Dominators.h revision 0a8fe7a2458f0412bce1ed282fd1a3ca6fdc51bc
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/BasicBlock.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/GraphTraits.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Compiler.h"
35#include <algorithm>
36#include <map>
37#include <set>
38
39namespace llvm {
40
41//===----------------------------------------------------------------------===//
42/// DominatorBase - Base class that other, more interesting dominator analyses
43/// inherit from.
44///
45template <class NodeT>
46class DominatorBase {
47protected:
48  std::vector<NodeT*> Roots;
49  const bool IsPostDominators;
50  inline explicit DominatorBase(bool isPostDom) :
51    Roots(), IsPostDominators(isPostDom) {}
52public:
53
54  /// getRoots -  Return the root blocks of the current CFG.  This may include
55  /// multiple blocks if we are computing post dominators.  For forward
56  /// dominators, this will always be a single block (the entry node).
57  ///
58  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
59
60  /// isPostDominator - Returns true if analysis based of postdoms
61  ///
62  bool isPostDominator() const { return IsPostDominators; }
63};
64
65
66//===----------------------------------------------------------------------===//
67// DomTreeNode - Dominator Tree Node
68template<class NodeT> class DominatorTreeBase;
69struct PostDominatorTree;
70class MachineBasicBlock;
71
72template <class NodeT>
73class DomTreeNodeBase {
74  NodeT *TheBB;
75  DomTreeNodeBase<NodeT> *IDom;
76  std::vector<DomTreeNodeBase<NodeT> *> Children;
77  int DFSNumIn, DFSNumOut;
78
79  template<class N> friend class DominatorTreeBase;
80  friend struct PostDominatorTree;
81public:
82  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
84                   const_iterator;
85
86  iterator begin()             { return Children.begin(); }
87  iterator end()               { return Children.end(); }
88  const_iterator begin() const { return Children.begin(); }
89  const_iterator end()   const { return Children.end(); }
90
91  NodeT *getBlock() const { return TheBB; }
92  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
93  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
94    return Children;
95  }
96
97  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
98    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
99
100  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
101    Children.push_back(C);
102    return C;
103  }
104
105  size_t getNumChildren() const {
106    return Children.size();
107  }
108
109  void clearAllChildren() {
110    Children.clear();
111  }
112
113  bool compare(DomTreeNodeBase<NodeT> *Other) {
114    if (getNumChildren() != Other->getNumChildren())
115      return true;
116
117    SmallPtrSet<NodeT *, 4> OtherChildren;
118    for(iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
119      NodeT *Nd = (*I)->getBlock();
120      OtherChildren.insert(Nd);
121    }
122
123    for(iterator I = begin(), E = end(); I != E; ++I) {
124      NodeT *N = (*I)->getBlock();
125      if (OtherChildren.count(N) == 0)
126        return true;
127    }
128    return false;
129  }
130
131  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
132    assert(IDom && "No immediate dominator?");
133    if (IDom != NewIDom) {
134      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
135                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
136      assert(I != IDom->Children.end() &&
137             "Not in immediate dominator children set!");
138      // I am no longer your child...
139      IDom->Children.erase(I);
140
141      // Switch to new dominator
142      IDom = NewIDom;
143      IDom->Children.push_back(this);
144    }
145  }
146
147  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
148  /// not call them.
149  unsigned getDFSNumIn() const { return DFSNumIn; }
150  unsigned getDFSNumOut() const { return DFSNumOut; }
151private:
152  // Return true if this node is dominated by other. Use this only if DFS info
153  // is valid.
154  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
155    return this->DFSNumIn >= other->DFSNumIn &&
156      this->DFSNumOut <= other->DFSNumOut;
157  }
158};
159
160EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
161EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
162
163template<class NodeT>
164static std::ostream &operator<<(std::ostream &o,
165                                const DomTreeNodeBase<NodeT> *Node) {
166  if (Node->getBlock())
167    WriteAsOperand(o, Node->getBlock(), false);
168  else
169    o << " <<exit node>>";
170
171  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
172
173  return o << "\n";
174}
175
176template<class NodeT>
177static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, std::ostream &o,
178                         unsigned Lev) {
179  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
180  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
181       E = N->end(); I != E; ++I)
182    PrintDomTree<NodeT>(*I, o, Lev+1);
183}
184
185typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
186
187//===----------------------------------------------------------------------===//
188/// DominatorTree - Calculate the immediate dominator tree for a function.
189///
190
191template<class FuncT, class N>
192void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
193               FuncT& F);
194
195template<class NodeT>
196class DominatorTreeBase : public DominatorBase<NodeT> {
197protected:
198  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
199  DomTreeNodeMapType DomTreeNodes;
200  DomTreeNodeBase<NodeT> *RootNode;
201
202  bool DFSInfoValid;
203  unsigned int SlowQueries;
204  // Information record used during immediate dominators computation.
205  struct InfoRec {
206    unsigned DFSNum;
207    unsigned Semi;
208    unsigned Size;
209    NodeT *Label, *Child;
210    unsigned Parent, Ancestor;
211
212    std::vector<NodeT*> Bucket;
213
214    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
215                Ancestor(0) {}
216  };
217
218  DenseMap<NodeT*, NodeT*> IDoms;
219
220  // Vertex - Map the DFS number to the BasicBlock*
221  std::vector<NodeT*> Vertex;
222
223  // Info - Collection of information used during the computation of idoms.
224  DenseMap<NodeT*, InfoRec> Info;
225
226  void reset() {
227    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
228           E = DomTreeNodes.end(); I != E; ++I)
229      delete I->second;
230    DomTreeNodes.clear();
231    IDoms.clear();
232    this->Roots.clear();
233    Vertex.clear();
234    RootNode = 0;
235  }
236
237  // NewBB is split and now it has one successor. Update dominator tree to
238  // reflect this change.
239  template<class N, class GraphT>
240  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
241             typename GraphT::NodeType* NewBB) {
242    assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
243           && "NewBB should have a single successor!");
244    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
245
246    std::vector<typename GraphT::NodeType*> PredBlocks;
247    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
248         GraphTraits<Inverse<N> >::child_begin(NewBB),
249         PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
250      PredBlocks.push_back(*PI);
251
252      assert(!PredBlocks.empty() && "No predblocks??");
253
254      // The newly inserted basic block will dominate existing basic blocks iff the
255      // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
256      // the non-pred blocks, then they all must be the same block!
257      //
258      bool NewBBDominatesNewBBSucc = true;
259      {
260        typename GraphT::NodeType* OnePred = PredBlocks[0];
261        size_t i = 1, e = PredBlocks.size();
262        for (i = 1; !DT.isReachableFromEntry(OnePred); ++i) {
263          assert(i != e && "Didn't find reachable pred?");
264          OnePred = PredBlocks[i];
265        }
266
267        for (; i != e; ++i)
268          if (PredBlocks[i] != OnePred && DT.isReachableFromEntry(OnePred)) {
269            NewBBDominatesNewBBSucc = false;
270            break;
271          }
272
273      if (NewBBDominatesNewBBSucc)
274        for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
275             GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
276             E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
277          if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) {
278            NewBBDominatesNewBBSucc = false;
279            break;
280          }
281    }
282
283    // The other scenario where the new block can dominate its successors are when
284    // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
285    // already.
286    if (!NewBBDominatesNewBBSucc) {
287      NewBBDominatesNewBBSucc = true;
288      for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
289           GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
290           E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
291         if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) {
292          NewBBDominatesNewBBSucc = false;
293          break;
294        }
295    }
296
297    // Find NewBB's immediate dominator and create new dominator tree node for
298    // NewBB.
299    NodeT *NewBBIDom = 0;
300    unsigned i = 0;
301    for (i = 0; i < PredBlocks.size(); ++i)
302      if (DT.isReachableFromEntry(PredBlocks[i])) {
303        NewBBIDom = PredBlocks[i];
304        break;
305      }
306    assert(i != PredBlocks.size() && "No reachable preds?");
307    for (i = i + 1; i < PredBlocks.size(); ++i) {
308      if (DT.isReachableFromEntry(PredBlocks[i]))
309        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
310    }
311    assert(NewBBIDom && "No immediate dominator found??");
312
313    // Create the new dominator tree node... and set the idom of NewBB.
314    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
315
316    // If NewBB strictly dominates other blocks, then it is now the immediate
317    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
318    if (NewBBDominatesNewBBSucc) {
319      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
320      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
321    }
322  }
323
324public:
325  explicit DominatorTreeBase(bool isPostDom)
326    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
327  virtual ~DominatorTreeBase() { reset(); }
328
329  // FIXME: Should remove this
330  virtual bool runOnFunction(Function &F) { return false; }
331
332  /// compare - Return false if the other dominator tree base matches this
333  /// dominator tree base. Otherwise return true.
334  bool compare(DominatorTreeBase &Other) const {
335
336    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
337    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
338      return true;
339
340    SmallPtrSet<const NodeT *,4> MyBBs;
341    for (typename DomTreeNodeMapType::const_iterator
342           I = this->DomTreeNodes.begin(),
343           E = this->DomTreeNodes.end(); I != E; ++I) {
344      NodeT *BB = I->first;
345      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
346      if (OI == OtherDomTreeNodes.end())
347        return true;
348
349      DomTreeNodeBase<NodeT>* MyNd = I->second;
350      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
351
352      if (MyNd->compare(OtherNd))
353        return true;
354    }
355
356    return false;
357  }
358
359  virtual void releaseMemory() { reset(); }
360
361  /// getNode - return the (Post)DominatorTree node for the specified basic
362  /// block.  This is the same as using operator[] on this class.
363  ///
364  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
365    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
366    return I != DomTreeNodes.end() ? I->second : 0;
367  }
368
369  /// getRootNode - This returns the entry node for the CFG of the function.  If
370  /// this tree represents the post-dominance relations for a function, however,
371  /// this root may be a node with the block == NULL.  This is the case when
372  /// there are multiple exit nodes from a particular function.  Consumers of
373  /// post-dominance information must be capable of dealing with this
374  /// possibility.
375  ///
376  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
377  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
378
379  /// properlyDominates - Returns true iff this dominates N and this != N.
380  /// Note that this is not a constant time operation!
381  ///
382  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
383                         DomTreeNodeBase<NodeT> *B) const {
384    if (A == 0 || B == 0) return false;
385    return dominatedBySlowTreeWalk(A, B);
386  }
387
388  inline bool properlyDominates(NodeT *A, NodeT *B) {
389    return properlyDominates(getNode(A), getNode(B));
390  }
391
392  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
393                               const DomTreeNodeBase<NodeT> *B) const {
394    const DomTreeNodeBase<NodeT> *IDom;
395    if (A == 0 || B == 0) return false;
396    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
397      B = IDom;   // Walk up the tree
398    return IDom != 0;
399  }
400
401
402  /// isReachableFromEntry - Return true if A is dominated by the entry
403  /// block of the function containing it.
404  bool isReachableFromEntry(NodeT* A) {
405    assert (!this->isPostDominator()
406            && "This is not implemented for post dominators");
407    return dominates(&A->getParent()->front(), A);
408  }
409
410  /// dominates - Returns true iff A dominates B.  Note that this is not a
411  /// constant time operation!
412  ///
413  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
414                        DomTreeNodeBase<NodeT> *B) {
415    if (B == A)
416      return true;  // A node trivially dominates itself.
417
418    if (A == 0 || B == 0)
419      return false;
420
421    if (DFSInfoValid)
422      return B->DominatedBy(A);
423
424    // If we end up with too many slow queries, just update the
425    // DFS numbers on the theory that we are going to keep querying.
426    SlowQueries++;
427    if (SlowQueries > 32) {
428      updateDFSNumbers();
429      return B->DominatedBy(A);
430    }
431
432    return dominatedBySlowTreeWalk(A, B);
433  }
434
435  inline bool dominates(NodeT *A, NodeT *B) {
436    if (A == B)
437      return true;
438
439    return dominates(getNode(A), getNode(B));
440  }
441
442  NodeT *getRoot() const {
443    assert(this->Roots.size() == 1 && "Should always have entry node!");
444    return this->Roots[0];
445  }
446
447  /// findNearestCommonDominator - Find nearest common dominator basic block
448  /// for basic block A and B. If there is no such block then return NULL.
449  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
450
451    assert (!this->isPostDominator()
452            && "This is not implemented for post dominators");
453    assert (A->getParent() == B->getParent()
454            && "Two blocks are not in same function");
455
456    // If either A or B is a entry block then it is nearest common dominator.
457    NodeT &Entry  = A->getParent()->front();
458    if (A == &Entry || B == &Entry)
459      return &Entry;
460
461    // If B dominates A then B is nearest common dominator.
462    if (dominates(B, A))
463      return B;
464
465    // If A dominates B then A is nearest common dominator.
466    if (dominates(A, B))
467      return A;
468
469    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
470    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
471
472    // Collect NodeA dominators set.
473    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
474    NodeADoms.insert(NodeA);
475    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
476    while (IDomA) {
477      NodeADoms.insert(IDomA);
478      IDomA = IDomA->getIDom();
479    }
480
481    // Walk NodeB immediate dominators chain and find common dominator node.
482    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
483    while(IDomB) {
484      if (NodeADoms.count(IDomB) != 0)
485        return IDomB->getBlock();
486
487      IDomB = IDomB->getIDom();
488    }
489
490    return NULL;
491  }
492
493  //===--------------------------------------------------------------------===//
494  // API to update (Post)DominatorTree information based on modifications to
495  // the CFG...
496
497  /// addNewBlock - Add a new node to the dominator tree information.  This
498  /// creates a new node as a child of DomBB dominator node,linking it into
499  /// the children list of the immediate dominator.
500  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
501    assert(getNode(BB) == 0 && "Block already in dominator tree!");
502    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
503    assert(IDomNode && "Not immediate dominator specified for block!");
504    DFSInfoValid = false;
505    return DomTreeNodes[BB] =
506      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
507  }
508
509  /// changeImmediateDominator - This method is used to update the dominator
510  /// tree information when a node's immediate dominator changes.
511  ///
512  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
513                                DomTreeNodeBase<NodeT> *NewIDom) {
514    assert(N && NewIDom && "Cannot change null node pointers!");
515    DFSInfoValid = false;
516    N->setIDom(NewIDom);
517  }
518
519  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
520    changeImmediateDominator(getNode(BB), getNode(NewBB));
521  }
522
523  /// eraseNode - Removes a node from  the dominator tree. Block must not
524  /// domiante any other blocks. Removes node from its immediate dominator's
525  /// children list. Deletes dominator node associated with basic block BB.
526  void eraseNode(NodeT *BB) {
527    DomTreeNodeBase<NodeT> *Node = getNode(BB);
528    assert (Node && "Removing node that isn't in dominator tree.");
529    assert (Node->getChildren().empty() && "Node is not a leaf node.");
530
531      // Remove node from immediate dominator's children list.
532    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
533    if (IDom) {
534      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
535        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
536      assert(I != IDom->Children.end() &&
537             "Not in immediate dominator children set!");
538      // I am no longer your child...
539      IDom->Children.erase(I);
540    }
541
542    DomTreeNodes.erase(BB);
543    delete Node;
544  }
545
546  /// removeNode - Removes a node from the dominator tree.  Block must not
547  /// dominate any other blocks.  Invalidates any node pointing to removed
548  /// block.
549  void removeNode(NodeT *BB) {
550    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
551    DomTreeNodes.erase(BB);
552  }
553
554  /// splitBlock - BB is split and now it has one successor. Update dominator
555  /// tree to reflect this change.
556  void splitBlock(NodeT* NewBB) {
557    if (this->IsPostDominators)
558      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
559    else
560      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
561  }
562
563  /// print - Convert to human readable form
564  ///
565  virtual void print(std::ostream &o, const Module* ) const {
566    o << "=============================--------------------------------\n";
567    if (this->isPostDominator())
568      o << "Inorder PostDominator Tree: ";
569    else
570      o << "Inorder Dominator Tree: ";
571    if (this->DFSInfoValid)
572      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
573    o << "\n";
574
575    PrintDomTree<NodeT>(getRootNode(), o, 1);
576  }
577
578  void print(std::ostream *OS, const Module* M = 0) const {
579    if (OS) print(*OS, M);
580  }
581
582  virtual void dump() {
583    print(llvm::cerr);
584  }
585
586protected:
587  template<class GraphT>
588  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
589                       typename GraphT::NodeType* VIn);
590
591  template<class GraphT>
592  friend typename GraphT::NodeType* Eval(
593                               DominatorTreeBase<typename GraphT::NodeType>& DT,
594                                         typename GraphT::NodeType* V);
595
596  template<class GraphT>
597  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
598                   unsigned DFSNumV, typename GraphT::NodeType* W,
599         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
600
601  template<class GraphT>
602  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
603                          typename GraphT::NodeType* V,
604                          unsigned N);
605
606  template<class FuncT, class N>
607  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
608                        FuncT& F);
609
610  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
611  /// dominator tree in dfs order.
612  void updateDFSNumbers() {
613    unsigned DFSNum = 0;
614
615    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
616                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
617
618    for (unsigned i = 0, e = (unsigned)this->Roots.size(); i != e; ++i) {
619      DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
620      WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
621      ThisRoot->DFSNumIn = DFSNum++;
622
623      while (!WorkStack.empty()) {
624        DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
625        typename DomTreeNodeBase<NodeT>::iterator ChildIt =
626                                                        WorkStack.back().second;
627
628        // If we visited all of the children of this node, "recurse" back up the
629        // stack setting the DFOutNum.
630        if (ChildIt == Node->end()) {
631          Node->DFSNumOut = DFSNum++;
632          WorkStack.pop_back();
633        } else {
634          // Otherwise, recursively visit this child.
635          DomTreeNodeBase<NodeT> *Child = *ChildIt;
636          ++WorkStack.back().second;
637
638          WorkStack.push_back(std::make_pair(Child, Child->begin()));
639          Child->DFSNumIn = DFSNum++;
640        }
641      }
642    }
643
644    SlowQueries = 0;
645    DFSInfoValid = true;
646  }
647
648  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
649    if (DomTreeNodeBase<NodeT> *BBNode = this->DomTreeNodes[BB])
650      return BBNode;
651
652    // Haven't calculated this node yet?  Get or calculate the node for the
653    // immediate dominator.
654    NodeT *IDom = getIDom(BB);
655
656    assert(IDom || this->DomTreeNodes[NULL]);
657    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
658
659    // Add a new tree node for this BasicBlock, and link it as a child of
660    // IDomNode
661    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
662    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
663  }
664
665  inline NodeT *getIDom(NodeT *BB) const {
666    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
667    return I != IDoms.end() ? I->second : 0;
668  }
669
670  inline void addRoot(NodeT* BB) {
671    this->Roots.push_back(BB);
672  }
673
674public:
675  /// recalculate - compute a dominator tree for the given function
676  template<class FT>
677  void recalculate(FT& F) {
678    if (!this->IsPostDominators) {
679      reset();
680
681      // Initialize roots
682      this->Roots.push_back(&F.front());
683      this->IDoms[&F.front()] = 0;
684      this->DomTreeNodes[&F.front()] = 0;
685      this->Vertex.push_back(0);
686
687      Calculate<FT, NodeT*>(*this, F);
688
689      updateDFSNumbers();
690    } else {
691      reset();     // Reset from the last time we were run...
692
693      // Initialize the roots list
694      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
695        if (std::distance(GraphTraits<FT*>::child_begin(I),
696                          GraphTraits<FT*>::child_end(I)) == 0)
697          addRoot(I);
698
699        // Prepopulate maps so that we don't get iterator invalidation issues later.
700        this->IDoms[I] = 0;
701        this->DomTreeNodes[I] = 0;
702      }
703
704      this->Vertex.push_back(0);
705
706      Calculate<FT, Inverse<NodeT*> >(*this, F);
707    }
708  }
709};
710
711EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
712
713//===-------------------------------------
714/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
715/// compute a normal dominator tree.
716///
717class DominatorTree : public FunctionPass {
718public:
719  static char ID; // Pass ID, replacement for typeid
720  DominatorTreeBase<BasicBlock>* DT;
721
722  DominatorTree() : FunctionPass(&ID) {
723    DT = new DominatorTreeBase<BasicBlock>(false);
724  }
725
726  ~DominatorTree() {
727    DT->releaseMemory();
728    delete DT;
729  }
730
731  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
732
733  /// getRoots -  Return the root blocks of the current CFG.  This may include
734  /// multiple blocks if we are computing post dominators.  For forward
735  /// dominators, this will always be a single block (the entry node).
736  ///
737  inline const std::vector<BasicBlock*> &getRoots() const {
738    return DT->getRoots();
739  }
740
741  inline BasicBlock *getRoot() const {
742    return DT->getRoot();
743  }
744
745  inline DomTreeNode *getRootNode() const {
746    return DT->getRootNode();
747  }
748
749  /// compare - Return false if the other dominator tree matches this
750  /// dominator tree. Otherwise return true.
751  inline bool compare(DominatorTree &Other) const {
752    DomTreeNode *R = getRootNode();
753    DomTreeNode *OtherR = Other.getRootNode();
754
755    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
756      return true;
757
758    if (DT->compare(Other.getBase()))
759      return true;
760
761    return false;
762  }
763
764  virtual bool runOnFunction(Function &F);
765
766  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
767    AU.setPreservesAll();
768  }
769
770  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
771    return DT->dominates(A, B);
772  }
773
774  inline bool dominates(BasicBlock* A, BasicBlock* B) const {
775    return DT->dominates(A, B);
776  }
777
778  // dominates - Return true if A dominates B. This performs the
779  // special checks necessary if A and B are in the same basic block.
780  bool dominates(Instruction *A, Instruction *B) const {
781    BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
782    if (BBA != BBB) return DT->dominates(BBA, BBB);
783
784    // It is not possible to determine dominance between two PHI nodes
785    // based on their ordering.
786    if (isa<PHINode>(A) && isa<PHINode>(B))
787      return false;
788
789    // Loop through the basic block until we find A or B.
790    BasicBlock::iterator I = BBA->begin();
791    for (; &*I != A && &*I != B; ++I) /*empty*/;
792
793    //if(!DT.IsPostDominators) {
794      // A dominates B if it is found first in the basic block.
795      return &*I == A;
796    //} else {
797    //  // A post-dominates B if B is found first in the basic block.
798    //  return &*I == B;
799    //}
800  }
801
802  inline bool properlyDominates(const DomTreeNode* A, DomTreeNode* B) const {
803    return DT->properlyDominates(A, B);
804  }
805
806  inline bool properlyDominates(BasicBlock* A, BasicBlock* B) const {
807    return DT->properlyDominates(A, B);
808  }
809
810  /// findNearestCommonDominator - Find nearest common dominator basic block
811  /// for basic block A and B. If there is no such block then return NULL.
812  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
813    return DT->findNearestCommonDominator(A, B);
814  }
815
816  inline DomTreeNode *operator[](BasicBlock *BB) const {
817    return DT->getNode(BB);
818  }
819
820  /// getNode - return the (Post)DominatorTree node for the specified basic
821  /// block.  This is the same as using operator[] on this class.
822  ///
823  inline DomTreeNode *getNode(BasicBlock *BB) const {
824    return DT->getNode(BB);
825  }
826
827  /// addNewBlock - Add a new node to the dominator tree information.  This
828  /// creates a new node as a child of DomBB dominator node,linking it into
829  /// the children list of the immediate dominator.
830  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
831    return DT->addNewBlock(BB, DomBB);
832  }
833
834  /// changeImmediateDominator - This method is used to update the dominator
835  /// tree information when a node's immediate dominator changes.
836  ///
837  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
838    DT->changeImmediateDominator(N, NewIDom);
839  }
840
841  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
842    DT->changeImmediateDominator(N, NewIDom);
843  }
844
845  /// eraseNode - Removes a node from  the dominator tree. Block must not
846  /// domiante any other blocks. Removes node from its immediate dominator's
847  /// children list. Deletes dominator node associated with basic block BB.
848  inline void eraseNode(BasicBlock *BB) {
849    DT->eraseNode(BB);
850  }
851
852  /// splitBlock - BB is split and now it has one successor. Update dominator
853  /// tree to reflect this change.
854  inline void splitBlock(BasicBlock* NewBB) {
855    DT->splitBlock(NewBB);
856  }
857
858  bool isReachableFromEntry(BasicBlock* A) {
859    return DT->isReachableFromEntry(A);
860  }
861
862
863  virtual void releaseMemory() {
864    DT->releaseMemory();
865  }
866
867  virtual void print(std::ostream &OS, const Module* M= 0) const {
868    DT->print(OS, M);
869  }
870};
871
872//===-------------------------------------
873/// DominatorTree GraphTraits specialization so the DominatorTree can be
874/// iterable by generic graph iterators.
875///
876template <> struct GraphTraits<DomTreeNode *> {
877  typedef DomTreeNode NodeType;
878  typedef NodeType::iterator  ChildIteratorType;
879
880  static NodeType *getEntryNode(NodeType *N) {
881    return N;
882  }
883  static inline ChildIteratorType child_begin(NodeType* N) {
884    return N->begin();
885  }
886  static inline ChildIteratorType child_end(NodeType* N) {
887    return N->end();
888  }
889};
890
891template <> struct GraphTraits<DominatorTree*>
892  : public GraphTraits<DomTreeNode *> {
893  static NodeType *getEntryNode(DominatorTree *DT) {
894    return DT->getRootNode();
895  }
896};
897
898
899//===----------------------------------------------------------------------===//
900/// DominanceFrontierBase - Common base class for computing forward and inverse
901/// dominance frontiers for a function.
902///
903class DominanceFrontierBase : public FunctionPass {
904public:
905  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
906  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
907protected:
908  DomSetMapType Frontiers;
909  std::vector<BasicBlock*> Roots;
910  const bool IsPostDominators;
911
912public:
913  DominanceFrontierBase(void *ID, bool isPostDom)
914    : FunctionPass(ID), IsPostDominators(isPostDom) {}
915
916  /// getRoots -  Return the root blocks of the current CFG.  This may include
917  /// multiple blocks if we are computing post dominators.  For forward
918  /// dominators, this will always be a single block (the entry node).
919  ///
920  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
921
922  /// isPostDominator - Returns true if analysis based of postdoms
923  ///
924  bool isPostDominator() const { return IsPostDominators; }
925
926  virtual void releaseMemory() { Frontiers.clear(); }
927
928  // Accessor interface:
929  typedef DomSetMapType::iterator iterator;
930  typedef DomSetMapType::const_iterator const_iterator;
931  iterator       begin()       { return Frontiers.begin(); }
932  const_iterator begin() const { return Frontiers.begin(); }
933  iterator       end()         { return Frontiers.end(); }
934  const_iterator end()   const { return Frontiers.end(); }
935  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
936  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
937
938  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
939    assert(find(BB) == end() && "Block already in DominanceFrontier!");
940    Frontiers.insert(std::make_pair(BB, frontier));
941  }
942
943  /// removeBlock - Remove basic block BB's frontier.
944  void removeBlock(BasicBlock *BB) {
945    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
946    for (iterator I = begin(), E = end(); I != E; ++I)
947      I->second.erase(BB);
948    Frontiers.erase(BB);
949  }
950
951  void addToFrontier(iterator I, BasicBlock *Node) {
952    assert(I != end() && "BB is not in DominanceFrontier!");
953    I->second.insert(Node);
954  }
955
956  void removeFromFrontier(iterator I, BasicBlock *Node) {
957    assert(I != end() && "BB is not in DominanceFrontier!");
958    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
959    I->second.erase(Node);
960  }
961
962  /// compareDomSet - Return false if two domsets match. Otherwise
963  /// return true;
964  bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
965    std::set<BasicBlock *> tmpSet;
966    for (DomSetType::const_iterator I = DS2.begin(),
967           E = DS2.end(); I != E; ++I)
968      tmpSet.insert(*I);
969
970    for (DomSetType::const_iterator I = DS1.begin(),
971           E = DS1.end(); I != E; ) {
972      BasicBlock *Node = *I++;
973
974      if (tmpSet.erase(Node) == 0)
975        // Node is in DS1 but not in DS2.
976        return true;
977    }
978
979    if(!tmpSet.empty())
980      // There are nodes that are in DS2 but not in DS1.
981      return true;
982
983    // DS1 and DS2 matches.
984    return false;
985  }
986
987  /// compare - Return true if the other dominance frontier base matches
988  /// this dominance frontier base. Otherwise return false.
989  bool compare(DominanceFrontierBase &Other) const {
990    DomSetMapType tmpFrontiers;
991    for (DomSetMapType::const_iterator I = Other.begin(),
992           E = Other.end(); I != E; ++I)
993      tmpFrontiers.insert(std::make_pair(I->first, I->second));
994
995    for (DomSetMapType::iterator I = tmpFrontiers.begin(),
996           E = tmpFrontiers.end(); I != E; ) {
997      BasicBlock *Node = I->first;
998      const_iterator DFI = find(Node);
999      if (DFI == end())
1000        return true;
1001
1002      if (compareDomSet(I->second, DFI->second))
1003        return true;
1004
1005      ++I;
1006      tmpFrontiers.erase(Node);
1007    }
1008
1009    if (!tmpFrontiers.empty())
1010      return true;
1011
1012    return false;
1013  }
1014
1015  /// print - Convert to human readable form
1016  ///
1017  virtual void print(std::ostream &OS, const Module* = 0) const;
1018  void print(std::ostream *OS, const Module* M = 0) const {
1019    if (OS) print(*OS, M);
1020  }
1021  virtual void dump();
1022};
1023
1024
1025//===-------------------------------------
1026/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
1027/// used to compute a forward dominator frontiers.
1028///
1029class DominanceFrontier : public DominanceFrontierBase {
1030public:
1031  static char ID; // Pass ID, replacement for typeid
1032  DominanceFrontier() :
1033    DominanceFrontierBase(&ID, false) {}
1034
1035  BasicBlock *getRoot() const {
1036    assert(Roots.size() == 1 && "Should always have entry node!");
1037    return Roots[0];
1038  }
1039
1040  virtual bool runOnFunction(Function &) {
1041    Frontiers.clear();
1042    DominatorTree &DT = getAnalysis<DominatorTree>();
1043    Roots = DT.getRoots();
1044    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
1045    calculate(DT, DT[Roots[0]]);
1046    return false;
1047  }
1048
1049  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1050    AU.setPreservesAll();
1051    AU.addRequired<DominatorTree>();
1052  }
1053
1054  /// splitBlock - BB is split and now it has one successor. Update dominance
1055  /// frontier to reflect this change.
1056  void splitBlock(BasicBlock *BB);
1057
1058  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
1059  /// to reflect this change.
1060  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
1061                                DominatorTree *DT) {
1062    // NewBB is now  dominating BB. Which means BB's dominance
1063    // frontier is now part of NewBB's dominance frontier. However, BB
1064    // itself is not member of NewBB's dominance frontier.
1065    DominanceFrontier::iterator NewDFI = find(NewBB);
1066    DominanceFrontier::iterator DFI = find(BB);
1067    // If BB was an entry block then its frontier is empty.
1068    if (DFI == end())
1069      return;
1070    DominanceFrontier::DomSetType BBSet = DFI->second;
1071    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
1072           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
1073      BasicBlock *DFMember = *BBSetI;
1074      // Insert only if NewBB dominates DFMember.
1075      if (!DT->dominates(NewBB, DFMember))
1076        NewDFI->second.insert(DFMember);
1077    }
1078    NewDFI->second.erase(BB);
1079  }
1080
1081  const DomSetType &calculate(const DominatorTree &DT,
1082                              const DomTreeNode *Node);
1083};
1084
1085
1086} // End llvm namespace
1087
1088#endif
1089