN
182              DO 60 J = 1,N
183                  IF (X(J).NE.ZERO) THEN
184                      TEMP = ALPHA*DCONJG(X(J))
185                      AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(J))
186                      K = KK + 1
187                      DO 50 I = J + 1,N
188                          AP(K) = AP(K) + X(I)*TEMP
189                          K = K + 1
190   50                 CONTINUE
191                  ELSE
192                      AP(KK) = DBLE(AP(KK))
193                  END IF
194                  KK = KK + N - J + 1
195   60         CONTINUE
196          ELSE
197              JX = KX
198              DO 80 J = 1,N
199                  IF (X(JX).NE.ZERO) THEN
200                      TEMP = ALPHA*DCONJG(X(JX))
201                      AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(JX))
202                      IX = JX
203                      DO 70 K = KK + 1,KK + N - J
204                          IX = IX + INCX
205                          AP(K) = AP(K) + X(IX)*TEMP
206   70                 CONTINUE
207                  ELSE
208                      AP(KK) = DBLE(AP(KK))
209                  END IF
210                  JX = JX + INCX
211                  KK = KK + N - J + 1
212   80         CONTINUE
213          END IF
214      END IF
215*
216      RETURN
217*
218*     End of ZHPR  .
219*
220      END
221