Dominators.h revision 0ab301c5fa5656b812db8cc944ab41259c8990dc
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. ETForest: Efficient data structure for dominance comparisons and
13//     nearest-common-ancestor queries.
14//  3. DominanceFrontier: Calculate and hold the dominance frontier for a
15//     function.
16//
17//  These data structures are listed in increasing order of complexity.  It
18//  takes longer to calculate the dominator frontier, for example, than the
19//  DominatorTree mapping.
20//
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_ANALYSIS_DOMINATORS_H
24#define LLVM_ANALYSIS_DOMINATORS_H
25
26#include "llvm/Analysis/ET-Forest.h"
27#include "llvm/Pass.h"
28#include <set>
29
30namespace llvm {
31
32class Instruction;
33
34template <typename GraphType> struct GraphTraits;
35
36//===----------------------------------------------------------------------===//
37/// DominatorBase - Base class that other, more interesting dominator analyses
38/// inherit from.
39///
40class DominatorBase : public FunctionPass {
41protected:
42  std::vector<BasicBlock*> Roots;
43  const bool IsPostDominators;
44  inline DominatorBase(intptr_t ID, bool isPostDom) :
45    FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
46public:
47
48  /// getRoots -  Return the root blocks of the current CFG.  This may include
49  /// multiple blocks if we are computing post dominators.  For forward
50  /// dominators, this will always be a single block (the entry node).
51  ///
52  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
53
54  /// isPostDominator - Returns true if analysis based of postdoms
55  ///
56  bool isPostDominator() const { return IsPostDominators; }
57};
58
59
60//===----------------------------------------------------------------------===//
61// DomTreeNode - Dominator Tree Node
62
63class DomTreeNode {
64  BasicBlock *TheBB;
65  DomTreeNode *IDom;
66  ETNode *ETN;
67  std::vector<DomTreeNode*> Children;
68public:
69  typedef std::vector<DomTreeNode*>::iterator iterator;
70  typedef std::vector<DomTreeNode*>::const_iterator const_iterator;
71
72  iterator begin()             { return Children.begin(); }
73  iterator end()               { return Children.end(); }
74  const_iterator begin() const { return Children.begin(); }
75  const_iterator end()   const { return Children.end(); }
76
77  inline BasicBlock *getBlock() const { return TheBB; }
78  inline DomTreeNode *getIDom() const { return IDom; }
79  inline ETNode *getETNode() const { return ETN; }
80  inline const std::vector<DomTreeNode*> &getChildren() const { return Children; }
81
82  inline DomTreeNode(BasicBlock *BB, DomTreeNode *iDom, ETNode *E)
83    : TheBB(BB), IDom(iDom), ETN(E) {
84    if (IDom)
85      ETN->setFather(IDom->getETNode());
86  }
87  inline DomTreeNode *addChild(DomTreeNode *C) { Children.push_back(C); return C; }
88  void setIDom(DomTreeNode *NewIDom);
89};
90
91//===----------------------------------------------------------------------===//
92/// DominatorTree - Calculate the immediate dominator tree for a function.
93///
94class DominatorTreeBase : public DominatorBase {
95
96protected:
97  void reset();
98  typedef std::map<BasicBlock*, DomTreeNode*> DomTreeNodeMapType;
99  DomTreeNodeMapType DomTreeNodes;
100  DomTreeNode *RootNode;
101
102  typedef std::map<BasicBlock*, ETNode*> ETMapType;
103  ETMapType ETNodes;
104
105  bool DFSInfoValid;
106  unsigned int SlowQueries;
107  // Information record used during immediate dominators computation.
108  struct InfoRec {
109    unsigned Semi;
110    unsigned Size;
111    BasicBlock *Label, *Parent, *Child, *Ancestor;
112
113    std::vector<BasicBlock*> Bucket;
114
115    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
116  };
117
118  std::map<BasicBlock*, BasicBlock*> IDoms;
119
120  // Vertex - Map the DFS number to the BasicBlock*
121  std::vector<BasicBlock*> Vertex;
122
123  // Info - Collection of information used during the computation of idoms.
124  std::map<BasicBlock*, InfoRec> Info;
125
126  public:
127  DominatorTreeBase(intptr_t ID, bool isPostDom)
128    : DominatorBase(ID, isPostDom), DFSInfoValid(false), SlowQueries(0) {}
129  ~DominatorTreeBase() { reset(); }
130
131  virtual void releaseMemory() { reset(); }
132
133  /// getNode - return the (Post)DominatorTree node for the specified basic
134  /// block.  This is the same as using operator[] on this class.
135  ///
136  inline DomTreeNode *getNode(BasicBlock *BB) const {
137    DomTreeNodeMapType::const_iterator i = DomTreeNodes.find(BB);
138    return (i != DomTreeNodes.end()) ? i->second : 0;
139  }
140
141  inline DomTreeNode *operator[](BasicBlock *BB) const {
142    return getNode(BB);
143  }
144
145  /// getIDomBlock - return basic block BB's immediate domiantor basic block.
146  ///
147  BasicBlock *getIDomBlock(BasicBlock *BB) {
148    DomTreeNode *N = getNode(BB);
149    assert (N && "Missing dominator tree node");
150    DomTreeNode *I = N->getIDom();
151    assert (N && "Missing immediate dominator");
152    return I->getBlock();
153  }
154
155  /// getRootNode - This returns the entry node for the CFG of the function.  If
156  /// this tree represents the post-dominance relations for a function, however,
157  /// this root may be a node with the block == NULL.  This is the case when
158  /// there are multiple exit nodes from a particular function.  Consumers of
159  /// post-dominance information must be capable of dealing with this
160  /// possibility.
161  ///
162  DomTreeNode *getRootNode() { return RootNode; }
163  const DomTreeNode *getRootNode() const { return RootNode; }
164
165  /// properlyDominates - Returns true iff this dominates N and this != N.
166  /// Note that this is not a constant time operation!
167  ///
168  bool properlyDominates(const DomTreeNode *A, DomTreeNode *B) const {
169    if (A == 0 || B == 0) return false;
170    return dominatedBySlowTreeWalk(A, B);
171  }
172
173  inline bool properlyDominates(BasicBlock *A, BasicBlock *B) {
174    return properlyDominates(getNode(A), getNode(B));
175  }
176
177  bool dominatedBySlowTreeWalk(const DomTreeNode *A,
178                               const DomTreeNode *B) const {
179    const DomTreeNode *IDom;
180    if (A == 0 || B == 0) return false;
181    while ((IDom = B->getIDom()) != 0 && IDom != A)
182      B = IDom;   // Walk up the tree
183    return IDom != 0;
184  }
185
186  void updateDFSNumbers();
187
188  /// Return the nearest common dominator of A and B.
189  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
190    ETNode *NodeA = getNode(A)->getETNode();
191    ETNode *NodeB = getNode(B)->getETNode();
192
193    ETNode *Common = NodeA->NCA(NodeB);
194    if (!Common)
195      return NULL;
196    return Common->getData<BasicBlock>();
197  }
198
199  /// dominates - Returns true iff this dominates N.  Note that this is not a
200  /// constant time operation!
201  ///
202  inline bool dominates(const DomTreeNode *A, DomTreeNode *B) {
203    if (B == A)
204      return true;  // A node trivially dominates itself.
205
206    if (A == 0 || B == 0)
207      return false;
208
209    ETNode *NodeA = A->getETNode();
210    ETNode *NodeB = B->getETNode();
211
212    if (DFSInfoValid)
213      return NodeB->DominatedBy(NodeA);
214
215    // If we end up with too many slow queries, just update the
216    // DFS numbers on the theory that we are going to keep querying.
217    SlowQueries++;
218    if (SlowQueries > 32) {
219      updateDFSNumbers();
220      return NodeB->DominatedBy(NodeA);
221    }
222    //return NodeB->DominatedBySlow(NodeA);
223    return dominatedBySlowTreeWalk(A, B);
224  }
225
226  inline bool dominates(BasicBlock *A, BasicBlock *B) {
227    if (A == B)
228      return true;
229
230    return dominates(getNode(A), getNode(B));
231  }
232
233  // dominates - Return true if A dominates B. This performs the
234  // special checks necessary if A and B are in the same basic block.
235  bool dominates(Instruction *A, Instruction *B);
236
237  //===--------------------------------------------------------------------===//
238  // API to update (Post)DominatorTree information based on modifications to
239  // the CFG...
240
241  /// addNewBlock - Add a new node to the dominator tree information.  This
242  /// creates a new node as a child of DomBB dominator node,linking it into
243  /// the children list of the immediate dominator.
244  DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
245    assert(getNode(BB) == 0 && "Block already in dominator tree!");
246    DomTreeNode *IDomNode = getNode(DomBB);
247    assert(IDomNode && "Not immediate dominator specified for block!");
248    DFSInfoValid = false;
249    ETNode *E = new ETNode(BB);
250    ETNodes[BB] = E;
251    return DomTreeNodes[BB] =
252      IDomNode->addChild(new DomTreeNode(BB, IDomNode, E));
253  }
254
255  /// changeImmediateDominator - This method is used to update the dominator
256  /// tree information when a node's immediate dominator changes.
257  ///
258  void changeImmediateDominator(DomTreeNode *N, DomTreeNode *NewIDom) {
259    assert(N && NewIDom && "Cannot change null node pointers!");
260    DFSInfoValid = false;
261    N->setIDom(NewIDom);
262  }
263
264  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB) {
265    changeImmediateDominator(getNode(BB), getNode(NewBB));
266  }
267
268  /// removeNode - Removes a node from the dominator tree.  Block must not
269  /// dominate any other blocks.  Invalidates any node pointing to removed
270  /// block.
271  void removeNode(BasicBlock *BB) {
272    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
273    DomTreeNodes.erase(BB);
274  }
275
276  /// print - Convert to human readable form
277  ///
278  virtual void print(std::ostream &OS, const Module* = 0) const;
279  void print(std::ostream *OS, const Module* M = 0) const {
280    if (OS) print(*OS, M);
281  }
282  virtual void dump();
283};
284
285//===-------------------------------------
286/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
287/// compute a normal dominator tree.
288///
289class DominatorTree : public DominatorTreeBase {
290public:
291  static char ID; // Pass ID, replacement for typeid
292  DominatorTree() : DominatorTreeBase((intptr_t)&ID, false) {}
293
294  BasicBlock *getRoot() const {
295    assert(Roots.size() == 1 && "Should always have entry node!");
296    return Roots[0];
297  }
298
299  virtual bool runOnFunction(Function &F);
300
301  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
302    AU.setPreservesAll();
303  }
304private:
305  void calculate(Function& F);
306  DomTreeNode *getNodeForBlock(BasicBlock *BB);
307  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
308  void Compress(BasicBlock *V);
309  BasicBlock *Eval(BasicBlock *v);
310  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
311  inline BasicBlock *getIDom(BasicBlock *BB) const {
312      std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
313      return I != IDoms.end() ? I->second : 0;
314    }
315};
316
317//===-------------------------------------
318/// DominatorTree GraphTraits specialization so the DominatorTree can be
319/// iterable by generic graph iterators.
320///
321template <> struct GraphTraits<DomTreeNode*> {
322  typedef DomTreeNode NodeType;
323  typedef NodeType::iterator  ChildIteratorType;
324
325  static NodeType *getEntryNode(NodeType *N) {
326    return N;
327  }
328  static inline ChildIteratorType child_begin(NodeType* N) {
329    return N->begin();
330  }
331  static inline ChildIteratorType child_end(NodeType* N) {
332    return N->end();
333  }
334};
335
336template <> struct GraphTraits<DominatorTree*>
337  : public GraphTraits<DomTreeNode*> {
338  static NodeType *getEntryNode(DominatorTree *DT) {
339    return DT->getRootNode();
340  }
341};
342
343
344//===-------------------------------------
345/// ET-Forest Class - Class used to construct forwards and backwards
346/// ET-Forests
347///
348class ETForestBase : public DominatorBase {
349public:
350  ETForestBase(intptr_t ID, bool isPostDom)
351    : DominatorBase(ID, isPostDom), Nodes(),
352      DFSInfoValid(false), SlowQueries(0) {}
353
354  virtual void releaseMemory() { reset(); }
355
356  typedef std::map<BasicBlock*, ETNode*> ETMapType;
357
358  // FIXME : There is no need to make this interface public.
359  // Fix predicate simplifier.
360  void updateDFSNumbers();
361
362  /// dominates - Return true if A dominates B.
363  ///
364  inline bool dominates(BasicBlock *A, BasicBlock *B) {
365    if (A == B)
366      return true;
367
368    ETNode *NodeA = getNode(A);
369    ETNode *NodeB = getNode(B);
370
371    if (DFSInfoValid)
372      return NodeB->DominatedBy(NodeA);
373    else {
374      // If we end up with too many slow queries, just update the
375      // DFS numbers on the theory that we are going to keep querying.
376      SlowQueries++;
377      if (SlowQueries > 32) {
378        updateDFSNumbers();
379        return NodeB->DominatedBy(NodeA);
380      }
381      return NodeB->DominatedBySlow(NodeA);
382    }
383  }
384
385  // dominates - Return true if A dominates B. This performs the
386  // special checks necessary if A and B are in the same basic block.
387  bool dominates(Instruction *A, Instruction *B);
388
389  /// properlyDominates - Return true if A dominates B and A != B.
390  ///
391  bool properlyDominates(BasicBlock *A, BasicBlock *B) {
392    return dominates(A, B) && A != B;
393  }
394
395  /// isReachableFromEntry - Return true if A is dominated by the entry
396  /// block of the function containing it.
397  const bool isReachableFromEntry(BasicBlock* A);
398
399  /// Return the nearest common dominator of A and B.
400  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
401    ETNode *NodeA = getNode(A);
402    ETNode *NodeB = getNode(B);
403
404    ETNode *Common = NodeA->NCA(NodeB);
405    if (!Common)
406      return NULL;
407    return Common->getData<BasicBlock>();
408  }
409
410  /// Return the immediate dominator of A.
411  BasicBlock *getIDom(BasicBlock *A) const {
412    ETNode *NodeA = getNode(A);
413    if (!NodeA) return 0;
414    const ETNode *idom = NodeA->getFather();
415    return idom ? idom->getData<BasicBlock>() : 0;
416  }
417
418  void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
419    ETNode *NodeA = getNode(A);
420    if (!NodeA) return;
421    const ETNode* son = NodeA->getSon();
422
423    if (!son) return;
424    children.push_back(son->getData<BasicBlock>());
425
426    const ETNode* brother = son->getBrother();
427    while (brother != son) {
428      children.push_back(brother->getData<BasicBlock>());
429      brother = brother->getBrother();
430    }
431  }
432
433  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
434    AU.setPreservesAll();
435    AU.addRequired<DominatorTree>();
436  }
437  //===--------------------------------------------------------------------===//
438  // API to update Forest information based on modifications
439  // to the CFG...
440
441  /// addNewBlock - Add a new block to the CFG, with the specified immediate
442  /// dominator.
443  ///
444  void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
445
446  /// setImmediateDominator - Update the immediate dominator information to
447  /// change the current immediate dominator for the specified block
448  /// to another block.  This method requires that BB for NewIDom
449  /// already have an ETNode, otherwise just use addNewBlock.
450  ///
451  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
452  /// print - Convert to human readable form
453  ///
454  virtual void print(std::ostream &OS, const Module* = 0) const;
455  void print(std::ostream *OS, const Module* M = 0) const {
456    if (OS) print(*OS, M);
457  }
458  virtual void dump();
459protected:
460  /// getNode - return the (Post)DominatorTree node for the specified basic
461  /// block.  This is the same as using operator[] on this class.
462  ///
463  inline ETNode *getNode(BasicBlock *BB) const {
464    ETMapType::const_iterator i = Nodes.find(BB);
465    return (i != Nodes.end()) ? i->second : 0;
466  }
467
468  inline ETNode *operator[](BasicBlock *BB) const {
469    return getNode(BB);
470  }
471
472  void reset();
473  ETMapType Nodes;
474  bool DFSInfoValid;
475  unsigned int SlowQueries;
476
477};
478
479//==-------------------------------------
480/// ETForest Class - Concrete subclass of ETForestBase that is used to
481/// compute a forwards ET-Forest.
482
483class ETForest : public ETForestBase {
484public:
485  static char ID; // Pass identification, replacement for typeid
486
487  ETForest() : ETForestBase((intptr_t)&ID, false) {}
488
489  BasicBlock *getRoot() const {
490    assert(Roots.size() == 1 && "Should always have entry node!");
491    return Roots[0];
492  }
493
494  virtual bool runOnFunction(Function &F) {
495    reset();     // Reset from the last time we were run...
496    DominatorTree &DT = getAnalysis<DominatorTree>();
497    Roots = DT.getRoots();
498    calculate(DT);
499    return false;
500  }
501
502  void calculate(const DominatorTree &DT);
503  // FIXME : There is no need to make getNodeForBlock public. Fix
504  // predicate simplifier.
505  ETNode *getNodeForBlock(BasicBlock *BB);
506};
507
508//===----------------------------------------------------------------------===//
509/// DominanceFrontierBase - Common base class for computing forward and inverse
510/// dominance frontiers for a function.
511///
512class DominanceFrontierBase : public DominatorBase {
513public:
514  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
515  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
516protected:
517  DomSetMapType Frontiers;
518public:
519  DominanceFrontierBase(intptr_t ID, bool isPostDom)
520    : DominatorBase(ID, isPostDom) {}
521
522  virtual void releaseMemory() { Frontiers.clear(); }
523
524  // Accessor interface:
525  typedef DomSetMapType::iterator iterator;
526  typedef DomSetMapType::const_iterator const_iterator;
527  iterator       begin()       { return Frontiers.begin(); }
528  const_iterator begin() const { return Frontiers.begin(); }
529  iterator       end()         { return Frontiers.end(); }
530  const_iterator end()   const { return Frontiers.end(); }
531  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
532  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
533
534  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
535    assert(find(BB) == end() && "Block already in DominanceFrontier!");
536    Frontiers.insert(std::make_pair(BB, frontier));
537  }
538
539  void addToFrontier(iterator I, BasicBlock *Node) {
540    assert(I != end() && "BB is not in DominanceFrontier!");
541    I->second.insert(Node);
542  }
543
544  void removeFromFrontier(iterator I, BasicBlock *Node) {
545    assert(I != end() && "BB is not in DominanceFrontier!");
546    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
547    I->second.erase(Node);
548  }
549
550  /// print - Convert to human readable form
551  ///
552  virtual void print(std::ostream &OS, const Module* = 0) const;
553  void print(std::ostream *OS, const Module* M = 0) const {
554    if (OS) print(*OS, M);
555  }
556  virtual void dump();
557};
558
559
560//===-------------------------------------
561/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
562/// used to compute a forward dominator frontiers.
563///
564class DominanceFrontier : public DominanceFrontierBase {
565public:
566  static char ID; // Pass ID, replacement for typeid
567  DominanceFrontier() :
568    DominanceFrontierBase((intptr_t)& ID, false) {}
569
570  BasicBlock *getRoot() const {
571    assert(Roots.size() == 1 && "Should always have entry node!");
572    return Roots[0];
573  }
574
575  virtual bool runOnFunction(Function &) {
576    Frontiers.clear();
577    DominatorTree &DT = getAnalysis<DominatorTree>();
578    Roots = DT.getRoots();
579    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
580    calculate(DT, DT[Roots[0]]);
581    return false;
582  }
583
584  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
585    AU.setPreservesAll();
586    AU.addRequired<DominatorTree>();
587  }
588
589private:
590  const DomSetType &calculate(const DominatorTree &DT,
591                              const DomTreeNode *Node);
592};
593
594
595} // End llvm namespace
596
597#endif
598