1/* Report modules by examining dynamic linker data structures.
2   Copyright (C) 2008 Red Hat, Inc.
3   This file is part of Red Hat elfutils.
4
5   Red Hat elfutils is free software; you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by the
7   Free Software Foundation; version 2 of the License.
8
9   Red Hat elfutils is distributed in the hope that it will be useful, but
10   WITHOUT ANY WARRANTY; without even the implied warranty of
11   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12   General Public License for more details.
13
14   You should have received a copy of the GNU General Public License along
15   with Red Hat elfutils; if not, write to the Free Software Foundation,
16   Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA.
17
18   In addition, as a special exception, Red Hat, Inc. gives You the
19   additional right to link the code of Red Hat elfutils with code licensed
20   under any Open Source Initiative certified open source license
21   (http://www.opensource.org/licenses/index.php) which requires the
22   distribution of source code with any binary distribution and to
23   distribute linked combinations of the two.  Non-GPL Code permitted under
24   this exception must only link to the code of Red Hat elfutils through
25   those well defined interfaces identified in the file named EXCEPTION
26   found in the source code files (the "Approved Interfaces").  The files
27   of Non-GPL Code may instantiate templates or use macros or inline
28   functions from the Approved Interfaces without causing the resulting
29   work to be covered by the GNU General Public License.  Only Red Hat,
30   Inc. may make changes or additions to the list of Approved Interfaces.
31   Red Hat's grant of this exception is conditioned upon your not adding
32   any new exceptions.  If you wish to add a new Approved Interface or
33   exception, please contact Red Hat.  You must obey the GNU General Public
34   License in all respects for all of the Red Hat elfutils code and other
35   code used in conjunction with Red Hat elfutils except the Non-GPL Code
36   covered by this exception.  If you modify this file, you may extend this
37   exception to your version of the file, but you are not obligated to do
38   so.  If you do not wish to provide this exception without modification,
39   you must delete this exception statement from your version and license
40   this file solely under the GPL without exception.
41
42   Red Hat elfutils is an included package of the Open Invention Network.
43   An included package of the Open Invention Network is a package for which
44   Open Invention Network licensees cross-license their patents.  No patent
45   license is granted, either expressly or impliedly, by designation as an
46   included package.  Should you wish to participate in the Open Invention
47   Network licensing program, please visit www.openinventionnetwork.com
48   <http://www.openinventionnetwork.com>.  */
49
50#include <config.h>
51#include "libdwflP.h"
52
53#include <byteswap.h>
54#include <endian.h>
55
56/* This element is always provided and always has a constant value.
57   This makes it an easy thing to scan for to discern the format.  */
58#define PROBE_TYPE	AT_PHENT
59#define PROBE_VAL32	sizeof (Elf32_Phdr)
60#define PROBE_VAL64	sizeof (Elf64_Phdr)
61
62#if BYTE_ORDER == BIG_ENDIAN
63# define BE32(x)	(x)
64# define BE64(x)	(x)
65# define LE32(x)	bswap_32 (x)
66# define LE64(x)	bswap_64 (x)
67#else
68# define LE32(x)	(x)
69# define LE64(x)	(x)
70# define BE32(x)	bswap_32 (x)
71# define BE64(x)	bswap_64 (x)
72#endif
73
74
75/* Examine an auxv data block and determine its format.
76   Return true iff we figured it out.  */
77static bool
78auxv_format_probe (const void *auxv, size_t size,
79		   uint_fast8_t *elfclass, uint_fast8_t *elfdata)
80{
81  const union
82  {
83    char buf[size];
84    Elf32_auxv_t a32[size / sizeof (Elf32_auxv_t)];
85    Elf64_auxv_t a64[size / sizeof (Elf64_auxv_t)];
86  } *u = auxv;
87
88  inline bool check64 (size_t i)
89  {
90    if (u->a64[i].a_type == BE64 (PROBE_TYPE)
91	&& u->a64[i].a_un.a_val == BE64 (PROBE_VAL64))
92      {
93	*elfdata = ELFDATA2MSB;
94	return true;
95      }
96
97    if (u->a64[i].a_type == LE64 (PROBE_TYPE)
98	&& u->a64[i].a_un.a_val == LE64 (PROBE_VAL64))
99      {
100	*elfdata = ELFDATA2LSB;
101	return true;
102      }
103
104    return false;
105  }
106
107  inline bool check32 (size_t i)
108  {
109    if (u->a32[i].a_type == BE32 (PROBE_TYPE)
110	&& u->a32[i].a_un.a_val == BE32 (PROBE_VAL32))
111      {
112	*elfdata = ELFDATA2MSB;
113	return true;
114      }
115
116    if (u->a32[i].a_type == LE32 (PROBE_TYPE)
117	&& u->a32[i].a_un.a_val == LE32 (PROBE_VAL32))
118      {
119	*elfdata = ELFDATA2LSB;
120	return true;
121      }
122
123    return false;
124  }
125
126  size_t i;
127  for (i = 0; i < size / sizeof (Elf64_auxv_t); ++i)
128    {
129      if (check64 (i))
130	{
131	  *elfclass = ELFCLASS64;
132	  return true;
133	}
134
135      if (check32 (i))
136	{
137	  *elfclass = ELFCLASS32;
138	  return true;
139	}
140    }
141  for (; i < size / sizeof (Elf64_auxv_t); ++i)
142    if (check32 (i))
143      {
144	*elfclass = ELFCLASS32;
145	return true;
146      }
147
148  return false;
149}
150
151/* This is a Dwfl_Memory_Callback that wraps another memory callback.
152   If the underlying callback cannot fill the data, then this will
153   fall back to fetching data from module files.  */
154
155struct integrated_memory_callback
156{
157  Dwfl_Memory_Callback *memory_callback;
158  void *memory_callback_arg;
159  void *buffer;
160};
161
162static bool
163integrated_memory_callback (Dwfl *dwfl, int ndx,
164			       void **buffer, size_t *buffer_available,
165			       GElf_Addr vaddr,
166			       size_t minread,
167			       void *arg)
168{
169  struct integrated_memory_callback *info = arg;
170
171  if (ndx == -1)
172    {
173      /* Called for cleanup.  */
174      if (info->buffer != NULL)
175	{
176	  /* The last probe buffer came from the underlying callback.
177	     Let it do its cleanup.  */
178	  assert (*buffer == info->buffer); /* XXX */
179	  *buffer = info->buffer;
180	  info->buffer = NULL;
181	  return (*info->memory_callback) (dwfl, ndx, buffer, buffer_available,
182					   vaddr, minread,
183					   info->memory_callback_arg);
184	}
185      *buffer = NULL;
186      *buffer_available = 0;
187      return false;
188    }
189
190  if (*buffer != NULL)
191    /* For a final-read request, we only use the underlying callback.  */
192    return (*info->memory_callback) (dwfl, ndx, buffer, buffer_available,
193				     vaddr, minread, info->memory_callback_arg);
194
195  /* Let the underlying callback try to fill this request.  */
196  if ((*info->memory_callback) (dwfl, ndx, &info->buffer, buffer_available,
197				vaddr, minread, info->memory_callback_arg))
198    {
199      *buffer = info->buffer;
200      return true;
201    }
202
203  /* Now look for module text covering this address.  */
204
205  Dwfl_Module *mod;
206  (void) INTUSE(dwfl_addrsegment) (dwfl, vaddr, &mod);
207  if (mod == NULL)
208    return false;
209
210  Dwarf_Addr bias;
211  Elf_Scn *scn = INTUSE(dwfl_module_address_section) (mod, &vaddr, &bias);
212  if (unlikely (scn == NULL))
213    {
214#if 0 // XXX would have to handle ndx=-1 cleanup calls passed down.
215      /* If we have no sections we can try to fill it from the module file
216	 based on its phdr mappings.  */
217      if (likely (mod->e_type != ET_REL) && mod->main.elf != NULL)
218	return INTUSE(dwfl_elf_phdr_memory_callback)
219	  (dwfl, 0, buffer, buffer_available,
220	   vaddr - mod->main.bias, minread, mod->main.elf);
221#endif
222      return false;
223    }
224
225  Elf_Data *data = elf_rawdata (scn, NULL);
226  if (unlikely (data == NULL))
227    // XXX throw error?
228    return false;
229
230  if (unlikely (data->d_size < vaddr))
231    return false;
232
233  /* Provide as much data as we have.  */
234  void *contents = data->d_buf + vaddr;
235  size_t avail = data->d_size - vaddr;
236  if (unlikely (avail < minread))
237    return false;
238
239  /* If probing for a string, make sure it's terminated.  */
240  if (minread == 0 && unlikely (memchr (contents, '\0', avail) == NULL))
241    return false;
242
243  /* We have it! */
244  *buffer = contents;
245  *buffer_available = avail;
246  return true;
247}
248
249static size_t
250addrsize (uint_fast8_t elfclass)
251{
252  return elfclass * 4;
253}
254
255/* Report a module for each struct link_map in the linked list at r_map
256   in the struct r_debug at R_DEBUG_VADDR.
257
258   For each link_map entry, if an existing module resides at its address,
259   this just modifies that module's name and suggested file name.  If
260   no such module exists, this calls dwfl_report_elf on the l_name string.
261
262   Returns the number of modules found, or -1 for errors.  */
263
264static int
265report_r_debug (uint_fast8_t elfclass, uint_fast8_t elfdata,
266		Dwfl *dwfl, GElf_Addr r_debug_vaddr,
267		Dwfl_Memory_Callback *memory_callback,
268		void *memory_callback_arg)
269{
270  /* Skip r_version, to aligned r_map field.  */
271  GElf_Addr read_vaddr = r_debug_vaddr + addrsize (elfclass);
272
273  void *buffer = NULL;
274  size_t buffer_available = 0;
275  inline int release_buffer (int result)
276  {
277    if (buffer != NULL)
278      (void) (*memory_callback) (dwfl, -1, &buffer, &buffer_available, 0, 0,
279				 memory_callback_arg);
280    return result;
281  }
282
283  GElf_Addr addrs[4];
284  inline bool read_addrs (GElf_Addr vaddr, size_t n)
285  {
286    size_t nb = n * addrsize (elfclass); /* Address words -> bytes to read.  */
287
288    /* Read a new buffer if the old one doesn't cover these words.  */
289    if (buffer == NULL
290	|| vaddr < read_vaddr
291	|| vaddr - read_vaddr + nb > buffer_available)
292      {
293	release_buffer (0);
294
295	read_vaddr = vaddr;
296	int segndx = INTUSE(dwfl_addrsegment) (dwfl, vaddr, NULL);
297	if (unlikely (segndx < 0)
298	    || unlikely (! (*memory_callback) (dwfl, segndx,
299					       &buffer, &buffer_available,
300					       vaddr, nb, memory_callback_arg)))
301	  return true;
302      }
303
304    const union
305    {
306      Elf32_Addr a32[n];
307      Elf64_Addr a64[n];
308    } *in = vaddr - read_vaddr + buffer;
309
310    if (elfclass == ELFCLASS32)
311      {
312	if (elfdata == ELFDATA2MSB)
313	  for (size_t i = 0; i < n; ++i)
314	    addrs[i] = BE32 (in->a32[i]);
315	else
316	  for (size_t i = 0; i < n; ++i)
317	    addrs[i] = LE32 (in->a32[i]);
318      }
319    else
320      {
321	if (elfdata == ELFDATA2MSB)
322	  for (size_t i = 0; i < n; ++i)
323	    addrs[i] = BE64 (in->a64[i]);
324	else
325	  for (size_t i = 0; i < n; ++i)
326	    addrs[i] = LE64 (in->a64[i]);
327      }
328
329    return false;
330  }
331
332  if (unlikely (read_addrs (read_vaddr, 1)))
333    return release_buffer (-1);
334
335  GElf_Addr next = addrs[0];
336
337  Dwfl_Module **lastmodp = &dwfl->modulelist;
338  int result = 0;
339  while (next != 0)
340    {
341      if (read_addrs (next, 4))
342	return release_buffer (-1);
343
344      GElf_Addr l_addr = addrs[0];
345      GElf_Addr l_name = addrs[1];
346      GElf_Addr l_ld = addrs[2];
347      next = addrs[3];
348
349      /* Fetch the string at the l_name address.  */
350      const char *name = NULL;
351      if (buffer != NULL
352	  && read_vaddr <= l_name
353	  && l_name + 1 - read_vaddr < buffer_available
354	  && memchr (l_name - read_vaddr + buffer, '\0',
355		     buffer_available - (l_name - read_vaddr)) != NULL)
356	name = l_name - read_vaddr + buffer;
357      else
358	{
359	  release_buffer (0);
360	  read_vaddr = l_name;
361	  int segndx = INTUSE(dwfl_addrsegment) (dwfl, l_name, NULL);
362	  if (likely (segndx >= 0)
363	      && (*memory_callback) (dwfl, segndx,
364				     &buffer, &buffer_available,
365				     l_name, 0, memory_callback_arg))
366	    name = buffer;
367	}
368
369      if (name != NULL && name[0] == '\0')
370	name = NULL;
371
372      /* If content-sniffing already reported a module covering
373	 the same area, find that existing module to adjust.
374	 The l_ld address is the only one we know for sure
375	 to be within the module's own segments (its .dynamic).  */
376      Dwfl_Module *mod;
377      int segndx = INTUSE(dwfl_addrsegment) (dwfl, l_ld, &mod);
378      if (unlikely (segndx < 0))
379	return release_buffer (-1);
380
381      if (mod != NULL)
382	{
383	  /* We have a module.  We can give it a better name from l_name.  */
384	  if (name != NULL && mod->name[0] == '[')
385	    {
386	      char *newname = strdup (basename (name));
387	      if (newname != NULL)
388		{
389		  free (mod->name);
390		  mod->name = newname;
391		}
392	    }
393
394	  if (name == NULL && mod->name[0] == '/')
395	    name = mod->name;
396
397	  /* If we don't have a file for it already, we can pre-install
398	     the full file name from l_name.  Opening the file by this
399	     name will be the fallback when no build ID match is found.
400	     XXX hook for sysroot */
401	  if (name != NULL
402	      && mod->main.elf == NULL
403	      && mod->main.name == NULL)
404	    mod->main.name = strdup (name);
405	}
406      else if (name != NULL)
407	{
408	  /* We have to find the file's phdrs to compute along with l_addr
409	     what its runtime address boundaries are.  */
410
411	  // XXX hook for sysroot
412	  mod = INTUSE(dwfl_report_elf) (dwfl, basename (name),
413					 name, -1, l_addr);
414	}
415
416      if (mod != NULL)
417	{
418	  ++result;
419
420	  /* Move this module to the end of the list, so that we end
421	     up with a list in the same order as the link_map chain.  */
422	  if (mod->next != NULL)
423	    {
424	      if (*lastmodp != mod)
425		{
426		  lastmodp = &dwfl->modulelist;
427		  while (*lastmodp != mod)
428		    lastmodp = &(*lastmodp)->next;
429		}
430	      *lastmodp = mod->next;
431	      mod->next = NULL;
432	      while (*lastmodp != NULL)
433		lastmodp = &(*lastmodp)->next;
434	      *lastmodp = mod;
435	    }
436
437	  lastmodp = &mod->next;
438	}
439    }
440
441  return release_buffer (result);
442}
443
444static GElf_Addr
445consider_executable (Dwfl_Module *mod, GElf_Addr at_phdr, GElf_Addr at_entry,
446		     uint_fast8_t *elfclass, uint_fast8_t *elfdata,
447		     Dwfl_Memory_Callback *memory_callback,
448		     void *memory_callback_arg)
449{
450  GElf_Ehdr ehdr;
451  if (unlikely (gelf_getehdr (mod->main.elf, &ehdr) == NULL))
452    return 0;
453
454  if (at_entry != 0)
455    {
456      /* If we have an AT_ENTRY value, reject this executable if
457	 its entry point address could not have supplied that.  */
458
459      if (ehdr.e_entry == 0)
460	return 0;
461
462      if (mod->e_type == ET_EXEC)
463	{
464	  if (ehdr.e_entry != at_entry)
465	    return 0;
466	}
467      else
468	{
469	  /* It could be a PIE.  */
470	}
471    }
472
473  // XXX this could be saved in the file cache: phdr vaddr, DT_DEBUG d_val vaddr
474  /* Find the vaddr of the DT_DEBUG's d_ptr.  This is the memory
475     address where &r_debug was written at runtime.  */
476  GElf_Xword align = mod->dwfl->segment_align;
477  GElf_Addr d_val_vaddr = 0;
478  for (uint_fast16_t i = 0; i < ehdr.e_phnum; ++i)
479    {
480      GElf_Phdr phdr_mem;
481      GElf_Phdr *phdr = gelf_getphdr (mod->main.elf, i, &phdr_mem);
482      if (phdr == NULL)
483	break;
484
485      if (phdr->p_align > 1 && (align == 0 || phdr->p_align < align))
486	align = phdr->p_align;
487
488      if (at_phdr != 0
489	  && phdr->p_type == PT_LOAD
490	  && (phdr->p_offset & -align) == (ehdr.e_phoff & -align))
491	{
492	  /* This is the segment that would map the phdrs.
493	     If we have an AT_PHDR value, reject this executable
494	     if its phdr mapping could not have supplied that.  */
495	  if (mod->e_type == ET_EXEC)
496	    {
497	      if (ehdr.e_phoff - phdr->p_offset + phdr->p_vaddr != at_phdr)
498		return 0;
499	    }
500	  else
501	    {
502	      /* It could be a PIE.  If the AT_PHDR value and our
503		 phdr address don't match modulo ALIGN, then this
504		 could not have been the right PIE.  */
505	      if (((ehdr.e_phoff - phdr->p_offset + phdr->p_vaddr) & -align)
506		  != (at_phdr & -align))
507		return 0;
508
509	      /* Calculate the bias applied to the PIE's p_vaddr values.  */
510	      GElf_Addr bias = (at_phdr - (ehdr.e_phoff - phdr->p_offset
511					   + phdr->p_vaddr));
512
513	      /* Final sanity check: if we have an AT_ENTRY value,
514		 reject this PIE unless its biased e_entry matches.  */
515	      if (at_entry != 0 && at_entry != ehdr.e_entry + bias)
516		return 0;
517
518	      /* If we're changing the module's address range,
519		 we've just invalidated the module lookup table.  */
520	      if (bias != mod->main.bias)
521		{
522		  mod->low_addr -= mod->main.bias;
523		  mod->high_addr -= mod->main.bias;
524		  mod->main.bias = bias;
525		  mod->low_addr += bias;
526		  mod->high_addr += bias;
527
528		  free (mod->dwfl->lookup_module);
529		  mod->dwfl->lookup_module = NULL;
530		}
531	    }
532	}
533
534      if (phdr->p_type == PT_DYNAMIC)
535	{
536	  Elf_Data *data = elf_getdata_rawchunk (mod->main.elf, phdr->p_offset,
537						 phdr->p_filesz, ELF_T_DYN);
538	  if (data == NULL)
539	    continue;
540	  const size_t entsize = gelf_fsize (mod->main.elf,
541					     ELF_T_DYN, 1, EV_CURRENT);
542	  const size_t n = data->d_size / entsize;
543	  for (size_t j = 0; j < n; ++j)
544	    {
545	      GElf_Dyn dyn_mem;
546	      GElf_Dyn *dyn = gelf_getdyn (data, j, &dyn_mem);
547	      if (dyn != NULL && dyn->d_tag == DT_DEBUG)
548		{
549		  d_val_vaddr = phdr->p_vaddr + entsize * j + entsize / 2;
550		  break;
551		}
552	    }
553	}
554    }
555
556  if (d_val_vaddr != 0)
557    {
558      /* Now we have the final address from which to read &r_debug.  */
559      d_val_vaddr += mod->main.bias;
560
561      void *buffer = NULL;
562      size_t buffer_available = addrsize (ehdr.e_ident[EI_CLASS]);
563
564      Dwfl_Module *m;
565      int segndx = INTUSE(dwfl_addrsegment) (mod->dwfl, d_val_vaddr, &m);
566      assert (m == mod);
567
568      if ((*memory_callback) (mod->dwfl, segndx,
569			      &buffer, &buffer_available,
570			      d_val_vaddr, buffer_available,
571			      memory_callback_arg))
572	{
573	  const union
574	  {
575	    Elf32_Addr a32;
576	    Elf64_Addr a64;
577	  } *u = buffer;
578
579	  GElf_Addr vaddr;
580	  if (ehdr.e_ident[EI_CLASS] == ELFCLASS32)
581	    vaddr = (ehdr.e_ident[EI_DATA] == ELFDATA2MSB
582		     ? BE32 (u->a32) : LE32 (u->a32));
583	  else
584	    vaddr = (ehdr.e_ident[EI_DATA] == ELFDATA2MSB
585		     ? BE64 (u->a64) : LE64 (u->a64));
586
587	  (*memory_callback) (mod->dwfl, -1, &buffer, &buffer_available, 0, 0,
588			      memory_callback_arg);
589
590
591	  if (*elfclass == ELFCLASSNONE)
592	    *elfclass = ehdr.e_ident[EI_CLASS];
593	  else if (*elfclass != ehdr.e_ident[EI_CLASS])
594	    return 0;
595
596	  if (*elfdata == ELFDATANONE)
597	    *elfdata = ehdr.e_ident[EI_DATA];
598	  else if (*elfdata != ehdr.e_ident[EI_DATA])
599	    return 0;
600
601	  return vaddr;
602	}
603    }
604
605  return 0;
606}
607
608/* Try to find an existing executable module with a DT_DEBUG.  */
609static GElf_Addr
610find_executable (Dwfl *dwfl, GElf_Addr at_phdr, GElf_Addr at_entry,
611		 uint_fast8_t *elfclass, uint_fast8_t *elfdata,
612		 Dwfl_Memory_Callback *memory_callback,
613		 void *memory_callback_arg)
614{
615  for (Dwfl_Module *mod = dwfl->modulelist; mod != NULL; mod = mod->next)
616    if (mod->main.elf != NULL)
617      {
618	GElf_Addr r_debug_vaddr = consider_executable (mod, at_phdr, at_entry,
619						       elfclass, elfdata,
620						       memory_callback,
621						       memory_callback_arg);
622	if (r_debug_vaddr != 0)
623	  return r_debug_vaddr;
624      }
625
626  return 0;
627}
628
629
630int
631dwfl_link_map_report (Dwfl *dwfl, const void *auxv, size_t auxv_size,
632		      Dwfl_Memory_Callback *memory_callback,
633		      void *memory_callback_arg)
634{
635  GElf_Addr r_debug_vaddr = 0;
636
637  uint_fast8_t elfclass = ELFCLASSNONE;
638  uint_fast8_t elfdata = ELFDATANONE;
639  if (likely (auxv != NULL)
640      && likely (auxv_format_probe (auxv, auxv_size, &elfclass, &elfdata)))
641    {
642      GElf_Addr entry = 0;
643      GElf_Addr phdr = 0;
644      GElf_Xword phent = 0;
645      GElf_Xword phnum = 0;
646
647#define AUXV_SCAN(NN, BL) do					\
648	{							\
649	  const Elf##NN##_auxv_t *av = auxv;			\
650	  for (size_t i = 0; i < auxv_size / sizeof av[0]; ++i)	\
651	    {							\
652	      Elf##NN##_Addr val = BL##NN (av[i].a_un.a_val);	\
653	      if (av[i].a_type == BL##NN (AT_ENTRY))		\
654		entry = val;					\
655	      else if (av[i].a_type == BL##NN (AT_PHDR))	\
656		phdr = val;					\
657	      else if (av[i].a_type == BL##NN (AT_PHNUM))	\
658		phnum = val;					\
659	      else if (av[i].a_type == BL##NN (AT_PHENT))	\
660		phent = val;					\
661	      else if (av[i].a_type == BL##NN (AT_PAGESZ))	\
662		{						\
663		  if (val > 1					\
664		      && (dwfl->segment_align == 0		\
665			  || val < dwfl->segment_align))	\
666		    dwfl->segment_align = val;			\
667		}						\
668	    }							\
669	}							\
670      while (0)
671
672      if (elfclass == ELFCLASS32)
673	{
674	  if (elfdata == ELFDATA2MSB)
675	    AUXV_SCAN (32, BE);
676	  else
677	    AUXV_SCAN (32, LE);
678	}
679      else
680	{
681	  if (elfdata == ELFDATA2MSB)
682	    AUXV_SCAN (64, BE);
683	  else
684	    AUXV_SCAN (64, LE);
685	}
686
687      /* If we found the phdr dimensions, search phdrs for PT_DYNAMIC.  */
688      GElf_Addr dyn_vaddr = 0;
689      GElf_Xword dyn_filesz = 0;
690      if (phdr != 0 && phnum != 0)
691	{
692	  Dwfl_Module *phdr_mod;
693	  int phdr_segndx = INTUSE(dwfl_addrsegment) (dwfl, phdr, &phdr_mod);
694	  Elf_Data in =
695	    {
696	      .d_type = ELF_T_PHDR,
697	      .d_version = EV_CURRENT,
698	      .d_size = phnum * phent,
699	      .d_buf = NULL
700	    };
701	  if ((*memory_callback) (dwfl, phdr_segndx, &in.d_buf, &in.d_size,
702				  phdr, phnum * phent, memory_callback_arg))
703	    {
704	      union
705	      {
706		Elf32_Phdr p32;
707		Elf64_Phdr p64;
708		char data[phnum * phent];
709	      } buf;
710	      Elf_Data out =
711		{
712		  .d_type = ELF_T_PHDR,
713		  .d_version = EV_CURRENT,
714		  .d_size = phnum * phent,
715		  .d_buf = &buf
716		};
717	      in.d_size = out.d_size;
718	      if (likely ((elfclass == ELFCLASS32
719			   ? elf32_xlatetom : elf64_xlatetom)
720			  (&out, &in, elfdata) != NULL))
721		{
722		  /* We are looking for PT_DYNAMIC.  */
723		  const union
724		  {
725		    Elf32_Phdr p32[phnum];
726		    Elf64_Phdr p64[phnum];
727		  } *u = (void *) &buf;
728		  if (elfclass == ELFCLASS32)
729		    {
730		      for (size_t i = 0; i < phnum; ++i)
731			if (u->p32[i].p_type == PT_DYNAMIC)
732			  {
733			    dyn_vaddr = u->p32[i].p_vaddr;
734			    dyn_filesz = u->p32[i].p_filesz;
735			    break;
736			  }
737		    }
738		  else
739		    {
740		      for (size_t i = 0; i < phnum; ++i)
741			if (u->p64[i].p_type == PT_DYNAMIC)
742			  {
743			    dyn_vaddr = u->p64[i].p_vaddr;
744			    dyn_filesz = u->p64[i].p_filesz;
745			    break;
746			  }
747		    }
748		}
749
750	      (*memory_callback) (dwfl, -1, &in.d_buf, &in.d_size, 0, 0,
751				  memory_callback_arg);
752	    }
753	  else
754	    /* We could not read the executable's phdrs from the
755	       memory image.  If we have a presupplied executable,
756	       we can still use the AT_PHDR and AT_ENTRY values to
757	       verify it, and to adjust its bias if it's a PIE.
758
759	       If there was an ET_EXEC module presupplied that contains
760	       the AT_PHDR address, then we only consider that one.
761	       We'll either accept it if its phdr location and e_entry
762	       make sense or reject it if they don't.  If there is no
763	       presupplied ET_EXEC, then look for a presupplied module,
764	       which might be a PIE (ET_DYN) that needs its bias adjusted.  */
765	    r_debug_vaddr = ((phdr_mod == NULL
766			      || phdr_mod->main.elf == NULL
767			      || phdr_mod->e_type != ET_EXEC)
768			     ? find_executable (dwfl, phdr, entry,
769						&elfclass, &elfdata,
770						memory_callback,
771						memory_callback_arg)
772			     : consider_executable (phdr_mod, phdr, entry,
773						    &elfclass, &elfdata,
774						    memory_callback,
775						    memory_callback_arg));
776	}
777
778      /* If we found PT_DYNAMIC, search it for DT_DEBUG.  */
779      if (dyn_filesz != 0)
780	{
781	  Elf_Data in =
782	    {
783	      .d_type = ELF_T_DYN,
784	      .d_version = EV_CURRENT,
785	      .d_size = dyn_filesz,
786	      .d_buf = NULL
787	    };
788	  int dyn_segndx = dwfl_addrsegment (dwfl, dyn_vaddr, NULL);
789	  if ((*memory_callback) (dwfl, dyn_segndx, &in.d_buf, &in.d_size,
790				  dyn_vaddr, dyn_filesz, memory_callback_arg))
791	    {
792	      union
793	      {
794		Elf32_Dyn d32;
795		Elf64_Dyn d64;
796		char data[dyn_filesz];
797	      } buf;
798	      Elf_Data out =
799		{
800		  .d_type = ELF_T_DYN,
801		  .d_version = EV_CURRENT,
802		  .d_size = dyn_filesz,
803		  .d_buf = &buf
804		};
805	      in.d_size = out.d_size;
806	      if (likely ((elfclass == ELFCLASS32
807			   ? elf32_xlatetom : elf64_xlatetom)
808			  (&out, &in, elfdata) != NULL))
809		{
810		  /* We are looking for PT_DYNAMIC.  */
811		  const union
812		  {
813		    Elf32_Dyn d32[dyn_filesz / sizeof (Elf32_Dyn)];
814		    Elf64_Dyn d64[dyn_filesz / sizeof (Elf64_Dyn)];
815		  } *u = (void *) &buf;
816		  if (elfclass == ELFCLASS32)
817		    {
818		      size_t n = dyn_filesz / sizeof (Elf32_Dyn);
819		      for (size_t i = 0; i < n; ++i)
820			if (u->d32[i].d_tag == DT_DEBUG)
821			  {
822			    r_debug_vaddr = u->d32[i].d_un.d_val;
823			    break;
824			  }
825		    }
826		  else
827		    {
828		      size_t n = dyn_filesz / sizeof (Elf64_Dyn);
829		      for (size_t i = 0; i < n; ++i)
830			if (u->d64[i].d_tag == DT_DEBUG)
831			  {
832			    r_debug_vaddr = u->d64[i].d_un.d_val;
833			    break;
834			  }
835		    }
836		}
837
838	      (*memory_callback) (dwfl, -1, &in.d_buf, &in.d_size, 0, 0,
839				  memory_callback_arg);
840	    }
841	}
842    }
843  else
844    /* We have to look for a presupplied executable file to determine
845       the vaddr of its dynamic section and DT_DEBUG therein.  */
846    r_debug_vaddr = find_executable (dwfl, 0, 0, &elfclass, &elfdata,
847				     memory_callback, memory_callback_arg);
848
849  if (r_debug_vaddr == 0)
850    return 0;
851
852  /* For following pointers from struct link_map, we will use an
853     integrated memory access callback that can consult module text
854     elided from the core file.  This is necessary when the l_name
855     pointer for the dynamic linker's own entry is a pointer into the
856     executable's .interp section.  */
857  struct integrated_memory_callback mcb =
858    {
859      .memory_callback = memory_callback,
860      .memory_callback_arg = memory_callback_arg
861    };
862
863  /* Now we can follow the dynamic linker's library list.  */
864  return report_r_debug (elfclass, elfdata, dwfl, r_debug_vaddr,
865			 &integrated_memory_callback, &mcb);
866}
867INTDEF (dwfl_link_map_report)
868