1/* libFLAC - Free Lossless Audio Codec library
2 * Copyright (C) 2000,2001,2002,2003,2004,2005,2006,2007  Josh Coalson
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * - Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * - Neither the name of the Xiph.org Foundation nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#if HAVE_CONFIG_H
33#  include <config.h>
34#endif
35
36#include <math.h>
37#include <string.h>
38#include "private/bitmath.h"
39#include "private/fixed.h"
40#include "FLAC/assert.h"
41
42#ifndef M_LN2
43/* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
44#define M_LN2 0.69314718055994530942
45#endif
46
47#ifdef min
48#undef min
49#endif
50#define min(x,y) ((x) < (y)? (x) : (y))
51
52#ifdef local_abs
53#undef local_abs
54#endif
55#define local_abs(x) ((unsigned)((x)<0? -(x) : (x)))
56
57#ifdef FLAC__INTEGER_ONLY_LIBRARY
58/* rbps stands for residual bits per sample
59 *
60 *             (ln(2) * err)
61 * rbps = log  (-----------)
62 *           2 (     n     )
63 */
64static FLAC__fixedpoint local__compute_rbps_integerized(FLAC__uint32 err, FLAC__uint32 n)
65{
66	FLAC__uint32 rbps;
67	unsigned bits; /* the number of bits required to represent a number */
68	int fracbits; /* the number of bits of rbps that comprise the fractional part */
69
70	FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint));
71	FLAC__ASSERT(err > 0);
72	FLAC__ASSERT(n > 0);
73
74	FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE);
75	if(err <= n)
76		return 0;
77	/*
78	 * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
79	 * These allow us later to know we won't lose too much precision in the
80	 * fixed-point division (err<<fracbits)/n.
81	 */
82
83	fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2(err)+1);
84
85	err <<= fracbits;
86	err /= n;
87	/* err now holds err/n with fracbits fractional bits */
88
89	/*
90	 * Whittle err down to 16 bits max.  16 significant bits is enough for
91	 * our purposes.
92	 */
93	FLAC__ASSERT(err > 0);
94	bits = FLAC__bitmath_ilog2(err)+1;
95	if(bits > 16) {
96		err >>= (bits-16);
97		fracbits -= (bits-16);
98	}
99	rbps = (FLAC__uint32)err;
100
101	/* Multiply by fixed-point version of ln(2), with 16 fractional bits */
102	rbps *= FLAC__FP_LN2;
103	fracbits += 16;
104	FLAC__ASSERT(fracbits >= 0);
105
106	/* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
107	{
108		const int f = fracbits & 3;
109		if(f) {
110			rbps >>= f;
111			fracbits -= f;
112		}
113	}
114
115	rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1));
116
117	if(rbps == 0)
118		return 0;
119
120	/*
121	 * The return value must have 16 fractional bits.  Since the whole part
122	 * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
123	 * must be >= -3, these assertion allows us to be able to shift rbps
124	 * left if necessary to get 16 fracbits without losing any bits of the
125	 * whole part of rbps.
126	 *
127	 * There is a slight chance due to accumulated error that the whole part
128	 * will require 6 bits, so we use 6 in the assertion.  Really though as
129	 * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
130	 */
131	FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6);
132	FLAC__ASSERT(fracbits >= -3);
133
134	/* now shift the decimal point into place */
135	if(fracbits < 16)
136		return rbps << (16-fracbits);
137	else if(fracbits > 16)
138		return rbps >> (fracbits-16);
139	else
140		return rbps;
141}
142
143static FLAC__fixedpoint local__compute_rbps_wide_integerized(FLAC__uint64 err, FLAC__uint32 n)
144{
145	FLAC__uint32 rbps;
146	unsigned bits; /* the number of bits required to represent a number */
147	int fracbits; /* the number of bits of rbps that comprise the fractional part */
148
149	FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint));
150	FLAC__ASSERT(err > 0);
151	FLAC__ASSERT(n > 0);
152
153	FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE);
154	if(err <= n)
155		return 0;
156	/*
157	 * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
158	 * These allow us later to know we won't lose too much precision in the
159	 * fixed-point division (err<<fracbits)/n.
160	 */
161
162	fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2_wide(err)+1);
163
164	err <<= fracbits;
165	err /= n;
166	/* err now holds err/n with fracbits fractional bits */
167
168	/*
169	 * Whittle err down to 16 bits max.  16 significant bits is enough for
170	 * our purposes.
171	 */
172	FLAC__ASSERT(err > 0);
173	bits = FLAC__bitmath_ilog2_wide(err)+1;
174	if(bits > 16) {
175		err >>= (bits-16);
176		fracbits -= (bits-16);
177	}
178	rbps = (FLAC__uint32)err;
179
180	/* Multiply by fixed-point version of ln(2), with 16 fractional bits */
181	rbps *= FLAC__FP_LN2;
182	fracbits += 16;
183	FLAC__ASSERT(fracbits >= 0);
184
185	/* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
186	{
187		const int f = fracbits & 3;
188		if(f) {
189			rbps >>= f;
190			fracbits -= f;
191		}
192	}
193
194	rbps = FLAC__fixedpoint_log2(rbps, fracbits, (unsigned)(-1));
195
196	if(rbps == 0)
197		return 0;
198
199	/*
200	 * The return value must have 16 fractional bits.  Since the whole part
201	 * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
202	 * must be >= -3, these assertion allows us to be able to shift rbps
203	 * left if necessary to get 16 fracbits without losing any bits of the
204	 * whole part of rbps.
205	 *
206	 * There is a slight chance due to accumulated error that the whole part
207	 * will require 6 bits, so we use 6 in the assertion.  Really though as
208	 * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
209	 */
210	FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6);
211	FLAC__ASSERT(fracbits >= -3);
212
213	/* now shift the decimal point into place */
214	if(fracbits < 16)
215		return rbps << (16-fracbits);
216	else if(fracbits > 16)
217		return rbps >> (fracbits-16);
218	else
219		return rbps;
220}
221#endif
222
223#ifndef FLAC__INTEGER_ONLY_LIBRARY
224unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
225#else
226unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
227#endif
228{
229	FLAC__int32 last_error_0 = data[-1];
230	FLAC__int32 last_error_1 = data[-1] - data[-2];
231	FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
232	FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
233	FLAC__int32 error, save;
234	FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
235	unsigned i, order;
236
237	for(i = 0; i < data_len; i++) {
238		error  = data[i]     ; total_error_0 += local_abs(error);                      save = error;
239		error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
240		error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
241		error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
242		error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
243	}
244
245	if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
246		order = 0;
247	else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
248		order = 1;
249	else if(total_error_2 < min(total_error_3, total_error_4))
250		order = 2;
251	else if(total_error_3 < total_error_4)
252		order = 3;
253	else
254		order = 4;
255
256	/* Estimate the expected number of bits per residual signal sample. */
257	/* 'total_error*' is linearly related to the variance of the residual */
258	/* signal, so we use it directly to compute E(|x|) */
259	FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
260	FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
261	FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
262	FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
263	FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
264#ifndef FLAC__INTEGER_ONLY_LIBRARY
265	residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
266	residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
267	residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
268	residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
269	residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
270#else
271	residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_integerized(total_error_0, data_len) : 0;
272	residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_integerized(total_error_1, data_len) : 0;
273	residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_integerized(total_error_2, data_len) : 0;
274	residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_integerized(total_error_3, data_len) : 0;
275	residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_integerized(total_error_4, data_len) : 0;
276#endif
277
278	return order;
279}
280
281#ifndef FLAC__INTEGER_ONLY_LIBRARY
282unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
283#else
284unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
285#endif
286{
287	FLAC__int32 last_error_0 = data[-1];
288	FLAC__int32 last_error_1 = data[-1] - data[-2];
289	FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
290	FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
291	FLAC__int32 error, save;
292	/* total_error_* are 64-bits to avoid overflow when encoding
293	 * erratic signals when the bits-per-sample and blocksize are
294	 * large.
295	 */
296	FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
297	unsigned i, order;
298
299	for(i = 0; i < data_len; i++) {
300		error  = data[i]     ; total_error_0 += local_abs(error);                      save = error;
301		error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
302		error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
303		error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
304		error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
305	}
306
307	if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
308		order = 0;
309	else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
310		order = 1;
311	else if(total_error_2 < min(total_error_3, total_error_4))
312		order = 2;
313	else if(total_error_3 < total_error_4)
314		order = 3;
315	else
316		order = 4;
317
318	/* Estimate the expected number of bits per residual signal sample. */
319	/* 'total_error*' is linearly related to the variance of the residual */
320	/* signal, so we use it directly to compute E(|x|) */
321	FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
322	FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
323	FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
324	FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
325	FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
326#ifndef FLAC__INTEGER_ONLY_LIBRARY
327#if defined _MSC_VER || defined __MINGW32__
328	/* with MSVC you have to spoon feed it the casting */
329	residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
330	residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
331	residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
332	residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
333	residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)(FLAC__int64)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
334#else
335	residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0);
336	residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0);
337	residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0);
338	residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0);
339	residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0);
340#endif
341#else
342	residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_wide_integerized(total_error_0, data_len) : 0;
343	residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_wide_integerized(total_error_1, data_len) : 0;
344	residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_wide_integerized(total_error_2, data_len) : 0;
345	residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_wide_integerized(total_error_3, data_len) : 0;
346	residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_wide_integerized(total_error_4, data_len) : 0;
347#endif
348
349	return order;
350}
351
352void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, unsigned order, FLAC__int32 residual[])
353{
354	const int idata_len = (int)data_len;
355	int i;
356
357	switch(order) {
358		case 0:
359			FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0]));
360			memcpy(residual, data, sizeof(residual[0])*data_len);
361			break;
362		case 1:
363			for(i = 0; i < idata_len; i++)
364				residual[i] = data[i] - data[i-1];
365			break;
366		case 2:
367			for(i = 0; i < idata_len; i++)
368#if 1 /* OPT: may be faster with some compilers on some systems */
369				residual[i] = data[i] - (data[i-1] << 1) + data[i-2];
370#else
371				residual[i] = data[i] - 2*data[i-1] + data[i-2];
372#endif
373			break;
374		case 3:
375			for(i = 0; i < idata_len; i++)
376#if 1 /* OPT: may be faster with some compilers on some systems */
377				residual[i] = data[i] - (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) - data[i-3];
378#else
379				residual[i] = data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3];
380#endif
381			break;
382		case 4:
383			for(i = 0; i < idata_len; i++)
384#if 1 /* OPT: may be faster with some compilers on some systems */
385				residual[i] = data[i] - ((data[i-1]+data[i-3])<<2) + ((data[i-2]<<2) + (data[i-2]<<1)) + data[i-4];
386#else
387				residual[i] = data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4];
388#endif
389			break;
390		default:
391			FLAC__ASSERT(0);
392	}
393}
394
395void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len, unsigned order, FLAC__int32 data[])
396{
397	int i, idata_len = (int)data_len;
398
399	switch(order) {
400		case 0:
401			FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0]));
402			memcpy(data, residual, sizeof(residual[0])*data_len);
403			break;
404		case 1:
405			for(i = 0; i < idata_len; i++)
406				data[i] = residual[i] + data[i-1];
407			break;
408		case 2:
409			for(i = 0; i < idata_len; i++)
410#if 1 /* OPT: may be faster with some compilers on some systems */
411				data[i] = residual[i] + (data[i-1]<<1) - data[i-2];
412#else
413				data[i] = residual[i] + 2*data[i-1] - data[i-2];
414#endif
415			break;
416		case 3:
417			for(i = 0; i < idata_len; i++)
418#if 1 /* OPT: may be faster with some compilers on some systems */
419				data[i] = residual[i] + (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) + data[i-3];
420#else
421				data[i] = residual[i] + 3*data[i-1] - 3*data[i-2] + data[i-3];
422#endif
423			break;
424		case 4:
425			for(i = 0; i < idata_len; i++)
426#if 1 /* OPT: may be faster with some compilers on some systems */
427				data[i] = residual[i] + ((data[i-1]+data[i-3])<<2) - ((data[i-2]<<2) + (data[i-2]<<1)) - data[i-4];
428#else
429				data[i] = residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4];
430#endif
431			break;
432		default:
433			FLAC__ASSERT(0);
434	}
435}
436