1/***************************************************************************/
2/*                                                                         */
3/*  ftgrays.c                                                              */
4/*                                                                         */
5/*    A new `perfect' anti-aliasing renderer (body).                       */
6/*                                                                         */
7/*  Copyright 2000-2003, 2005-2012 by                                      */
8/*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
9/*                                                                         */
10/*  This file is part of the FreeType project, and may only be used,       */
11/*  modified, and distributed under the terms of the FreeType project      */
12/*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
13/*  this file you indicate that you have read the license and              */
14/*  understand and accept it fully.                                        */
15/*                                                                         */
16/***************************************************************************/
17
18  /*************************************************************************/
19  /*                                                                       */
20  /* This file can be compiled without the rest of the FreeType engine, by */
21  /* defining the _STANDALONE_ macro when compiling it.  You also need to  */
22  /* put the files `ftgrays.h' and `ftimage.h' into the current            */
23  /* compilation directory.  Typically, you could do something like        */
24  /*                                                                       */
25  /* - copy `src/smooth/ftgrays.c' (this file) to your current directory   */
26  /*                                                                       */
27  /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
28  /*   same directory                                                      */
29  /*                                                                       */
30  /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in        */
31  /*                                                                       */
32  /*     cc -c -D_STANDALONE_ ftgrays.c                                    */
33  /*                                                                       */
34  /* The renderer can be initialized with a call to                        */
35  /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated  */
36  /* with a call to `ft_gray_raster.raster_render'.                        */
37  /*                                                                       */
38  /* See the comments and documentation in the file `ftimage.h' for more   */
39  /* details on how the raster works.                                      */
40  /*                                                                       */
41  /*************************************************************************/
42
43  /*************************************************************************/
44  /*                                                                       */
45  /* This is a new anti-aliasing scan-converter for FreeType 2.  The       */
46  /* algorithm used here is _very_ different from the one in the standard  */
47  /* `ftraster' module.  Actually, `ftgrays' computes the _exact_          */
48  /* coverage of the outline on each pixel cell.                           */
49  /*                                                                       */
50  /* It is based on ideas that I initially found in Raph Levien's          */
51  /* excellent LibArt graphics library (see http://www.levien.com/libart   */
52  /* for more information, though the web pages do not tell anything       */
53  /* about the renderer; you'll have to dive into the source code to       */
54  /* understand how it works).                                             */
55  /*                                                                       */
56  /* Note, however, that this is a _very_ different implementation         */
57  /* compared to Raph's.  Coverage information is stored in a very         */
58  /* different way, and I don't use sorted vector paths.  Also, it doesn't */
59  /* use floating point values.                                            */
60  /*                                                                       */
61  /* This renderer has the following advantages:                           */
62  /*                                                                       */
63  /* - It doesn't need an intermediate bitmap.  Instead, one can supply a  */
64  /*   callback function that will be called by the renderer to draw gray  */
65  /*   spans on any target surface.  You can thus do direct composition on */
66  /*   any kind of bitmap, provided that you give the renderer the right   */
67  /*   callback.                                                           */
68  /*                                                                       */
69  /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on   */
70  /*   each pixel cell.                                                    */
71  /*                                                                       */
72  /* - It performs a single pass on the outline (the `standard' FT2        */
73  /*   renderer makes two passes).                                         */
74  /*                                                                       */
75  /* - It can easily be modified to render to _any_ number of gray levels  */
76  /*   cheaply.                                                            */
77  /*                                                                       */
78  /* - For small (< 20) pixel sizes, it is faster than the standard        */
79  /*   renderer.                                                           */
80  /*                                                                       */
81  /*************************************************************************/
82
83
84  /*************************************************************************/
85  /*                                                                       */
86  /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
87  /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
88  /* messages during execution.                                            */
89  /*                                                                       */
90#undef  FT_COMPONENT
91#define FT_COMPONENT  trace_smooth
92
93
94#ifdef _STANDALONE_
95
96
97  /* define this to dump debugging information */
98/* #define FT_DEBUG_LEVEL_TRACE */
99
100
101#ifdef FT_DEBUG_LEVEL_TRACE
102#include <stdio.h>
103#include <stdarg.h>
104#endif
105
106#include <stddef.h>
107#include <string.h>
108#include <setjmp.h>
109#include <limits.h>
110#define FT_UINT_MAX  UINT_MAX
111#define FT_INT_MAX   INT_MAX
112
113#define ft_memset   memset
114
115#define ft_setjmp   setjmp
116#define ft_longjmp  longjmp
117#define ft_jmp_buf  jmp_buf
118
119typedef ptrdiff_t  FT_PtrDist;
120
121
122#define ErrRaster_Invalid_Mode      -2
123#define ErrRaster_Invalid_Outline   -1
124#define ErrRaster_Invalid_Argument  -3
125#define ErrRaster_Memory_Overflow   -4
126
127#define FT_BEGIN_HEADER
128#define FT_END_HEADER
129
130#include "ftimage.h"
131#include "ftgrays.h"
132
133
134  /* This macro is used to indicate that a function parameter is unused. */
135  /* Its purpose is simply to reduce compiler warnings.  Note also that  */
136  /* simply defining it as `(void)x' doesn't avoid warnings with certain */
137  /* ANSI compilers (e.g. LCC).                                          */
138#define FT_UNUSED( x )  (x) = (x)
139
140
141  /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
142
143#ifdef FT_DEBUG_LEVEL_TRACE
144
145  void
146  FT_Message( const char*  fmt,
147              ... )
148  {
149    va_list  ap;
150
151
152    va_start( ap, fmt );
153    vfprintf( stderr, fmt, ap );
154    va_end( ap );
155  }
156
157  /* we don't handle tracing levels in stand-alone mode; */
158#ifndef FT_TRACE5
159#define FT_TRACE5( varformat )  FT_Message varformat
160#endif
161#ifndef FT_TRACE7
162#define FT_TRACE7( varformat )  FT_Message varformat
163#endif
164#ifndef FT_ERROR
165#define FT_ERROR( varformat )   FT_Message varformat
166#endif
167
168#else /* !FT_DEBUG_LEVEL_TRACE */
169
170#define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
171#define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
172#define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
173
174#endif /* !FT_DEBUG_LEVEL_TRACE */
175
176
177#define FT_DEFINE_OUTLINE_FUNCS( class_,               \
178                                 move_to_, line_to_,   \
179                                 conic_to_, cubic_to_, \
180                                 shift_, delta_ )      \
181          static const FT_Outline_Funcs class_ =       \
182          {                                            \
183            move_to_,                                  \
184            line_to_,                                  \
185            conic_to_,                                 \
186            cubic_to_,                                 \
187            shift_,                                    \
188            delta_                                     \
189         };
190
191#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
192                                raster_new_, raster_reset_,       \
193                                raster_set_mode_, raster_render_, \
194                                raster_done_ )                    \
195          const FT_Raster_Funcs class_ =                          \
196          {                                                       \
197            glyph_format_,                                        \
198            raster_new_,                                          \
199            raster_reset_,                                        \
200            raster_set_mode_,                                     \
201            raster_render_,                                       \
202            raster_done_                                          \
203         };
204
205#else /* !_STANDALONE_ */
206
207
208#include <ft2build.h>
209#include "ftgrays.h"
210#include FT_INTERNAL_OBJECTS_H
211#include FT_INTERNAL_DEBUG_H
212#include FT_OUTLINE_H
213
214#include "ftsmerrs.h"
215
216#include "ftspic.h"
217
218#define ErrRaster_Invalid_Mode      Smooth_Err_Cannot_Render_Glyph
219#define ErrRaster_Invalid_Outline   Smooth_Err_Invalid_Outline
220#define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
221#define ErrRaster_Invalid_Argument  Smooth_Err_Invalid_Argument
222
223#endif /* !_STANDALONE_ */
224
225#ifndef FT_MEM_SET
226#define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
227#endif
228
229#ifndef FT_MEM_ZERO
230#define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
231#endif
232
233  /* as usual, for the speed hungry :-) */
234
235#undef RAS_ARG
236#undef RAS_ARG_
237#undef RAS_VAR
238#undef RAS_VAR_
239
240#ifndef FT_STATIC_RASTER
241
242#define RAS_ARG   gray_PWorker  worker
243#define RAS_ARG_  gray_PWorker  worker,
244
245#define RAS_VAR   worker
246#define RAS_VAR_  worker,
247
248#else /* FT_STATIC_RASTER */
249
250#define RAS_ARG   /* empty */
251#define RAS_ARG_  /* empty */
252#define RAS_VAR   /* empty */
253#define RAS_VAR_  /* empty */
254
255#endif /* FT_STATIC_RASTER */
256
257
258  /* must be at least 6 bits! */
259#define PIXEL_BITS  8
260
261#undef FLOOR
262#undef CEILING
263#undef TRUNC
264#undef SCALED
265
266#define ONE_PIXEL       ( 1L << PIXEL_BITS )
267#define PIXEL_MASK      ( -1L << PIXEL_BITS )
268#define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
269#define SUBPIXELS( x )  ( (TPos)(x) << PIXEL_BITS )
270#define FLOOR( x )      ( (x) & -ONE_PIXEL )
271#define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
272#define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
273
274#if PIXEL_BITS >= 6
275#define UPSCALE( x )    ( (x) << ( PIXEL_BITS - 6 ) )
276#define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
277#else
278#define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
279#define DOWNSCALE( x )  ( (x) << ( 6 - PIXEL_BITS ) )
280#endif
281
282
283  /*************************************************************************/
284  /*                                                                       */
285  /*   TYPE DEFINITIONS                                                    */
286  /*                                                                       */
287
288  /* don't change the following types to FT_Int or FT_Pos, since we might */
289  /* need to define them to "float" or "double" when experimenting with   */
290  /* new algorithms                                                       */
291
292  typedef long  TCoord;   /* integer scanline/pixel coordinate */
293  typedef long  TPos;     /* sub-pixel coordinate              */
294
295  /* determine the type used to store cell areas.  This normally takes at */
296  /* least PIXEL_BITS*2 + 1 bits.  On 16-bit systems, we need to use      */
297  /* `long' instead of `int', otherwise bad things happen                 */
298
299#if PIXEL_BITS <= 7
300
301  typedef int  TArea;
302
303#else /* PIXEL_BITS >= 8 */
304
305  /* approximately determine the size of integers using an ANSI-C header */
306#if FT_UINT_MAX == 0xFFFFU
307  typedef long  TArea;
308#else
309  typedef int   TArea;
310#endif
311
312#endif /* PIXEL_BITS >= 8 */
313
314
315  /* maximal number of gray spans in a call to the span callback */
316#define FT_MAX_GRAY_SPANS  32
317
318
319  typedef struct TCell_*  PCell;
320
321  typedef struct  TCell_
322  {
323    TPos    x;     /* same with gray_TWorker.ex    */
324    TCoord  cover; /* same with gray_TWorker.cover */
325    TArea   area;
326    PCell   next;
327
328  } TCell;
329
330
331  typedef struct  gray_TWorker_
332  {
333    TCoord  ex, ey;
334    TPos    min_ex, max_ex;
335    TPos    min_ey, max_ey;
336    TPos    count_ex, count_ey;
337
338    TArea   area;
339    TCoord  cover;
340    int     invalid;
341
342    PCell       cells;
343    FT_PtrDist  max_cells;
344    FT_PtrDist  num_cells;
345
346    TCoord  cx, cy;
347    TPos    x,  y;
348
349    TPos    last_ey;
350
351    FT_Vector   bez_stack[32 * 3 + 1];
352    int         lev_stack[32];
353
354    FT_Outline  outline;
355    FT_Bitmap   target;
356    FT_BBox     clip_box;
357
358    FT_Span     gray_spans[FT_MAX_GRAY_SPANS];
359    int         num_gray_spans;
360
361    FT_Raster_Span_Func  render_span;
362    void*                render_span_data;
363    int                  span_y;
364
365    int  band_size;
366    int  band_shoot;
367
368    ft_jmp_buf  jump_buffer;
369
370    void*       buffer;
371    long        buffer_size;
372
373    PCell*     ycells;
374    TPos       ycount;
375
376  } gray_TWorker, *gray_PWorker;
377
378
379#ifndef FT_STATIC_RASTER
380#define ras  (*worker)
381#else
382  static gray_TWorker  ras;
383#endif
384
385
386  typedef struct gray_TRaster_
387  {
388    void*         buffer;
389    long          buffer_size;
390    int           band_size;
391    void*         memory;
392    gray_PWorker  worker;
393
394  } gray_TRaster, *gray_PRaster;
395
396
397
398  /*************************************************************************/
399  /*                                                                       */
400  /* Initialize the cells table.                                           */
401  /*                                                                       */
402  static void
403  gray_init_cells( RAS_ARG_ void*  buffer,
404                   long            byte_size )
405  {
406    ras.buffer      = buffer;
407    ras.buffer_size = byte_size;
408
409    ras.ycells      = (PCell*) buffer;
410    ras.cells       = NULL;
411    ras.max_cells   = 0;
412    ras.num_cells   = 0;
413    ras.area        = 0;
414    ras.cover       = 0;
415    ras.invalid     = 1;
416  }
417
418
419  /*************************************************************************/
420  /*                                                                       */
421  /* Compute the outline bounding box.                                     */
422  /*                                                                       */
423  static void
424  gray_compute_cbox( RAS_ARG )
425  {
426    FT_Outline*  outline = &ras.outline;
427    FT_Vector*   vec     = outline->points;
428    FT_Vector*   limit   = vec + outline->n_points;
429
430
431    if ( outline->n_points <= 0 )
432    {
433      ras.min_ex = ras.max_ex = 0;
434      ras.min_ey = ras.max_ey = 0;
435      return;
436    }
437
438    ras.min_ex = ras.max_ex = vec->x;
439    ras.min_ey = ras.max_ey = vec->y;
440
441    vec++;
442
443    for ( ; vec < limit; vec++ )
444    {
445      TPos  x = vec->x;
446      TPos  y = vec->y;
447
448
449      if ( x < ras.min_ex ) ras.min_ex = x;
450      if ( x > ras.max_ex ) ras.max_ex = x;
451      if ( y < ras.min_ey ) ras.min_ey = y;
452      if ( y > ras.max_ey ) ras.max_ey = y;
453    }
454
455    /* truncate the bounding box to integer pixels */
456    ras.min_ex = ras.min_ex >> 6;
457    ras.min_ey = ras.min_ey >> 6;
458    ras.max_ex = ( ras.max_ex + 63 ) >> 6;
459    ras.max_ey = ( ras.max_ey + 63 ) >> 6;
460  }
461
462
463  /*************************************************************************/
464  /*                                                                       */
465  /* Record the current cell in the table.                                 */
466  /*                                                                       */
467  static PCell
468  gray_find_cell( RAS_ARG )
469  {
470    PCell  *pcell, cell;
471    TPos    x = ras.ex;
472
473
474    if ( x > ras.count_ex )
475      x = ras.count_ex;
476
477    pcell = &ras.ycells[ras.ey];
478    for (;;)
479    {
480      cell = *pcell;
481      if ( cell == NULL || cell->x > x )
482        break;
483
484      if ( cell->x == x )
485        goto Exit;
486
487      pcell = &cell->next;
488    }
489
490    if ( ras.num_cells >= ras.max_cells )
491      ft_longjmp( ras.jump_buffer, 1 );
492
493    cell        = ras.cells + ras.num_cells++;
494    cell->x     = x;
495    cell->area  = 0;
496    cell->cover = 0;
497
498    cell->next  = *pcell;
499    *pcell      = cell;
500
501  Exit:
502    return cell;
503  }
504
505
506  static void
507  gray_record_cell( RAS_ARG )
508  {
509    if ( !ras.invalid && ( ras.area | ras.cover ) )
510    {
511      PCell  cell = gray_find_cell( RAS_VAR );
512
513
514      cell->area  += ras.area;
515      cell->cover += ras.cover;
516    }
517  }
518
519
520  /*************************************************************************/
521  /*                                                                       */
522  /* Set the current cell to a new position.                               */
523  /*                                                                       */
524  static void
525  gray_set_cell( RAS_ARG_ TCoord  ex,
526                          TCoord  ey )
527  {
528    /* Move the cell pointer to a new position.  We set the `invalid'      */
529    /* flag to indicate that the cell isn't part of those we're interested */
530    /* in during the render phase.  This means that:                       */
531    /*                                                                     */
532    /* . the new vertical position must be within min_ey..max_ey-1.        */
533    /* . the new horizontal position must be strictly less than max_ex     */
534    /*                                                                     */
535    /* Note that if a cell is to the left of the clipping region, it is    */
536    /* actually set to the (min_ex-1) horizontal position.                 */
537
538    /* All cells that are on the left of the clipping region go to the */
539    /* min_ex - 1 horizontal position.                                 */
540    ey -= ras.min_ey;
541
542    if ( ex > ras.max_ex )
543      ex = ras.max_ex;
544
545    ex -= ras.min_ex;
546    if ( ex < 0 )
547      ex = -1;
548
549    /* are we moving to a different cell ? */
550    if ( ex != ras.ex || ey != ras.ey )
551    {
552      /* record the current one if it is valid */
553      if ( !ras.invalid )
554        gray_record_cell( RAS_VAR );
555
556      ras.area  = 0;
557      ras.cover = 0;
558    }
559
560    ras.ex      = ex;
561    ras.ey      = ey;
562    ras.invalid = ( (unsigned)ey >= (unsigned)ras.count_ey ||
563                              ex >= ras.count_ex           );
564  }
565
566
567  /*************************************************************************/
568  /*                                                                       */
569  /* Start a new contour at a given cell.                                  */
570  /*                                                                       */
571  static void
572  gray_start_cell( RAS_ARG_ TCoord  ex,
573                            TCoord  ey )
574  {
575    if ( ex > ras.max_ex )
576      ex = (TCoord)( ras.max_ex );
577
578    if ( ex < ras.min_ex )
579      ex = (TCoord)( ras.min_ex - 1 );
580
581    ras.area    = 0;
582    ras.cover   = 0;
583    ras.ex      = ex - ras.min_ex;
584    ras.ey      = ey - ras.min_ey;
585    ras.last_ey = SUBPIXELS( ey );
586    ras.invalid = 0;
587
588    gray_set_cell( RAS_VAR_ ex, ey );
589  }
590
591
592  /*************************************************************************/
593  /*                                                                       */
594  /* Render a scanline as one or more cells.                               */
595  /*                                                                       */
596  static void
597  gray_render_scanline( RAS_ARG_ TCoord  ey,
598                                 TPos    x1,
599                                 TCoord  y1,
600                                 TPos    x2,
601                                 TCoord  y2 )
602  {
603    TCoord  ex1, ex2, fx1, fx2, delta, mod, lift, rem;
604    long    p, first, dx;
605    int     incr;
606
607
608    dx = x2 - x1;
609
610    ex1 = TRUNC( x1 );
611    ex2 = TRUNC( x2 );
612    fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
613    fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
614
615    /* trivial case.  Happens often */
616    if ( y1 == y2 )
617    {
618      gray_set_cell( RAS_VAR_ ex2, ey );
619      return;
620    }
621
622    /* everything is located in a single cell.  That is easy! */
623    /*                                                        */
624    if ( ex1 == ex2 )
625    {
626      delta      = y2 - y1;
627      ras.area  += (TArea)(( fx1 + fx2 ) * delta);
628      ras.cover += delta;
629      return;
630    }
631
632    /* ok, we'll have to render a run of adjacent cells on the same */
633    /* scanline...                                                  */
634    /*                                                              */
635    p     = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
636    first = ONE_PIXEL;
637    incr  = 1;
638
639    if ( dx < 0 )
640    {
641      p     = fx1 * ( y2 - y1 );
642      first = 0;
643      incr  = -1;
644      dx    = -dx;
645    }
646
647    delta = (TCoord)( p / dx );
648    mod   = (TCoord)( p % dx );
649    if ( mod < 0 )
650    {
651      delta--;
652      mod += (TCoord)dx;
653    }
654
655    ras.area  += (TArea)(( fx1 + first ) * delta);
656    ras.cover += delta;
657
658    ex1 += incr;
659    gray_set_cell( RAS_VAR_ ex1, ey );
660    y1  += delta;
661
662    if ( ex1 != ex2 )
663    {
664      p    = ONE_PIXEL * ( y2 - y1 + delta );
665      lift = (TCoord)( p / dx );
666      rem  = (TCoord)( p % dx );
667      if ( rem < 0 )
668      {
669        lift--;
670        rem += (TCoord)dx;
671      }
672
673      mod -= (int)dx;
674
675      while ( ex1 != ex2 )
676      {
677        delta = lift;
678        mod  += rem;
679        if ( mod >= 0 )
680        {
681          mod -= (TCoord)dx;
682          delta++;
683        }
684
685        ras.area  += (TArea)(ONE_PIXEL * delta);
686        ras.cover += delta;
687        y1        += delta;
688        ex1       += incr;
689        gray_set_cell( RAS_VAR_ ex1, ey );
690      }
691    }
692
693    delta      = y2 - y1;
694    ras.area  += (TArea)(( fx2 + ONE_PIXEL - first ) * delta);
695    ras.cover += delta;
696  }
697
698
699  /*************************************************************************/
700  /*                                                                       */
701  /* Render a given line as a series of scanlines.                         */
702  /*                                                                       */
703  static void
704  gray_render_line( RAS_ARG_ TPos  to_x,
705                             TPos  to_y )
706  {
707    TCoord  ey1, ey2, fy1, fy2, mod;
708    TPos    dx, dy, x, x2;
709    long    p, first;
710    int     delta, rem, lift, incr;
711
712
713    ey1 = TRUNC( ras.last_ey );
714    ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
715    fy1 = (TCoord)( ras.y - ras.last_ey );
716    fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
717
718    dx = to_x - ras.x;
719    dy = to_y - ras.y;
720
721    /* XXX: we should do something about the trivial case where dx == 0, */
722    /*      as it happens very often!                                    */
723
724    /* perform vertical clipping */
725    {
726      TCoord  min, max;
727
728
729      min = ey1;
730      max = ey2;
731      if ( ey1 > ey2 )
732      {
733        min = ey2;
734        max = ey1;
735      }
736      if ( min >= ras.max_ey || max < ras.min_ey )
737        goto End;
738    }
739
740    /* everything is on a single scanline */
741    if ( ey1 == ey2 )
742    {
743      gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
744      goto End;
745    }
746
747    /* vertical line - avoid calling gray_render_scanline */
748    incr = 1;
749
750    if ( dx == 0 )
751    {
752      TCoord  ex     = TRUNC( ras.x );
753      TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
754      TArea   area;
755
756
757      first = ONE_PIXEL;
758      if ( dy < 0 )
759      {
760        first = 0;
761        incr  = -1;
762      }
763
764      delta      = (int)( first - fy1 );
765      ras.area  += (TArea)two_fx * delta;
766      ras.cover += delta;
767      ey1       += incr;
768
769      gray_set_cell( RAS_VAR_ ex, ey1 );
770
771      delta = (int)( first + first - ONE_PIXEL );
772      area  = (TArea)two_fx * delta;
773      while ( ey1 != ey2 )
774      {
775        ras.area  += area;
776        ras.cover += delta;
777        ey1       += incr;
778
779        gray_set_cell( RAS_VAR_ ex, ey1 );
780      }
781
782      delta      = (int)( fy2 - ONE_PIXEL + first );
783      ras.area  += (TArea)two_fx * delta;
784      ras.cover += delta;
785
786      goto End;
787    }
788
789    /* ok, we have to render several scanlines */
790    p     = ( ONE_PIXEL - fy1 ) * dx;
791    first = ONE_PIXEL;
792    incr  = 1;
793
794    if ( dy < 0 )
795    {
796      p     = fy1 * dx;
797      first = 0;
798      incr  = -1;
799      dy    = -dy;
800    }
801
802    delta = (int)( p / dy );
803    mod   = (int)( p % dy );
804    if ( mod < 0 )
805    {
806      delta--;
807      mod += (TCoord)dy;
808    }
809
810    x = ras.x + delta;
811    gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first );
812
813    ey1 += incr;
814    gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
815
816    if ( ey1 != ey2 )
817    {
818      p     = ONE_PIXEL * dx;
819      lift  = (int)( p / dy );
820      rem   = (int)( p % dy );
821      if ( rem < 0 )
822      {
823        lift--;
824        rem += (int)dy;
825      }
826      mod -= (int)dy;
827
828      while ( ey1 != ey2 )
829      {
830        delta = lift;
831        mod  += rem;
832        if ( mod >= 0 )
833        {
834          mod -= (int)dy;
835          delta++;
836        }
837
838        x2 = x + delta;
839        gray_render_scanline( RAS_VAR_ ey1, x,
840                                       (TCoord)( ONE_PIXEL - first ), x2,
841                                       (TCoord)first );
842        x = x2;
843
844        ey1 += incr;
845        gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
846      }
847    }
848
849    gray_render_scanline( RAS_VAR_ ey1, x,
850                                   (TCoord)( ONE_PIXEL - first ), to_x,
851                                   fy2 );
852
853  End:
854    ras.x       = to_x;
855    ras.y       = to_y;
856    ras.last_ey = SUBPIXELS( ey2 );
857  }
858
859
860  static void
861  gray_split_conic( FT_Vector*  base )
862  {
863    TPos  a, b;
864
865
866    base[4].x = base[2].x;
867    b = base[1].x;
868    a = base[3].x = ( base[2].x + b ) / 2;
869    b = base[1].x = ( base[0].x + b ) / 2;
870    base[2].x = ( a + b ) / 2;
871
872    base[4].y = base[2].y;
873    b = base[1].y;
874    a = base[3].y = ( base[2].y + b ) / 2;
875    b = base[1].y = ( base[0].y + b ) / 2;
876    base[2].y = ( a + b ) / 2;
877  }
878
879
880  static void
881  gray_render_conic( RAS_ARG_ const FT_Vector*  control,
882                              const FT_Vector*  to )
883  {
884    TPos        dx, dy;
885    TPos        min, max, y;
886    int         top, level;
887    int*        levels;
888    FT_Vector*  arc;
889
890
891    levels = ras.lev_stack;
892
893    arc      = ras.bez_stack;
894    arc[0].x = UPSCALE( to->x );
895    arc[0].y = UPSCALE( to->y );
896    arc[1].x = UPSCALE( control->x );
897    arc[1].y = UPSCALE( control->y );
898    arc[2].x = ras.x;
899    arc[2].y = ras.y;
900    top      = 0;
901
902    dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
903    dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
904    if ( dx < dy )
905      dx = dy;
906
907    if ( dx < ONE_PIXEL / 4 )
908      goto Draw;
909
910    /* short-cut the arc that crosses the current band */
911    min = max = arc[0].y;
912
913    y = arc[1].y;
914    if ( y < min ) min = y;
915    if ( y > max ) max = y;
916
917    y = arc[2].y;
918    if ( y < min ) min = y;
919    if ( y > max ) max = y;
920
921    if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
922      goto Draw;
923
924    level = 0;
925    do
926    {
927      dx >>= 2;
928      level++;
929    } while ( dx > ONE_PIXEL / 4 );
930
931    levels[0] = level;
932
933    do
934    {
935      level = levels[top];
936      if ( level > 0 )
937      {
938        gray_split_conic( arc );
939        arc += 2;
940        top++;
941        levels[top] = levels[top - 1] = level - 1;
942        continue;
943      }
944
945    Draw:
946      gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
947      top--;
948      arc -= 2;
949
950    } while ( top >= 0 );
951  }
952
953
954  static void
955  gray_split_cubic( FT_Vector*  base )
956  {
957    TPos  a, b, c, d;
958
959
960    base[6].x = base[3].x;
961    c = base[1].x;
962    d = base[2].x;
963    base[1].x = a = ( base[0].x + c ) / 2;
964    base[5].x = b = ( base[3].x + d ) / 2;
965    c = ( c + d ) / 2;
966    base[2].x = a = ( a + c ) / 2;
967    base[4].x = b = ( b + c ) / 2;
968    base[3].x = ( a + b ) / 2;
969
970    base[6].y = base[3].y;
971    c = base[1].y;
972    d = base[2].y;
973    base[1].y = a = ( base[0].y + c ) / 2;
974    base[5].y = b = ( base[3].y + d ) / 2;
975    c = ( c + d ) / 2;
976    base[2].y = a = ( a + c ) / 2;
977    base[4].y = b = ( b + c ) / 2;
978    base[3].y = ( a + b ) / 2;
979  }
980
981
982  static void
983  gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
984                              const FT_Vector*  control2,
985                              const FT_Vector*  to )
986  {
987    FT_Vector*  arc;
988    TPos        min, max, y;
989
990
991    arc      = ras.bez_stack;
992    arc[0].x = UPSCALE( to->x );
993    arc[0].y = UPSCALE( to->y );
994    arc[1].x = UPSCALE( control2->x );
995    arc[1].y = UPSCALE( control2->y );
996    arc[2].x = UPSCALE( control1->x );
997    arc[2].y = UPSCALE( control1->y );
998    arc[3].x = ras.x;
999    arc[3].y = ras.y;
1000
1001    /* Short-cut the arc that crosses the current band. */
1002    min = max = arc[0].y;
1003
1004    y = arc[1].y;
1005    if ( y < min )
1006      min = y;
1007    if ( y > max )
1008      max = y;
1009
1010    y = arc[2].y;
1011    if ( y < min )
1012      min = y;
1013    if ( y > max )
1014      max = y;
1015
1016    y = arc[3].y;
1017    if ( y < min )
1018      min = y;
1019    if ( y > max )
1020      max = y;
1021
1022    if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
1023      goto Draw;
1024
1025    for (;;)
1026    {
1027      /* Decide whether to split or draw. See `Rapid Termination          */
1028      /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
1029      /* F. Hain, at                                                      */
1030      /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
1031
1032      {
1033        TPos  dx, dy, dx_, dy_;
1034        TPos  dx1, dy1, dx2, dy2;
1035        TPos  L, s, s_limit;
1036
1037
1038        /* dx and dy are x and y components of the P0-P3 chord vector. */
1039        dx = arc[3].x - arc[0].x;
1040        dy = arc[3].y - arc[0].y;
1041
1042        /* L is an (under)estimate of the Euclidean distance P0-P3.       */
1043        /*                                                                */
1044        /* If dx >= dy, then r = sqrt(dx^2 + dy^2) can be overestimated   */
1045        /* with least maximum error by                                    */
1046        /*                                                                */
1047        /*   r_upperbound = dx + (sqrt(2) - 1) * dy  ,                    */
1048        /*                                                                */
1049        /* where sqrt(2) - 1 can be (over)estimated by 107/256, giving an */
1050        /* error of no more than 8.4%.                                    */
1051        /*                                                                */
1052        /* Similarly, some elementary calculus shows that r can be        */
1053        /* underestimated with least maximum error by                     */
1054        /*                                                                */
1055        /*   r_lowerbound = sqrt(2 + sqrt(2)) / 2 * dx                    */
1056        /*                  + sqrt(2 - sqrt(2)) / 2 * dy  .               */
1057        /*                                                                */
1058        /* 236/256 and 97/256 are (under)estimates of the two algebraic   */
1059        /* numbers, giving an error of no more than 8.1%.                 */
1060
1061        dx_ = FT_ABS( dx );
1062        dy_ = FT_ABS( dy );
1063
1064        /* This is the same as                     */
1065        /*                                         */
1066        /*   L = ( 236 * FT_MAX( dx_, dy_ )        */
1067        /*       + 97 * FT_MIN( dx_, dy_ ) ) >> 8; */
1068        L = ( dx_ > dy_ ? 236 * dx_ +  97 * dy_
1069                        :  97 * dx_ + 236 * dy_ ) >> 8;
1070
1071        /* Avoid possible arithmetic overflow below by splitting. */
1072        if ( L > 32767 )
1073          goto Split;
1074
1075        /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
1076        s_limit = L * (TPos)( ONE_PIXEL / 6 );
1077
1078        /* s is L * the perpendicular distance from P1 to the line P0-P3. */
1079        dx1 = arc[1].x - arc[0].x;
1080        dy1 = arc[1].y - arc[0].y;
1081        s = FT_ABS( dy * dx1 - dx * dy1 );
1082
1083        if ( s > s_limit )
1084          goto Split;
1085
1086        /* s is L * the perpendicular distance from P2 to the line P0-P3. */
1087        dx2 = arc[2].x - arc[0].x;
1088        dy2 = arc[2].y - arc[0].y;
1089        s = FT_ABS( dy * dx2 - dx * dy2 );
1090
1091        if ( s > s_limit )
1092          goto Split;
1093
1094        /* If P1 or P2 is outside P0-P3, split the curve. */
1095        if ( dy * dy1 + dx * dx1 < 0                                     ||
1096             dy * dy2 + dx * dx2 < 0                                     ||
1097             dy * (arc[3].y - arc[1].y) + dx * (arc[3].x - arc[1].x) < 0 ||
1098             dy * (arc[3].y - arc[2].y) + dx * (arc[3].x - arc[2].x) < 0 )
1099          goto Split;
1100
1101        /* No reason to split. */
1102        goto Draw;
1103      }
1104
1105    Split:
1106      gray_split_cubic( arc );
1107      arc += 3;
1108      continue;
1109
1110    Draw:
1111      gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
1112
1113      if ( arc == ras.bez_stack )
1114        return;
1115
1116      arc -= 3;
1117    }
1118  }
1119
1120
1121  static int
1122  gray_move_to( const FT_Vector*  to,
1123                gray_PWorker      worker )
1124  {
1125    TPos  x, y;
1126
1127
1128    /* record current cell, if any */
1129    gray_record_cell( RAS_VAR );
1130
1131    /* start to a new position */
1132    x = UPSCALE( to->x );
1133    y = UPSCALE( to->y );
1134
1135    gray_start_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
1136
1137    worker->x = x;
1138    worker->y = y;
1139    return 0;
1140  }
1141
1142
1143  static int
1144  gray_line_to( const FT_Vector*  to,
1145                gray_PWorker      worker )
1146  {
1147    gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
1148    return 0;
1149  }
1150
1151
1152  static int
1153  gray_conic_to( const FT_Vector*  control,
1154                 const FT_Vector*  to,
1155                 gray_PWorker      worker )
1156  {
1157    gray_render_conic( RAS_VAR_ control, to );
1158    return 0;
1159  }
1160
1161
1162  static int
1163  gray_cubic_to( const FT_Vector*  control1,
1164                 const FT_Vector*  control2,
1165                 const FT_Vector*  to,
1166                 gray_PWorker      worker )
1167  {
1168    gray_render_cubic( RAS_VAR_ control1, control2, to );
1169    return 0;
1170  }
1171
1172
1173  static void
1174  gray_render_span( int             y,
1175                    int             count,
1176                    const FT_Span*  spans,
1177                    gray_PWorker    worker )
1178  {
1179    unsigned char*  p;
1180    FT_Bitmap*      map = &worker->target;
1181
1182
1183    /* first of all, compute the scanline offset */
1184    p = (unsigned char*)map->buffer - y * map->pitch;
1185    if ( map->pitch >= 0 )
1186      p += (unsigned)( ( map->rows - 1 ) * map->pitch );
1187
1188    for ( ; count > 0; count--, spans++ )
1189    {
1190      unsigned char  coverage = spans->coverage;
1191
1192
1193      if ( coverage )
1194      {
1195        /* For small-spans it is faster to do it by ourselves than
1196         * calling `memset'.  This is mainly due to the cost of the
1197         * function call.
1198         */
1199        if ( spans->len >= 8 )
1200          FT_MEM_SET( p + spans->x, (unsigned char)coverage, spans->len );
1201        else
1202        {
1203          unsigned char*  q = p + spans->x;
1204
1205
1206          switch ( spans->len )
1207          {
1208          case 7: *q++ = (unsigned char)coverage;
1209          case 6: *q++ = (unsigned char)coverage;
1210          case 5: *q++ = (unsigned char)coverage;
1211          case 4: *q++ = (unsigned char)coverage;
1212          case 3: *q++ = (unsigned char)coverage;
1213          case 2: *q++ = (unsigned char)coverage;
1214          case 1: *q   = (unsigned char)coverage;
1215          default:
1216            ;
1217          }
1218        }
1219      }
1220    }
1221  }
1222
1223
1224  static void
1225  gray_hline( RAS_ARG_ TCoord  x,
1226                       TCoord  y,
1227                       TPos    area,
1228                       TCoord  acount )
1229  {
1230    FT_Span*  span;
1231    int       count;
1232    int       coverage;
1233
1234
1235    /* compute the coverage line's coverage, depending on the    */
1236    /* outline fill rule                                         */
1237    /*                                                           */
1238    /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
1239    /*                                                           */
1240    coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
1241                                                    /* use range 0..256 */
1242    if ( coverage < 0 )
1243      coverage = -coverage;
1244
1245    if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
1246    {
1247      coverage &= 511;
1248
1249      if ( coverage > 256 )
1250        coverage = 512 - coverage;
1251      else if ( coverage == 256 )
1252        coverage = 255;
1253    }
1254    else
1255    {
1256      /* normal non-zero winding rule */
1257      if ( coverage >= 256 )
1258        coverage = 255;
1259    }
1260
1261    y += (TCoord)ras.min_ey;
1262    x += (TCoord)ras.min_ex;
1263
1264    /* FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
1265    if ( x >= 32767 )
1266      x = 32767;
1267
1268    /* FT_Span.y is an integer, so limit our coordinates appropriately */
1269    if ( y >= FT_INT_MAX )
1270      y = FT_INT_MAX;
1271
1272    if ( coverage )
1273    {
1274      /* see whether we can add this span to the current list */
1275      count = ras.num_gray_spans;
1276      span  = ras.gray_spans + count - 1;
1277      if ( count > 0                          &&
1278           ras.span_y == y                    &&
1279           (int)span->x + span->len == (int)x &&
1280           span->coverage == coverage         )
1281      {
1282        span->len = (unsigned short)( span->len + acount );
1283        return;
1284      }
1285
1286      if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
1287      {
1288        if ( ras.render_span && count > 0 )
1289          ras.render_span( ras.span_y, count, ras.gray_spans,
1290                           ras.render_span_data );
1291
1292#ifdef FT_DEBUG_LEVEL_TRACE
1293
1294        if ( count > 0 )
1295        {
1296          int  n;
1297
1298
1299          FT_TRACE7(( "y = %3d ", ras.span_y ));
1300          span = ras.gray_spans;
1301          for ( n = 0; n < count; n++, span++ )
1302            FT_TRACE7(( "[%d..%d]:%02x ",
1303                        span->x, span->x + span->len - 1, span->coverage ));
1304          FT_TRACE7(( "\n" ));
1305        }
1306
1307#endif /* FT_DEBUG_LEVEL_TRACE */
1308
1309        ras.num_gray_spans = 0;
1310        ras.span_y         = (int)y;
1311
1312        count = 0;
1313        span  = ras.gray_spans;
1314      }
1315      else
1316        span++;
1317
1318      /* add a gray span to the current list */
1319      span->x        = (short)x;
1320      span->len      = (unsigned short)acount;
1321      span->coverage = (unsigned char)coverage;
1322
1323      ras.num_gray_spans++;
1324    }
1325  }
1326
1327
1328#ifdef FT_DEBUG_LEVEL_TRACE
1329
1330  /* to be called while in the debugger --                                */
1331  /* this function causes a compiler warning since it is unused otherwise */
1332  static void
1333  gray_dump_cells( RAS_ARG )
1334  {
1335    int  yindex;
1336
1337
1338    for ( yindex = 0; yindex < ras.ycount; yindex++ )
1339    {
1340      PCell  cell;
1341
1342
1343      printf( "%3d:", yindex );
1344
1345      for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
1346        printf( " (%3ld, c:%4ld, a:%6d)", cell->x, cell->cover, cell->area );
1347      printf( "\n" );
1348    }
1349  }
1350
1351#endif /* FT_DEBUG_LEVEL_TRACE */
1352
1353
1354  static void
1355  gray_sweep( RAS_ARG_ const FT_Bitmap*  target )
1356  {
1357    int  yindex;
1358
1359    FT_UNUSED( target );
1360
1361
1362    if ( ras.num_cells == 0 )
1363      return;
1364
1365    ras.num_gray_spans = 0;
1366
1367    FT_TRACE7(( "gray_sweep: start\n" ));
1368
1369    for ( yindex = 0; yindex < ras.ycount; yindex++ )
1370    {
1371      PCell   cell  = ras.ycells[yindex];
1372      TCoord  cover = 0;
1373      TCoord  x     = 0;
1374
1375
1376      for ( ; cell != NULL; cell = cell->next )
1377      {
1378        TPos  area;
1379
1380
1381        if ( cell->x > x && cover != 0 )
1382          gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
1383                      cell->x - x );
1384
1385        cover += cell->cover;
1386        area   = cover * ( ONE_PIXEL * 2 ) - cell->area;
1387
1388        if ( area != 0 && cell->x >= 0 )
1389          gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );
1390
1391        x = cell->x + 1;
1392      }
1393
1394      if ( cover != 0 )
1395        gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
1396                    ras.count_ex - x );
1397    }
1398
1399    if ( ras.render_span && ras.num_gray_spans > 0 )
1400      ras.render_span( ras.span_y, ras.num_gray_spans,
1401                       ras.gray_spans, ras.render_span_data );
1402
1403    FT_TRACE7(( "gray_sweep: end\n" ));
1404  }
1405
1406
1407#ifdef _STANDALONE_
1408
1409  /*************************************************************************/
1410  /*                                                                       */
1411  /*  The following function should only compile in stand-alone mode,      */
1412  /*  i.e., when building this component without the rest of FreeType.     */
1413  /*                                                                       */
1414  /*************************************************************************/
1415
1416  /*************************************************************************/
1417  /*                                                                       */
1418  /* <Function>                                                            */
1419  /*    FT_Outline_Decompose                                               */
1420  /*                                                                       */
1421  /* <Description>                                                         */
1422  /*    Walk over an outline's structure to decompose it into individual   */
1423  /*    segments and Bézier arcs.  This function is also able to emit      */
1424  /*    `move to' and `close to' operations to indicate the start and end  */
1425  /*    of new contours in the outline.                                    */
1426  /*                                                                       */
1427  /* <Input>                                                               */
1428  /*    outline        :: A pointer to the source target.                  */
1429  /*                                                                       */
1430  /*    func_interface :: A table of `emitters', i.e., function pointers   */
1431  /*                      called during decomposition to indicate path     */
1432  /*                      operations.                                      */
1433  /*                                                                       */
1434  /* <InOut>                                                               */
1435  /*    user           :: A typeless pointer which is passed to each       */
1436  /*                      emitter during the decomposition.  It can be     */
1437  /*                      used to store the state during the               */
1438  /*                      decomposition.                                   */
1439  /*                                                                       */
1440  /* <Return>                                                              */
1441  /*    Error code.  0 means success.                                      */
1442  /*                                                                       */
1443  static int
1444  FT_Outline_Decompose( const FT_Outline*        outline,
1445                        const FT_Outline_Funcs*  func_interface,
1446                        void*                    user )
1447  {
1448#undef SCALED
1449#define SCALED( x )  ( ( (x) << shift ) - delta )
1450
1451    FT_Vector   v_last;
1452    FT_Vector   v_control;
1453    FT_Vector   v_start;
1454
1455    FT_Vector*  point;
1456    FT_Vector*  limit;
1457    char*       tags;
1458
1459    int         error;
1460
1461    int   n;         /* index of contour in outline     */
1462    int   first;     /* index of first point in contour */
1463    char  tag;       /* current point's state           */
1464
1465    int   shift;
1466    TPos  delta;
1467
1468
1469    if ( !outline || !func_interface )
1470      return ErrRaster_Invalid_Argument;
1471
1472    shift = func_interface->shift;
1473    delta = func_interface->delta;
1474    first = 0;
1475
1476    for ( n = 0; n < outline->n_contours; n++ )
1477    {
1478      int  last;  /* index of last point in contour */
1479
1480
1481      FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
1482
1483      last  = outline->contours[n];
1484      if ( last < 0 )
1485        goto Invalid_Outline;
1486      limit = outline->points + last;
1487
1488      v_start   = outline->points[first];
1489      v_start.x = SCALED( v_start.x );
1490      v_start.y = SCALED( v_start.y );
1491
1492      v_last   = outline->points[last];
1493      v_last.x = SCALED( v_last.x );
1494      v_last.y = SCALED( v_last.y );
1495
1496      v_control = v_start;
1497
1498      point = outline->points + first;
1499      tags  = outline->tags   + first;
1500      tag   = FT_CURVE_TAG( tags[0] );
1501
1502      /* A contour cannot start with a cubic control point! */
1503      if ( tag == FT_CURVE_TAG_CUBIC )
1504        goto Invalid_Outline;
1505
1506      /* check first point to determine origin */
1507      if ( tag == FT_CURVE_TAG_CONIC )
1508      {
1509        /* first point is conic control.  Yes, this happens. */
1510        if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
1511        {
1512          /* start at last point if it is on the curve */
1513          v_start = v_last;
1514          limit--;
1515        }
1516        else
1517        {
1518          /* if both first and last points are conic,         */
1519          /* start at their middle and record its position    */
1520          /* for closure                                      */
1521          v_start.x = ( v_start.x + v_last.x ) / 2;
1522          v_start.y = ( v_start.y + v_last.y ) / 2;
1523
1524          v_last = v_start;
1525        }
1526        point--;
1527        tags--;
1528      }
1529
1530      FT_TRACE5(( "  move to (%.2f, %.2f)\n",
1531                  v_start.x / 64.0, v_start.y / 64.0 ));
1532      error = func_interface->move_to( &v_start, user );
1533      if ( error )
1534        goto Exit;
1535
1536      while ( point < limit )
1537      {
1538        point++;
1539        tags++;
1540
1541        tag = FT_CURVE_TAG( tags[0] );
1542        switch ( tag )
1543        {
1544        case FT_CURVE_TAG_ON:  /* emit a single line_to */
1545          {
1546            FT_Vector  vec;
1547
1548
1549            vec.x = SCALED( point->x );
1550            vec.y = SCALED( point->y );
1551
1552            FT_TRACE5(( "  line to (%.2f, %.2f)\n",
1553                        vec.x / 64.0, vec.y / 64.0 ));
1554            error = func_interface->line_to( &vec, user );
1555            if ( error )
1556              goto Exit;
1557            continue;
1558          }
1559
1560        case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
1561          v_control.x = SCALED( point->x );
1562          v_control.y = SCALED( point->y );
1563
1564        Do_Conic:
1565          if ( point < limit )
1566          {
1567            FT_Vector  vec;
1568            FT_Vector  v_middle;
1569
1570
1571            point++;
1572            tags++;
1573            tag = FT_CURVE_TAG( tags[0] );
1574
1575            vec.x = SCALED( point->x );
1576            vec.y = SCALED( point->y );
1577
1578            if ( tag == FT_CURVE_TAG_ON )
1579            {
1580              FT_TRACE5(( "  conic to (%.2f, %.2f)"
1581                          " with control (%.2f, %.2f)\n",
1582                          vec.x / 64.0, vec.y / 64.0,
1583                          v_control.x / 64.0, v_control.y / 64.0 ));
1584              error = func_interface->conic_to( &v_control, &vec, user );
1585              if ( error )
1586                goto Exit;
1587              continue;
1588            }
1589
1590            if ( tag != FT_CURVE_TAG_CONIC )
1591              goto Invalid_Outline;
1592
1593            v_middle.x = ( v_control.x + vec.x ) / 2;
1594            v_middle.y = ( v_control.y + vec.y ) / 2;
1595
1596            FT_TRACE5(( "  conic to (%.2f, %.2f)"
1597                        " with control (%.2f, %.2f)\n",
1598                        v_middle.x / 64.0, v_middle.y / 64.0,
1599                        v_control.x / 64.0, v_control.y / 64.0 ));
1600            error = func_interface->conic_to( &v_control, &v_middle, user );
1601            if ( error )
1602              goto Exit;
1603
1604            v_control = vec;
1605            goto Do_Conic;
1606          }
1607
1608          FT_TRACE5(( "  conic to (%.2f, %.2f)"
1609                      " with control (%.2f, %.2f)\n",
1610                      v_start.x / 64.0, v_start.y / 64.0,
1611                      v_control.x / 64.0, v_control.y / 64.0 ));
1612          error = func_interface->conic_to( &v_control, &v_start, user );
1613          goto Close;
1614
1615        default:  /* FT_CURVE_TAG_CUBIC */
1616          {
1617            FT_Vector  vec1, vec2;
1618
1619
1620            if ( point + 1 > limit                             ||
1621                 FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
1622              goto Invalid_Outline;
1623
1624            point += 2;
1625            tags  += 2;
1626
1627            vec1.x = SCALED( point[-2].x );
1628            vec1.y = SCALED( point[-2].y );
1629
1630            vec2.x = SCALED( point[-1].x );
1631            vec2.y = SCALED( point[-1].y );
1632
1633            if ( point <= limit )
1634            {
1635              FT_Vector  vec;
1636
1637
1638              vec.x = SCALED( point->x );
1639              vec.y = SCALED( point->y );
1640
1641              FT_TRACE5(( "  cubic to (%.2f, %.2f)"
1642                          " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1643                          vec.x / 64.0, vec.y / 64.0,
1644                          vec1.x / 64.0, vec1.y / 64.0,
1645                          vec2.x / 64.0, vec2.y / 64.0 ));
1646              error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
1647              if ( error )
1648                goto Exit;
1649              continue;
1650            }
1651
1652            FT_TRACE5(( "  cubic to (%.2f, %.2f)"
1653                        " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
1654                        v_start.x / 64.0, v_start.y / 64.0,
1655                        vec1.x / 64.0, vec1.y / 64.0,
1656                        vec2.x / 64.0, vec2.y / 64.0 ));
1657            error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
1658            goto Close;
1659          }
1660        }
1661      }
1662
1663      /* close the contour with a line segment */
1664      FT_TRACE5(( "  line to (%.2f, %.2f)\n",
1665                  v_start.x / 64.0, v_start.y / 64.0 ));
1666      error = func_interface->line_to( &v_start, user );
1667
1668   Close:
1669      if ( error )
1670        goto Exit;
1671
1672      first = last + 1;
1673    }
1674
1675    FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
1676    return 0;
1677
1678  Exit:
1679    FT_TRACE5(( "FT_Outline_Decompose: Error %d\n", error ));
1680    return error;
1681
1682  Invalid_Outline:
1683    return ErrRaster_Invalid_Outline;
1684  }
1685
1686#endif /* _STANDALONE_ */
1687
1688
1689  typedef struct  gray_TBand_
1690  {
1691    TPos  min, max;
1692
1693  } gray_TBand;
1694
1695    FT_DEFINE_OUTLINE_FUNCS(func_interface,
1696      (FT_Outline_MoveTo_Func) gray_move_to,
1697      (FT_Outline_LineTo_Func) gray_line_to,
1698      (FT_Outline_ConicTo_Func)gray_conic_to,
1699      (FT_Outline_CubicTo_Func)gray_cubic_to,
1700      0,
1701      0
1702    )
1703
1704  static int
1705  gray_convert_glyph_inner( RAS_ARG )
1706  {
1707
1708    volatile int  error = 0;
1709
1710#ifdef FT_CONFIG_OPTION_PIC
1711      FT_Outline_Funcs func_interface;
1712      Init_Class_func_interface(&func_interface);
1713#endif
1714
1715    if ( ft_setjmp( ras.jump_buffer ) == 0 )
1716    {
1717      error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
1718      gray_record_cell( RAS_VAR );
1719    }
1720    else
1721      error = ErrRaster_Memory_Overflow;
1722
1723    return error;
1724  }
1725
1726
1727  static int
1728  gray_convert_glyph( RAS_ARG )
1729  {
1730    gray_TBand            bands[40];
1731    gray_TBand* volatile  band;
1732    int volatile          n, num_bands;
1733    TPos volatile         min, max, max_y;
1734    FT_BBox*              clip;
1735
1736
1737    /* Set up state in the raster object */
1738    gray_compute_cbox( RAS_VAR );
1739
1740    /* clip to target bitmap, exit if nothing to do */
1741    clip = &ras.clip_box;
1742
1743    if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
1744         ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax )
1745      return 0;
1746
1747    if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin;
1748    if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin;
1749
1750    if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax;
1751    if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax;
1752
1753    ras.count_ex = ras.max_ex - ras.min_ex;
1754    ras.count_ey = ras.max_ey - ras.min_ey;
1755
1756    /* set up vertical bands */
1757    num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size );
1758    if ( num_bands == 0 )
1759      num_bands = 1;
1760    if ( num_bands >= 39 )
1761      num_bands = 39;
1762
1763    ras.band_shoot = 0;
1764
1765    min   = ras.min_ey;
1766    max_y = ras.max_ey;
1767
1768    for ( n = 0; n < num_bands; n++, min = max )
1769    {
1770      max = min + ras.band_size;
1771      if ( n == num_bands - 1 || max > max_y )
1772        max = max_y;
1773
1774      bands[0].min = min;
1775      bands[0].max = max;
1776      band         = bands;
1777
1778      while ( band >= bands )
1779      {
1780        TPos  bottom, top, middle;
1781        int   error;
1782
1783        {
1784          PCell  cells_max;
1785          int    yindex;
1786          long   cell_start, cell_end, cell_mod;
1787
1788
1789          ras.ycells = (PCell*)ras.buffer;
1790          ras.ycount = band->max - band->min;
1791
1792          cell_start = sizeof ( PCell ) * ras.ycount;
1793          cell_mod   = cell_start % sizeof ( TCell );
1794          if ( cell_mod > 0 )
1795            cell_start += sizeof ( TCell ) - cell_mod;
1796
1797          cell_end  = ras.buffer_size;
1798          cell_end -= cell_end % sizeof ( TCell );
1799
1800          cells_max = (PCell)( (char*)ras.buffer + cell_end );
1801          ras.cells = (PCell)( (char*)ras.buffer + cell_start );
1802          if ( ras.cells >= cells_max )
1803            goto ReduceBands;
1804
1805          ras.max_cells = cells_max - ras.cells;
1806          if ( ras.max_cells < 2 )
1807            goto ReduceBands;
1808
1809          for ( yindex = 0; yindex < ras.ycount; yindex++ )
1810            ras.ycells[yindex] = NULL;
1811        }
1812
1813        ras.num_cells = 0;
1814        ras.invalid   = 1;
1815        ras.min_ey    = band->min;
1816        ras.max_ey    = band->max;
1817        ras.count_ey  = band->max - band->min;
1818
1819        error = gray_convert_glyph_inner( RAS_VAR );
1820
1821        if ( !error )
1822        {
1823          gray_sweep( RAS_VAR_ &ras.target );
1824          band--;
1825          continue;
1826        }
1827        else if ( error != ErrRaster_Memory_Overflow )
1828          return 1;
1829
1830      ReduceBands:
1831        /* render pool overflow; we will reduce the render band by half */
1832        bottom = band->min;
1833        top    = band->max;
1834        middle = bottom + ( ( top - bottom ) >> 1 );
1835
1836        /* This is too complex for a single scanline; there must */
1837        /* be some problems.                                     */
1838        if ( middle == bottom )
1839        {
1840#ifdef FT_DEBUG_LEVEL_TRACE
1841          FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
1842#endif
1843          return 1;
1844        }
1845
1846        if ( bottom-top >= ras.band_size )
1847          ras.band_shoot++;
1848
1849        band[1].min = bottom;
1850        band[1].max = middle;
1851        band[0].min = middle;
1852        band[0].max = top;
1853        band++;
1854      }
1855    }
1856
1857    if ( ras.band_shoot > 8 && ras.band_size > 16 )
1858      ras.band_size = ras.band_size / 2;
1859
1860    return 0;
1861  }
1862
1863
1864  static int
1865  gray_raster_render( gray_PRaster             raster,
1866                      const FT_Raster_Params*  params )
1867  {
1868    const FT_Outline*  outline    = (const FT_Outline*)params->source;
1869    const FT_Bitmap*   target_map = params->target;
1870    gray_PWorker       worker;
1871
1872
1873    if ( !raster || !raster->buffer || !raster->buffer_size )
1874      return ErrRaster_Invalid_Argument;
1875
1876    if ( !outline )
1877      return ErrRaster_Invalid_Outline;
1878
1879    /* return immediately if the outline is empty */
1880    if ( outline->n_points == 0 || outline->n_contours <= 0 )
1881      return 0;
1882
1883    if ( !outline->contours || !outline->points )
1884      return ErrRaster_Invalid_Outline;
1885
1886    if ( outline->n_points !=
1887           outline->contours[outline->n_contours - 1] + 1 )
1888      return ErrRaster_Invalid_Outline;
1889
1890    worker = raster->worker;
1891
1892    /* if direct mode is not set, we must have a target bitmap */
1893    if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
1894    {
1895      if ( !target_map )
1896        return ErrRaster_Invalid_Argument;
1897
1898      /* nothing to do */
1899      if ( !target_map->width || !target_map->rows )
1900        return 0;
1901
1902      if ( !target_map->buffer )
1903        return ErrRaster_Invalid_Argument;
1904    }
1905
1906    /* this version does not support monochrome rendering */
1907    if ( !( params->flags & FT_RASTER_FLAG_AA ) )
1908      return ErrRaster_Invalid_Mode;
1909
1910    /* compute clipping box */
1911    if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
1912    {
1913      /* compute clip box from target pixmap */
1914      ras.clip_box.xMin = 0;
1915      ras.clip_box.yMin = 0;
1916      ras.clip_box.xMax = target_map->width;
1917      ras.clip_box.yMax = target_map->rows;
1918    }
1919    else if ( params->flags & FT_RASTER_FLAG_CLIP )
1920      ras.clip_box = params->clip_box;
1921    else
1922    {
1923      ras.clip_box.xMin = -32768L;
1924      ras.clip_box.yMin = -32768L;
1925      ras.clip_box.xMax =  32767L;
1926      ras.clip_box.yMax =  32767L;
1927    }
1928
1929    gray_init_cells( RAS_VAR_ raster->buffer, raster->buffer_size );
1930
1931    ras.outline        = *outline;
1932    ras.num_cells      = 0;
1933    ras.invalid        = 1;
1934    ras.band_size      = raster->band_size;
1935    ras.num_gray_spans = 0;
1936
1937    if ( params->flags & FT_RASTER_FLAG_DIRECT )
1938    {
1939      ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
1940      ras.render_span_data = params->user;
1941    }
1942    else
1943    {
1944      ras.target           = *target_map;
1945      ras.render_span      = (FT_Raster_Span_Func)gray_render_span;
1946      ras.render_span_data = &ras;
1947    }
1948
1949    return gray_convert_glyph( RAS_VAR );
1950  }
1951
1952
1953  /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
1954  /****                         a static object.                   *****/
1955
1956#ifdef _STANDALONE_
1957
1958  static int
1959  gray_raster_new( void*       memory,
1960                   FT_Raster*  araster )
1961  {
1962    static gray_TRaster  the_raster;
1963
1964    FT_UNUSED( memory );
1965
1966
1967    *araster = (FT_Raster)&the_raster;
1968    FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
1969
1970    return 0;
1971  }
1972
1973
1974  static void
1975  gray_raster_done( FT_Raster  raster )
1976  {
1977    /* nothing */
1978    FT_UNUSED( raster );
1979  }
1980
1981#else /* !_STANDALONE_ */
1982
1983  static int
1984  gray_raster_new( FT_Memory   memory,
1985                   FT_Raster*  araster )
1986  {
1987    FT_Error      error;
1988    gray_PRaster  raster = NULL;
1989
1990
1991    *araster = 0;
1992    if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
1993    {
1994      raster->memory = memory;
1995      *araster       = (FT_Raster)raster;
1996    }
1997
1998    return error;
1999  }
2000
2001
2002  static void
2003  gray_raster_done( FT_Raster  raster )
2004  {
2005    FT_Memory  memory = (FT_Memory)((gray_PRaster)raster)->memory;
2006
2007
2008    FT_FREE( raster );
2009  }
2010
2011#endif /* !_STANDALONE_ */
2012
2013
2014  static void
2015  gray_raster_reset( FT_Raster  raster,
2016                     char*      pool_base,
2017                     long       pool_size )
2018  {
2019    gray_PRaster  rast = (gray_PRaster)raster;
2020
2021
2022    if ( raster )
2023    {
2024      if ( pool_base && pool_size >= (long)sizeof ( gray_TWorker ) + 2048 )
2025      {
2026        gray_PWorker  worker = (gray_PWorker)pool_base;
2027
2028
2029        rast->worker      = worker;
2030        rast->buffer      = pool_base +
2031                              ( ( sizeof ( gray_TWorker ) +
2032                                  sizeof ( TCell ) - 1 )  &
2033                                ~( sizeof ( TCell ) - 1 ) );
2034        rast->buffer_size = (long)( ( pool_base + pool_size ) -
2035                                    (char*)rast->buffer ) &
2036                                      ~( sizeof ( TCell ) - 1 );
2037        rast->band_size   = (int)( rast->buffer_size /
2038                                     ( sizeof ( TCell ) * 8 ) );
2039      }
2040      else
2041      {
2042        rast->buffer      = NULL;
2043        rast->buffer_size = 0;
2044        rast->worker      = NULL;
2045      }
2046    }
2047  }
2048
2049
2050  FT_DEFINE_RASTER_FUNCS(ft_grays_raster,
2051    FT_GLYPH_FORMAT_OUTLINE,
2052
2053    (FT_Raster_New_Func)     gray_raster_new,
2054    (FT_Raster_Reset_Func)   gray_raster_reset,
2055    (FT_Raster_Set_Mode_Func)0,
2056    (FT_Raster_Render_Func)  gray_raster_render,
2057    (FT_Raster_Done_Func)    gray_raster_done
2058  )
2059
2060
2061/* END */
2062
2063
2064/* Local Variables: */
2065/* coding: utf-8    */
2066/* End:             */
2067