1/*
2 * Copyright (C) 2011 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
5 * in compliance with the License. You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software distributed under the
10 * License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
11 * express or implied. See the License for the specific language governing permissions and
12 * limitations under the License.
13 */
14
15package com.google.common.primitives;
16
17import static com.google.common.base.Preconditions.checkArgument;
18import static com.google.common.base.Preconditions.checkNotNull;
19
20import java.math.BigInteger;
21import java.util.Arrays;
22import java.util.Comparator;
23
24import com.google.common.annotations.Beta;
25import com.google.common.annotations.GwtCompatible;
26
27/**
28 * Static utility methods pertaining to {@code long} primitives that interpret values as
29 * <i>unsigned</i> (that is, any negative value {@code x} is treated as the positive value
30 * {@code 2^64 + x}). The methods for which signedness is not an issue are in {@link Longs}, as
31 * well as signed versions of methods for which signedness is an issue.
32 *
33 * <p>In addition, this class provides several static methods for converting a {@code long} to a
34 * {@code String} and a {@code String} to a {@code long} that treat the {@code long} as an unsigned
35 * number.
36 *
37 * <p>Users of these utilities must be <i>extremely careful</i> not to mix up signed and unsigned
38 * {@code long} values. When possible, it is recommended that the {@link UnsignedLong} wrapper
39 * class be used, at a small efficiency penalty, to enforce the distinction in the type system.
40 *
41 * @author Louis Wasserman
42 * @author Brian Milch
43 * @author Colin Evans
44 * @since 10.0
45 */
46@Beta
47@GwtCompatible
48public final class UnsignedLongs {
49  private UnsignedLongs() {}
50
51  public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1
52
53  /**
54   * A (self-inverse) bijection which converts the ordering on unsigned longs to the ordering on
55   * longs, that is, {@code a <= b} as unsigned longs if and only if {@code rotate(a) <= rotate(b)}
56   * as signed longs.
57   */
58  private static long flip(long a) {
59    return a ^ Long.MIN_VALUE;
60  }
61
62  /**
63   * Compares the two specified {@code long} values, treating them as unsigned values between
64   * {@code 0} and {@code 2^64 - 1} inclusive.
65   *
66   * @param a the first unsigned {@code long} to compare
67   * @param b the second unsigned {@code long} to compare
68   * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
69   *         greater than {@code b}; or zero if they are equal
70   */
71  public static int compare(long a, long b) {
72    return Longs.compare(flip(a), flip(b));
73  }
74
75  /**
76   * Returns the least value present in {@code array}, treating values as unsigned.
77   *
78   * @param array a <i>nonempty</i> array of unsigned {@code long} values
79   * @return the value present in {@code array} that is less than or equal to every other value in
80   *         the array according to {@link #compare}
81   * @throws IllegalArgumentException if {@code array} is empty
82   */
83  public static long min(long... array) {
84    checkArgument(array.length > 0);
85    long min = flip(array[0]);
86    for (int i = 1; i < array.length; i++) {
87      long next = flip(array[i]);
88      if (next < min) {
89        min = next;
90      }
91    }
92    return flip(min);
93  }
94
95  /**
96   * Returns the greatest value present in {@code array}, treating values as unsigned.
97   *
98   * @param array a <i>nonempty</i> array of unsigned {@code long} values
99   * @return the value present in {@code array} that is greater than or equal to every other value
100   *         in the array according to {@link #compare}
101   * @throws IllegalArgumentException if {@code array} is empty
102   */
103  public static long max(long... array) {
104    checkArgument(array.length > 0);
105    long max = flip(array[0]);
106    for (int i = 1; i < array.length; i++) {
107      long next = flip(array[i]);
108      if (next > max) {
109        max = next;
110      }
111    }
112    return flip(max);
113  }
114
115  /**
116   * Returns a string containing the supplied unsigned {@code long} values separated by
117   * {@code separator}. For example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}.
118   *
119   * @param separator the text that should appear between consecutive values in the resulting
120   *        string (but not at the start or end)
121   * @param array an array of unsigned {@code long} values, possibly empty
122   */
123  public static String join(String separator, long... array) {
124    checkNotNull(separator);
125    if (array.length == 0) {
126      return "";
127    }
128
129    // For pre-sizing a builder, just get the right order of magnitude
130    StringBuilder builder = new StringBuilder(array.length * 5);
131    builder.append(array[0]);
132    for (int i = 1; i < array.length; i++) {
133      builder.append(separator).append(toString(array[i]));
134    }
135    return builder.toString();
136  }
137
138  /**
139   * Returns a comparator that compares two arrays of unsigned {@code long} values
140   * lexicographically. That is, it compares, using {@link #compare(long, long)}), the first pair of
141   * values that follow any common prefix, or when one array is a prefix of the other, treats the
142   * shorter array as the lesser. For example, {@code [] < [1L] < [1L, 2L] < [2L] < [1L << 63]}.
143   *
144   * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays
145   * support only identity equality), but it is consistent with
146   * {@link Arrays#equals(long[], long[])}.
147   *
148   * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order">Lexicographical order
149   *      article at Wikipedia</a>
150   */
151  public static Comparator<long[]> lexicographicalComparator() {
152    return LexicographicalComparator.INSTANCE;
153  }
154
155  enum LexicographicalComparator implements Comparator<long[]> {
156    INSTANCE;
157
158    @Override
159    public int compare(long[] left, long[] right) {
160      int minLength = Math.min(left.length, right.length);
161      for (int i = 0; i < minLength; i++) {
162        if (left[i] != right[i]) {
163          return UnsignedLongs.compare(left[i], right[i]);
164        }
165      }
166      return left.length - right.length;
167    }
168  }
169
170  /**
171   * Returns dividend / divisor, where the dividend and divisor are treated as unsigned 64-bit
172   * quantities.
173   *
174   * @param dividend the dividend (numerator)
175   * @param divisor the divisor (denominator)
176   * @throws ArithmeticException if divisor is 0
177   */
178  public static long divide(long dividend, long divisor) {
179    if (divisor < 0) { // i.e., divisor >= 2^63:
180      if (compare(dividend, divisor) < 0) {
181        return 0; // dividend < divisor
182      } else {
183        return 1; // dividend >= divisor
184      }
185    }
186
187    // Optimization - use signed division if dividend < 2^63
188    if (dividend >= 0) {
189      return dividend / divisor;
190    }
191
192    /*
193     * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is
194     * guaranteed to be either exact or one less than the correct value. This follows from fact
195     * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not
196     * quite trivial.
197     */
198    long quotient = ((dividend >>> 1) / divisor) << 1;
199    long rem = dividend - quotient * divisor;
200    return quotient + (compare(rem, divisor) >= 0 ? 1 : 0);
201  }
202
203  /**
204   * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 64-bit
205   * quantities.
206   *
207   * @param dividend the dividend (numerator)
208   * @param divisor the divisor (denominator)
209   * @throws ArithmeticException if divisor is 0
210   * @since 11.0
211   */
212  public static long remainder(long dividend, long divisor) {
213    if (divisor < 0) { // i.e., divisor >= 2^63:
214      if (compare(dividend, divisor) < 0) {
215        return dividend; // dividend < divisor
216      } else {
217        return dividend - divisor; // dividend >= divisor
218      }
219    }
220
221    // Optimization - use signed modulus if dividend < 2^63
222    if (dividend >= 0) {
223      return dividend % divisor;
224    }
225
226    /*
227     * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is
228     * guaranteed to be either exact or one less than the correct value. This follows from fact
229     * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not
230     * quite trivial.
231     */
232    long quotient = ((dividend >>> 1) / divisor) << 1;
233    long rem = dividend - quotient * divisor;
234    return rem - (compare(rem, divisor) >= 0 ? divisor : 0);
235  }
236
237  /**
238   * Returns the unsigned {@code long} value represented by the given decimal string.
239   *
240   * @throws NumberFormatException if the string does not contain a valid unsigned {@code long}
241   *         value
242   */
243  public static long parseUnsignedLong(String s) {
244    return parseUnsignedLong(s, 10);
245  }
246
247  /**
248   * Returns the unsigned {@code long} value represented by a string with the given radix.
249   *
250   * @param s the string containing the unsigned {@code long} representation to be parsed.
251   * @param radix the radix to use while parsing {@code s}
252   * @throws NumberFormatException if the string does not contain a valid unsigned {@code long}
253   *         with the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX}
254   *         and {@link Character#MAX_RADIX}.
255   */
256  public static long parseUnsignedLong(String s, int radix) {
257    checkNotNull(s);
258    if (s.length() == 0) {
259      throw new NumberFormatException("empty string");
260    }
261    if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
262      throw new NumberFormatException("illegal radix:" + radix);
263    }
264
265    int max_safe_pos = maxSafeDigits[radix] - 1;
266    long value = 0;
267    for (int pos = 0; pos < s.length(); pos++) {
268      int digit = Character.digit(s.charAt(pos), radix);
269      if (digit == -1) {
270        throw new NumberFormatException(s);
271      }
272      if (pos > max_safe_pos && overflowInParse(value, digit, radix)) {
273        throw new NumberFormatException("Too large for unsigned long: " + s);
274      }
275      value = (value * radix) + digit;
276    }
277
278    return value;
279  }
280
281  /**
282   * Returns true if (current * radix) + digit is a number too large to be represented by an
283   * unsigned long. This is useful for detecting overflow while parsing a string representation of
284   * a number. Does not verify whether supplied radix is valid, passing an invalid radix will give
285   * undefined results or an ArrayIndexOutOfBoundsException.
286   */
287  private static boolean overflowInParse(long current, int digit, int radix) {
288    if (current >= 0) {
289      if (current < maxValueDivs[radix]) {
290        return false;
291      }
292      if (current > maxValueDivs[radix]) {
293        return true;
294      }
295      // current == maxValueDivs[radix]
296      return (digit > maxValueMods[radix]);
297    }
298
299    // current < 0: high bit is set
300    return true;
301  }
302
303  /**
304   * Returns a string representation of x, where x is treated as unsigned.
305   */
306  public static String toString(long x) {
307    return toString(x, 10);
308  }
309
310  /**
311   * Returns a string representation of {@code x} for the given radix, where {@code x} is treated
312   * as unsigned.
313   *
314   * @param x the value to convert to a string.
315   * @param radix the radix to use while working with {@code x}
316   * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX}
317   *         and {@link Character#MAX_RADIX}.
318   */
319  public static String toString(long x, int radix) {
320    checkArgument(radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX,
321        "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix);
322    if (x == 0) {
323      // Simply return "0"
324      return "0";
325    } else {
326      char[] buf = new char[64];
327      int i = buf.length;
328      if (x < 0) {
329        // Split x into high-order and low-order halves.
330        // Individual digits are generated from the bottom half into which
331        // bits are moved continously from the top half.
332        long top = x >>> 32;
333        long bot = (x & 0xffffffffl) + ((top % radix) << 32);
334        top /= radix;
335        while ((bot > 0) || (top > 0)) {
336          buf[--i] = Character.forDigit((int) (bot % radix), radix);
337          bot = (bot / radix) + ((top % radix) << 32);
338          top /= radix;
339        }
340      } else {
341        // Simple modulo/division approach
342        while (x > 0) {
343          buf[--i] = Character.forDigit((int) (x % radix), radix);
344          x /= radix;
345        }
346      }
347      // Generate string
348      return new String(buf, i, buf.length - i);
349    }
350  }
351
352  // calculated as 0xffffffffffffffff / radix
353  private static final long[] maxValueDivs = new long[Character.MAX_RADIX + 1];
354  private static final int[] maxValueMods = new int[Character.MAX_RADIX + 1];
355  private static final int[] maxSafeDigits = new int[Character.MAX_RADIX + 1];
356  static {
357    BigInteger overflow = new BigInteger("10000000000000000", 16);
358    for (int i = Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
359      maxValueDivs[i] = divide(MAX_VALUE, i);
360      maxValueMods[i] = (int) remainder(MAX_VALUE, i);
361      maxSafeDigits[i] = overflow.toString(i).length() - 1;
362    }
363  }
364}
365