Dominators.h revision 14e8190f4329bc0ea4d8813da7486d3e05affc7c
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/GraphTraits.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/raw_ostream.h"
36#include <algorithm>
37#include <map>
38#include <set>
39
40namespace llvm {
41
42//===----------------------------------------------------------------------===//
43/// DominatorBase - Base class that other, more interesting dominator analyses
44/// inherit from.
45///
46template <class NodeT>
47class DominatorBase {
48protected:
49  std::vector<NodeT*> Roots;
50  const bool IsPostDominators;
51  inline explicit DominatorBase(bool isPostDom) :
52    Roots(), IsPostDominators(isPostDom) {}
53public:
54
55  /// getRoots - Return the root blocks of the current CFG.  This may include
56  /// multiple blocks if we are computing post dominators.  For forward
57  /// dominators, this will always be a single block (the entry node).
58  ///
59  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
60
61  /// isPostDominator - Returns true if analysis based of postdoms
62  ///
63  bool isPostDominator() const { return IsPostDominators; }
64};
65
66
67//===----------------------------------------------------------------------===//
68// DomTreeNode - Dominator Tree Node
69template<class NodeT> class DominatorTreeBase;
70struct PostDominatorTree;
71class MachineBasicBlock;
72
73template <class NodeT>
74class DomTreeNodeBase {
75  NodeT *TheBB;
76  DomTreeNodeBase<NodeT> *IDom;
77  std::vector<DomTreeNodeBase<NodeT> *> Children;
78  int DFSNumIn, DFSNumOut;
79
80  template<class N> friend class DominatorTreeBase;
81  friend struct PostDominatorTree;
82public:
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
84  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
85                   const_iterator;
86
87  iterator begin()             { return Children.begin(); }
88  iterator end()               { return Children.end(); }
89  const_iterator begin() const { return Children.begin(); }
90  const_iterator end()   const { return Children.end(); }
91
92  NodeT *getBlock() const { return TheBB; }
93  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
94  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
95    return Children;
96  }
97
98  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
99    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
100
101  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
102    Children.push_back(C);
103    return C;
104  }
105
106  size_t getNumChildren() const {
107    return Children.size();
108  }
109
110  void clearAllChildren() {
111    Children.clear();
112  }
113
114  bool compare(DomTreeNodeBase<NodeT> *Other) {
115    if (getNumChildren() != Other->getNumChildren())
116      return true;
117
118    SmallPtrSet<NodeT *, 4> OtherChildren;
119    for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
120      NodeT *Nd = (*I)->getBlock();
121      OtherChildren.insert(Nd);
122    }
123
124    for (iterator I = begin(), E = end(); I != E; ++I) {
125      NodeT *N = (*I)->getBlock();
126      if (OtherChildren.count(N) == 0)
127        return true;
128    }
129    return false;
130  }
131
132  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
133    assert(IDom && "No immediate dominator?");
134    if (IDom != NewIDom) {
135      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
136                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
137      assert(I != IDom->Children.end() &&
138             "Not in immediate dominator children set!");
139      // I am no longer your child...
140      IDom->Children.erase(I);
141
142      // Switch to new dominator
143      IDom = NewIDom;
144      IDom->Children.push_back(this);
145    }
146  }
147
148  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
149  /// not call them.
150  unsigned getDFSNumIn() const { return DFSNumIn; }
151  unsigned getDFSNumOut() const { return DFSNumOut; }
152private:
153  // Return true if this node is dominated by other. Use this only if DFS info
154  // is valid.
155  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
156    return this->DFSNumIn >= other->DFSNumIn &&
157      this->DFSNumOut <= other->DFSNumOut;
158  }
159};
160
161EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
162EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
163
164template<class NodeT>
165static raw_ostream &operator<<(raw_ostream &o,
166                               const DomTreeNodeBase<NodeT> *Node) {
167  if (Node->getBlock())
168    WriteAsOperand(o, Node->getBlock(), false);
169  else
170    o << " <<exit node>>";
171
172  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
173
174  return o << "\n";
175}
176
177template<class NodeT>
178static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
179                         unsigned Lev) {
180  o.indent(2*Lev) << "[" << Lev << "] " << N;
181  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
182       E = N->end(); I != E; ++I)
183    PrintDomTree<NodeT>(*I, o, Lev+1);
184}
185
186typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
187
188//===----------------------------------------------------------------------===//
189/// DominatorTree - Calculate the immediate dominator tree for a function.
190///
191
192template<class FuncT, class N>
193void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
194               FuncT& F);
195
196template<class NodeT>
197class DominatorTreeBase : public DominatorBase<NodeT> {
198protected:
199  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
200  DomTreeNodeMapType DomTreeNodes;
201  DomTreeNodeBase<NodeT> *RootNode;
202
203  bool DFSInfoValid;
204  unsigned int SlowQueries;
205  // Information record used during immediate dominators computation.
206  struct InfoRec {
207    unsigned DFSNum;
208    unsigned Semi;
209    unsigned Size;
210    NodeT *Label, *Child;
211    unsigned Parent, Ancestor;
212
213    std::vector<NodeT*> Bucket;
214
215    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
216                Ancestor(0) {}
217  };
218
219  DenseMap<NodeT*, NodeT*> IDoms;
220
221  // Vertex - Map the DFS number to the BasicBlock*
222  std::vector<NodeT*> Vertex;
223
224  // Info - Collection of information used during the computation of idoms.
225  DenseMap<NodeT*, InfoRec> Info;
226
227  void reset() {
228    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
229           E = DomTreeNodes.end(); I != E; ++I)
230      delete I->second;
231    DomTreeNodes.clear();
232    IDoms.clear();
233    this->Roots.clear();
234    Vertex.clear();
235    RootNode = 0;
236  }
237
238  // NewBB is split and now it has one successor. Update dominator tree to
239  // reflect this change.
240  template<class N, class GraphT>
241  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
242             typename GraphT::NodeType* NewBB) {
243    assert(std::distance(GraphT::child_begin(NewBB),
244                         GraphT::child_end(NewBB)) == 1 &&
245           "NewBB should have a single successor!");
246    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
247
248    std::vector<typename GraphT::NodeType*> PredBlocks;
249    typedef GraphTraits<Inverse<N> > InvTraits;
250    for (typename InvTraits::ChildIteratorType PI =
251         InvTraits::child_begin(NewBB),
252         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
253      PredBlocks.push_back(*PI);
254
255    assert(!PredBlocks.empty() && "No predblocks?");
256
257    bool NewBBDominatesNewBBSucc = true;
258    for (typename InvTraits::ChildIteratorType PI =
259         InvTraits::child_begin(NewBBSucc),
260         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
261      typename InvTraits::NodeType *ND = *PI;
262      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
263          DT.isReachableFromEntry(ND)) {
264        NewBBDominatesNewBBSucc = false;
265        break;
266      }
267    }
268
269    // Find NewBB's immediate dominator and create new dominator tree node for
270    // NewBB.
271    NodeT *NewBBIDom = 0;
272    unsigned i = 0;
273    for (i = 0; i < PredBlocks.size(); ++i)
274      if (DT.isReachableFromEntry(PredBlocks[i])) {
275        NewBBIDom = PredBlocks[i];
276        break;
277      }
278
279    // It's possible that none of the predecessors of NewBB are reachable;
280    // in that case, NewBB itself is unreachable, so nothing needs to be
281    // changed.
282    if (!NewBBIDom)
283      return;
284
285    for (i = i + 1; i < PredBlocks.size(); ++i) {
286      if (DT.isReachableFromEntry(PredBlocks[i]))
287        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
288    }
289
290    // Create the new dominator tree node... and set the idom of NewBB.
291    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
292
293    // If NewBB strictly dominates other blocks, then it is now the immediate
294    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
295    if (NewBBDominatesNewBBSucc) {
296      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
297      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
298    }
299  }
300
301public:
302  explicit DominatorTreeBase(bool isPostDom)
303    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
304  virtual ~DominatorTreeBase() { reset(); }
305
306  // FIXME: Should remove this
307  virtual bool runOnFunction(Function &F) { return false; }
308
309  /// compare - Return false if the other dominator tree base matches this
310  /// dominator tree base. Otherwise return true.
311  bool compare(DominatorTreeBase &Other) const {
312
313    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
314    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
315      return true;
316
317    for (typename DomTreeNodeMapType::const_iterator
318           I = this->DomTreeNodes.begin(),
319           E = this->DomTreeNodes.end(); I != E; ++I) {
320      NodeT *BB = I->first;
321      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
322      if (OI == OtherDomTreeNodes.end())
323        return true;
324
325      DomTreeNodeBase<NodeT>* MyNd = I->second;
326      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
327
328      if (MyNd->compare(OtherNd))
329        return true;
330    }
331
332    return false;
333  }
334
335  virtual void releaseMemory() { reset(); }
336
337  /// getNode - return the (Post)DominatorTree node for the specified basic
338  /// block.  This is the same as using operator[] on this class.
339  ///
340  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
341    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
342    return I != DomTreeNodes.end() ? I->second : 0;
343  }
344
345  /// getRootNode - This returns the entry node for the CFG of the function.  If
346  /// this tree represents the post-dominance relations for a function, however,
347  /// this root may be a node with the block == NULL.  This is the case when
348  /// there are multiple exit nodes from a particular function.  Consumers of
349  /// post-dominance information must be capable of dealing with this
350  /// possibility.
351  ///
352  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
353  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
354
355  /// properlyDominates - Returns true iff this dominates N and this != N.
356  /// Note that this is not a constant time operation!
357  ///
358  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
359                         const DomTreeNodeBase<NodeT> *B) const {
360    if (A == 0 || B == 0) return false;
361    return dominatedBySlowTreeWalk(A, B);
362  }
363
364  inline bool properlyDominates(const NodeT *A, const NodeT *B) {
365    if (A == B)
366      return false;
367
368    // Cast away the const qualifiers here. This is ok since
369    // this function doesn't actually return the values returned
370    // from getNode.
371    return properlyDominates(getNode(const_cast<NodeT *>(A)),
372                             getNode(const_cast<NodeT *>(B)));
373  }
374
375  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
376                               const DomTreeNodeBase<NodeT> *B) const {
377    const DomTreeNodeBase<NodeT> *IDom;
378    if (A == 0 || B == 0) return false;
379    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
380      B = IDom;   // Walk up the tree
381    return IDom != 0;
382  }
383
384
385  /// isReachableFromEntry - Return true if A is dominated by the entry
386  /// block of the function containing it.
387  bool isReachableFromEntry(const NodeT* A) {
388    assert(!this->isPostDominator() &&
389           "This is not implemented for post dominators");
390    return dominates(&A->getParent()->front(), A);
391  }
392
393  /// dominates - Returns true iff A dominates B.  Note that this is not a
394  /// constant time operation!
395  ///
396  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
397                        const DomTreeNodeBase<NodeT> *B) {
398    if (B == A)
399      return true;  // A node trivially dominates itself.
400
401    if (A == 0 || B == 0)
402      return false;
403
404    // Compare the result of the tree walk and the dfs numbers, if expensive
405    // checks are enabled.
406#ifdef XDEBUG
407    assert((!DFSInfoValid ||
408            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
409           "Tree walk disagrees with dfs numbers!");
410#endif
411
412    if (DFSInfoValid)
413      return B->DominatedBy(A);
414
415    // If we end up with too many slow queries, just update the
416    // DFS numbers on the theory that we are going to keep querying.
417    SlowQueries++;
418    if (SlowQueries > 32) {
419      updateDFSNumbers();
420      return B->DominatedBy(A);
421    }
422
423    return dominatedBySlowTreeWalk(A, B);
424  }
425
426  inline bool dominates(const NodeT *A, const NodeT *B) {
427    if (A == B)
428      return true;
429
430    // Cast away the const qualifiers here. This is ok since
431    // this function doesn't actually return the values returned
432    // from getNode.
433    return dominates(getNode(const_cast<NodeT *>(A)),
434                     getNode(const_cast<NodeT *>(B)));
435  }
436
437  NodeT *getRoot() const {
438    assert(this->Roots.size() == 1 && "Should always have entry node!");
439    return this->Roots[0];
440  }
441
442  /// findNearestCommonDominator - Find nearest common dominator basic block
443  /// for basic block A and B. If there is no such block then return NULL.
444  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
445    assert(A->getParent() == B->getParent() &&
446           "Two blocks are not in same function");
447
448    // If either A or B is a entry block then it is nearest common dominator
449    // (for forward-dominators).
450    if (!this->isPostDominator()) {
451      NodeT &Entry = A->getParent()->front();
452      if (A == &Entry || B == &Entry)
453        return &Entry;
454    }
455
456    // If B dominates A then B is nearest common dominator.
457    if (dominates(B, A))
458      return B;
459
460    // If A dominates B then A is nearest common dominator.
461    if (dominates(A, B))
462      return A;
463
464    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
465    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
466
467    // Collect NodeA dominators set.
468    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
469    NodeADoms.insert(NodeA);
470    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
471    while (IDomA) {
472      NodeADoms.insert(IDomA);
473      IDomA = IDomA->getIDom();
474    }
475
476    // Walk NodeB immediate dominators chain and find common dominator node.
477    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
478    while (IDomB) {
479      if (NodeADoms.count(IDomB) != 0)
480        return IDomB->getBlock();
481
482      IDomB = IDomB->getIDom();
483    }
484
485    return NULL;
486  }
487
488  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
489    // Cast away the const qualifiers here. This is ok since
490    // const is re-introduced on the return type.
491    return findNearestCommonDominator(const_cast<NodeT *>(A),
492                                      const_cast<NodeT *>(B));
493  }
494
495  //===--------------------------------------------------------------------===//
496  // API to update (Post)DominatorTree information based on modifications to
497  // the CFG...
498
499  /// addNewBlock - Add a new node to the dominator tree information.  This
500  /// creates a new node as a child of DomBB dominator node,linking it into
501  /// the children list of the immediate dominator.
502  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
503    assert(getNode(BB) == 0 && "Block already in dominator tree!");
504    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
505    assert(IDomNode && "Not immediate dominator specified for block!");
506    DFSInfoValid = false;
507    return DomTreeNodes[BB] =
508      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
509  }
510
511  /// changeImmediateDominator - This method is used to update the dominator
512  /// tree information when a node's immediate dominator changes.
513  ///
514  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
515                                DomTreeNodeBase<NodeT> *NewIDom) {
516    assert(N && NewIDom && "Cannot change null node pointers!");
517    DFSInfoValid = false;
518    N->setIDom(NewIDom);
519  }
520
521  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
522    changeImmediateDominator(getNode(BB), getNode(NewBB));
523  }
524
525  /// eraseNode - Removes a node from the dominator tree. Block must not
526  /// dominate any other blocks. Removes node from its immediate dominator's
527  /// children list. Deletes dominator node associated with basic block BB.
528  void eraseNode(NodeT *BB) {
529    DomTreeNodeBase<NodeT> *Node = getNode(BB);
530    assert(Node && "Removing node that isn't in dominator tree.");
531    assert(Node->getChildren().empty() && "Node is not a leaf node.");
532
533      // Remove node from immediate dominator's children list.
534    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
535    if (IDom) {
536      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
537        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
538      assert(I != IDom->Children.end() &&
539             "Not in immediate dominator children set!");
540      // I am no longer your child...
541      IDom->Children.erase(I);
542    }
543
544    DomTreeNodes.erase(BB);
545    delete Node;
546  }
547
548  /// removeNode - Removes a node from the dominator tree.  Block must not
549  /// dominate any other blocks.  Invalidates any node pointing to removed
550  /// block.
551  void removeNode(NodeT *BB) {
552    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
553    DomTreeNodes.erase(BB);
554  }
555
556  /// splitBlock - BB is split and now it has one successor. Update dominator
557  /// tree to reflect this change.
558  void splitBlock(NodeT* NewBB) {
559    if (this->IsPostDominators)
560      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
561    else
562      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
563  }
564
565  /// print - Convert to human readable form
566  ///
567  void print(raw_ostream &o) const {
568    o << "=============================--------------------------------\n";
569    if (this->isPostDominator())
570      o << "Inorder PostDominator Tree: ";
571    else
572      o << "Inorder Dominator Tree: ";
573    if (this->DFSInfoValid)
574      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
575    o << "\n";
576
577    // The postdom tree can have a null root if there are no returns.
578    if (getRootNode())
579      PrintDomTree<NodeT>(getRootNode(), o, 1);
580  }
581
582protected:
583  template<class GraphT>
584  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
585                       typename GraphT::NodeType* VIn);
586
587  template<class GraphT>
588  friend typename GraphT::NodeType* Eval(
589                               DominatorTreeBase<typename GraphT::NodeType>& DT,
590                                         typename GraphT::NodeType* V);
591
592  template<class GraphT>
593  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
594                   unsigned DFSNumV, typename GraphT::NodeType* W,
595         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
596
597  template<class GraphT>
598  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
599                          typename GraphT::NodeType* V,
600                          unsigned N);
601
602  template<class FuncT, class N>
603  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
604                        FuncT& F);
605
606  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
607  /// dominator tree in dfs order.
608  void updateDFSNumbers() {
609    unsigned DFSNum = 0;
610
611    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
612                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
613
614    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
615
616    if (!ThisRoot)
617      return;
618
619    // Even in the case of multiple exits that form the post dominator root
620    // nodes, do not iterate over all exits, but start from the virtual root
621    // node. Otherwise bbs, that are not post dominated by any exit but by the
622    // virtual root node, will never be assigned a DFS number.
623    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
624    ThisRoot->DFSNumIn = DFSNum++;
625
626    while (!WorkStack.empty()) {
627      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
628      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
629        WorkStack.back().second;
630
631      // If we visited all of the children of this node, "recurse" back up the
632      // stack setting the DFOutNum.
633      if (ChildIt == Node->end()) {
634        Node->DFSNumOut = DFSNum++;
635        WorkStack.pop_back();
636      } else {
637        // Otherwise, recursively visit this child.
638        DomTreeNodeBase<NodeT> *Child = *ChildIt;
639        ++WorkStack.back().second;
640
641        WorkStack.push_back(std::make_pair(Child, Child->begin()));
642        Child->DFSNumIn = DFSNum++;
643      }
644    }
645
646    SlowQueries = 0;
647    DFSInfoValid = true;
648  }
649
650  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
651    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
652    if (I != this->DomTreeNodes.end() && I->second)
653      return I->second;
654
655    // Haven't calculated this node yet?  Get or calculate the node for the
656    // immediate dominator.
657    NodeT *IDom = getIDom(BB);
658
659    assert(IDom || this->DomTreeNodes[NULL]);
660    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
661
662    // Add a new tree node for this BasicBlock, and link it as a child of
663    // IDomNode
664    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
665    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
666  }
667
668  inline NodeT *getIDom(NodeT *BB) const {
669    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
670    return I != IDoms.end() ? I->second : 0;
671  }
672
673  inline void addRoot(NodeT* BB) {
674    this->Roots.push_back(BB);
675  }
676
677public:
678  /// recalculate - compute a dominator tree for the given function
679  template<class FT>
680  void recalculate(FT& F) {
681    reset();
682    this->Vertex.push_back(0);
683
684    if (!this->IsPostDominators) {
685      // Initialize root
686      this->Roots.push_back(&F.front());
687      this->IDoms[&F.front()] = 0;
688      this->DomTreeNodes[&F.front()] = 0;
689
690      Calculate<FT, NodeT*>(*this, F);
691    } else {
692      // Initialize the roots list
693      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
694        if (std::distance(GraphTraits<FT*>::child_begin(I),
695                          GraphTraits<FT*>::child_end(I)) == 0)
696          addRoot(I);
697
698        // Prepopulate maps so that we don't get iterator invalidation issues later.
699        this->IDoms[I] = 0;
700        this->DomTreeNodes[I] = 0;
701      }
702
703      Calculate<FT, Inverse<NodeT*> >(*this, F);
704    }
705  }
706};
707
708EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
709
710//===-------------------------------------
711/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
712/// compute a normal dominator tree.
713///
714class DominatorTree : public FunctionPass {
715public:
716  static char ID; // Pass ID, replacement for typeid
717  DominatorTreeBase<BasicBlock>* DT;
718
719  DominatorTree() : FunctionPass(ID) {
720    DT = new DominatorTreeBase<BasicBlock>(false);
721  }
722
723  ~DominatorTree() {
724    delete DT;
725  }
726
727  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
728
729  /// getRoots - Return the root blocks of the current CFG.  This may include
730  /// multiple blocks if we are computing post dominators.  For forward
731  /// dominators, this will always be a single block (the entry node).
732  ///
733  inline const std::vector<BasicBlock*> &getRoots() const {
734    return DT->getRoots();
735  }
736
737  inline BasicBlock *getRoot() const {
738    return DT->getRoot();
739  }
740
741  inline DomTreeNode *getRootNode() const {
742    return DT->getRootNode();
743  }
744
745  /// compare - Return false if the other dominator tree matches this
746  /// dominator tree. Otherwise return true.
747  inline bool compare(DominatorTree &Other) const {
748    DomTreeNode *R = getRootNode();
749    DomTreeNode *OtherR = Other.getRootNode();
750
751    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
752      return true;
753
754    if (DT->compare(Other.getBase()))
755      return true;
756
757    return false;
758  }
759
760  virtual bool runOnFunction(Function &F);
761
762  virtual void verifyAnalysis() const;
763
764  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
765    AU.setPreservesAll();
766  }
767
768  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
769    return DT->dominates(A, B);
770  }
771
772  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
773    return DT->dominates(A, B);
774  }
775
776  // dominates - Return true if A dominates B. This performs the
777  // special checks necessary if A and B are in the same basic block.
778  bool dominates(const Instruction *A, const Instruction *B) const;
779
780  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
781    return DT->properlyDominates(A, B);
782  }
783
784  bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
785    return DT->properlyDominates(A, B);
786  }
787
788  /// findNearestCommonDominator - Find nearest common dominator basic block
789  /// for basic block A and B. If there is no such block then return NULL.
790  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
791    return DT->findNearestCommonDominator(A, B);
792  }
793
794  inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
795                                                      const BasicBlock *B) {
796    return DT->findNearestCommonDominator(A, B);
797  }
798
799  inline DomTreeNode *operator[](BasicBlock *BB) const {
800    return DT->getNode(BB);
801  }
802
803  /// getNode - return the (Post)DominatorTree node for the specified basic
804  /// block.  This is the same as using operator[] on this class.
805  ///
806  inline DomTreeNode *getNode(BasicBlock *BB) const {
807    return DT->getNode(BB);
808  }
809
810  /// addNewBlock - Add a new node to the dominator tree information.  This
811  /// creates a new node as a child of DomBB dominator node,linking it into
812  /// the children list of the immediate dominator.
813  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
814    return DT->addNewBlock(BB, DomBB);
815  }
816
817  /// changeImmediateDominator - This method is used to update the dominator
818  /// tree information when a node's immediate dominator changes.
819  ///
820  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
821    DT->changeImmediateDominator(N, NewIDom);
822  }
823
824  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
825    DT->changeImmediateDominator(N, NewIDom);
826  }
827
828  /// eraseNode - Removes a node from the dominator tree. Block must not
829  /// dominate any other blocks. Removes node from its immediate dominator's
830  /// children list. Deletes dominator node associated with basic block BB.
831  inline void eraseNode(BasicBlock *BB) {
832    DT->eraseNode(BB);
833  }
834
835  /// splitBlock - BB is split and now it has one successor. Update dominator
836  /// tree to reflect this change.
837  inline void splitBlock(BasicBlock* NewBB) {
838    DT->splitBlock(NewBB);
839  }
840
841  bool isReachableFromEntry(const BasicBlock* A) {
842    return DT->isReachableFromEntry(A);
843  }
844
845
846  virtual void releaseMemory() {
847    DT->releaseMemory();
848  }
849
850  virtual void print(raw_ostream &OS, const Module* M= 0) const;
851};
852
853//===-------------------------------------
854/// DominatorTree GraphTraits specialization so the DominatorTree can be
855/// iterable by generic graph iterators.
856///
857template <> struct GraphTraits<DomTreeNode*> {
858  typedef DomTreeNode NodeType;
859  typedef NodeType::iterator  ChildIteratorType;
860
861  static NodeType *getEntryNode(NodeType *N) {
862    return N;
863  }
864  static inline ChildIteratorType child_begin(NodeType *N) {
865    return N->begin();
866  }
867  static inline ChildIteratorType child_end(NodeType *N) {
868    return N->end();
869  }
870
871  typedef df_iterator<DomTreeNode*> nodes_iterator;
872
873  static nodes_iterator nodes_begin(DomTreeNode *N) {
874    return df_begin(getEntryNode(N));
875  }
876
877  static nodes_iterator nodes_end(DomTreeNode *N) {
878    return df_end(getEntryNode(N));
879  }
880};
881
882template <> struct GraphTraits<DominatorTree*>
883  : public GraphTraits<DomTreeNode*> {
884  static NodeType *getEntryNode(DominatorTree *DT) {
885    return DT->getRootNode();
886  }
887
888  static nodes_iterator nodes_begin(DominatorTree *N) {
889    return df_begin(getEntryNode(N));
890  }
891
892  static nodes_iterator nodes_end(DominatorTree *N) {
893    return df_end(getEntryNode(N));
894  }
895};
896
897
898//===----------------------------------------------------------------------===//
899/// DominanceFrontierBase - Common base class for computing forward and inverse
900/// dominance frontiers for a function.
901///
902class DominanceFrontierBase : public FunctionPass {
903public:
904  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
905  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
906protected:
907  DomSetMapType Frontiers;
908  std::vector<BasicBlock*> Roots;
909  const bool IsPostDominators;
910
911public:
912  DominanceFrontierBase(char &ID, bool isPostDom)
913    : FunctionPass(ID), IsPostDominators(isPostDom) {}
914
915  /// getRoots - Return the root blocks of the current CFG.  This may include
916  /// multiple blocks if we are computing post dominators.  For forward
917  /// dominators, this will always be a single block (the entry node).
918  ///
919  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
920
921  /// isPostDominator - Returns true if analysis based of postdoms
922  ///
923  bool isPostDominator() const { return IsPostDominators; }
924
925  virtual void releaseMemory() { Frontiers.clear(); }
926
927  // Accessor interface:
928  typedef DomSetMapType::iterator iterator;
929  typedef DomSetMapType::const_iterator const_iterator;
930  iterator       begin()       { return Frontiers.begin(); }
931  const_iterator begin() const { return Frontiers.begin(); }
932  iterator       end()         { return Frontiers.end(); }
933  const_iterator end()   const { return Frontiers.end(); }
934  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
935  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
936
937  iterator addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
938    assert(find(BB) == end() && "Block already in DominanceFrontier!");
939    return Frontiers.insert(std::make_pair(BB, frontier)).first;
940  }
941
942  /// removeBlock - Remove basic block BB's frontier.
943  void removeBlock(BasicBlock *BB) {
944    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
945    for (iterator I = begin(), E = end(); I != E; ++I)
946      I->second.erase(BB);
947    Frontiers.erase(BB);
948  }
949
950  void addToFrontier(iterator I, BasicBlock *Node) {
951    assert(I != end() && "BB is not in DominanceFrontier!");
952    I->second.insert(Node);
953  }
954
955  void removeFromFrontier(iterator I, BasicBlock *Node) {
956    assert(I != end() && "BB is not in DominanceFrontier!");
957    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
958    I->second.erase(Node);
959  }
960
961  /// compareDomSet - Return false if two domsets match. Otherwise
962  /// return true;
963  bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
964    std::set<BasicBlock *> tmpSet;
965    for (DomSetType::const_iterator I = DS2.begin(),
966           E = DS2.end(); I != E; ++I)
967      tmpSet.insert(*I);
968
969    for (DomSetType::const_iterator I = DS1.begin(),
970           E = DS1.end(); I != E; ) {
971      BasicBlock *Node = *I++;
972
973      if (tmpSet.erase(Node) == 0)
974        // Node is in DS1 but not in DS2.
975        return true;
976    }
977
978    if (!tmpSet.empty())
979      // There are nodes that are in DS2 but not in DS1.
980      return true;
981
982    // DS1 and DS2 matches.
983    return false;
984  }
985
986  /// compare - Return true if the other dominance frontier base matches
987  /// this dominance frontier base. Otherwise return false.
988  bool compare(DominanceFrontierBase &Other) const {
989    DomSetMapType tmpFrontiers;
990    for (DomSetMapType::const_iterator I = Other.begin(),
991           E = Other.end(); I != E; ++I)
992      tmpFrontiers.insert(std::make_pair(I->first, I->second));
993
994    for (DomSetMapType::iterator I = tmpFrontiers.begin(),
995           E = tmpFrontiers.end(); I != E; ) {
996      BasicBlock *Node = I->first;
997      const_iterator DFI = find(Node);
998      if (DFI == end())
999        return true;
1000
1001      if (compareDomSet(I->second, DFI->second))
1002        return true;
1003
1004      ++I;
1005      tmpFrontiers.erase(Node);
1006    }
1007
1008    if (!tmpFrontiers.empty())
1009      return true;
1010
1011    return false;
1012  }
1013
1014  /// print - Convert to human readable form
1015  ///
1016  virtual void print(raw_ostream &OS, const Module* = 0) const;
1017
1018  /// dump - Dump the dominance frontier to dbgs().
1019  void dump() const;
1020};
1021
1022
1023//===-------------------------------------
1024/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
1025/// used to compute a forward dominator frontiers.
1026///
1027class DominanceFrontier : public DominanceFrontierBase {
1028public:
1029  static char ID; // Pass ID, replacement for typeid
1030  DominanceFrontier() :
1031    DominanceFrontierBase(ID, false) {}
1032
1033  BasicBlock *getRoot() const {
1034    assert(Roots.size() == 1 && "Should always have entry node!");
1035    return Roots[0];
1036  }
1037
1038  virtual bool runOnFunction(Function &) {
1039    Frontiers.clear();
1040    DominatorTree &DT = getAnalysis<DominatorTree>();
1041    Roots = DT.getRoots();
1042    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
1043    calculate(DT, DT[Roots[0]]);
1044    return false;
1045  }
1046
1047  virtual void verifyAnalysis() const;
1048
1049  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1050    AU.setPreservesAll();
1051    AU.addRequired<DominatorTree>();
1052  }
1053
1054  /// splitBlock - BB is split and now it has one successor. Update dominance
1055  /// frontier to reflect this change.
1056  void splitBlock(BasicBlock *BB);
1057
1058  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
1059  /// to reflect this change.
1060  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
1061                                DominatorTree *DT) {
1062    // NewBB is now dominating BB. Which means BB's dominance
1063    // frontier is now part of NewBB's dominance frontier. However, BB
1064    // itself is not member of NewBB's dominance frontier.
1065    DominanceFrontier::iterator NewDFI = find(NewBB);
1066    DominanceFrontier::iterator DFI = find(BB);
1067    // If BB was an entry block then its frontier is empty.
1068    if (DFI == end())
1069      return;
1070    DominanceFrontier::DomSetType BBSet = DFI->second;
1071    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
1072           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
1073      BasicBlock *DFMember = *BBSetI;
1074      // Insert only if NewBB dominates DFMember.
1075      if (!DT->dominates(NewBB, DFMember))
1076        NewDFI->second.insert(DFMember);
1077    }
1078    NewDFI->second.erase(BB);
1079  }
1080
1081  const DomSetType &calculate(const DominatorTree &DT,
1082                              const DomTreeNode *Node);
1083};
1084
1085
1086} // End llvm namespace
1087
1088#endif
1089