Dominators.h revision 1f74590e9d1b9cf0f1f81a156efea73f76546e05
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/GraphTraits.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/raw_ostream.h"
36#include <algorithm>
37#include <map>
38#include <set>
39
40namespace llvm {
41
42//===----------------------------------------------------------------------===//
43/// DominatorBase - Base class that other, more interesting dominator analyses
44/// inherit from.
45///
46template <class NodeT>
47class DominatorBase {
48protected:
49  std::vector<NodeT*> Roots;
50  const bool IsPostDominators;
51  inline explicit DominatorBase(bool isPostDom) :
52    Roots(), IsPostDominators(isPostDom) {}
53public:
54
55  /// getRoots - Return the root blocks of the current CFG.  This may include
56  /// multiple blocks if we are computing post dominators.  For forward
57  /// dominators, this will always be a single block (the entry node).
58  ///
59  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
60
61  /// isPostDominator - Returns true if analysis based of postdoms
62  ///
63  bool isPostDominator() const { return IsPostDominators; }
64};
65
66
67//===----------------------------------------------------------------------===//
68// DomTreeNode - Dominator Tree Node
69template<class NodeT> class DominatorTreeBase;
70struct PostDominatorTree;
71class MachineBasicBlock;
72
73template <class NodeT>
74class DomTreeNodeBase {
75  NodeT *TheBB;
76  DomTreeNodeBase<NodeT> *IDom;
77  std::vector<DomTreeNodeBase<NodeT> *> Children;
78  int DFSNumIn, DFSNumOut;
79
80  template<class N> friend class DominatorTreeBase;
81  friend struct PostDominatorTree;
82public:
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
84  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
85                   const_iterator;
86
87  iterator begin()             { return Children.begin(); }
88  iterator end()               { return Children.end(); }
89  const_iterator begin() const { return Children.begin(); }
90  const_iterator end()   const { return Children.end(); }
91
92  NodeT *getBlock() const { return TheBB; }
93  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
94  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
95    return Children;
96  }
97
98  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
99    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
100
101  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
102    Children.push_back(C);
103    return C;
104  }
105
106  size_t getNumChildren() const {
107    return Children.size();
108  }
109
110  void clearAllChildren() {
111    Children.clear();
112  }
113
114  bool compare(DomTreeNodeBase<NodeT> *Other) {
115    if (getNumChildren() != Other->getNumChildren())
116      return true;
117
118    SmallPtrSet<NodeT *, 4> OtherChildren;
119    for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
120      NodeT *Nd = (*I)->getBlock();
121      OtherChildren.insert(Nd);
122    }
123
124    for (iterator I = begin(), E = end(); I != E; ++I) {
125      NodeT *N = (*I)->getBlock();
126      if (OtherChildren.count(N) == 0)
127        return true;
128    }
129    return false;
130  }
131
132  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
133    assert(IDom && "No immediate dominator?");
134    if (IDom != NewIDom) {
135      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
136                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
137      assert(I != IDom->Children.end() &&
138             "Not in immediate dominator children set!");
139      // I am no longer your child...
140      IDom->Children.erase(I);
141
142      // Switch to new dominator
143      IDom = NewIDom;
144      IDom->Children.push_back(this);
145    }
146  }
147
148  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
149  /// not call them.
150  unsigned getDFSNumIn() const { return DFSNumIn; }
151  unsigned getDFSNumOut() const { return DFSNumOut; }
152private:
153  // Return true if this node is dominated by other. Use this only if DFS info
154  // is valid.
155  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
156    return this->DFSNumIn >= other->DFSNumIn &&
157      this->DFSNumOut <= other->DFSNumOut;
158  }
159};
160
161EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
162EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
163
164template<class NodeT>
165static raw_ostream &operator<<(raw_ostream &o,
166                               const DomTreeNodeBase<NodeT> *Node) {
167  if (Node->getBlock())
168    WriteAsOperand(o, Node->getBlock(), false);
169  else
170    o << " <<exit node>>";
171
172  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
173
174  return o << "\n";
175}
176
177template<class NodeT>
178static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
179                         unsigned Lev) {
180  o.indent(2*Lev) << "[" << Lev << "] " << N;
181  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
182       E = N->end(); I != E; ++I)
183    PrintDomTree<NodeT>(*I, o, Lev+1);
184}
185
186typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
187
188//===----------------------------------------------------------------------===//
189/// DominatorTree - Calculate the immediate dominator tree for a function.
190///
191
192template<class FuncT, class N>
193void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
194               FuncT& F);
195
196template<class NodeT>
197class DominatorTreeBase : public DominatorBase<NodeT> {
198protected:
199  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
200  DomTreeNodeMapType DomTreeNodes;
201  DomTreeNodeBase<NodeT> *RootNode;
202
203  bool DFSInfoValid;
204  unsigned int SlowQueries;
205  // Information record used during immediate dominators computation.
206  struct InfoRec {
207    unsigned DFSNum;
208    unsigned Semi;
209    unsigned Size;
210    NodeT *Label, *Child;
211    unsigned Parent, Ancestor;
212
213    std::vector<NodeT*> Bucket;
214
215    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
216                Ancestor(0) {}
217  };
218
219  DenseMap<NodeT*, NodeT*> IDoms;
220
221  // Vertex - Map the DFS number to the BasicBlock*
222  std::vector<NodeT*> Vertex;
223
224  // Info - Collection of information used during the computation of idoms.
225  DenseMap<NodeT*, InfoRec> Info;
226
227  void reset() {
228    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
229           E = DomTreeNodes.end(); I != E; ++I)
230      delete I->second;
231    DomTreeNodes.clear();
232    IDoms.clear();
233    this->Roots.clear();
234    Vertex.clear();
235    RootNode = 0;
236  }
237
238  // NewBB is split and now it has one successor. Update dominator tree to
239  // reflect this change.
240  template<class N, class GraphT>
241  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
242             typename GraphT::NodeType* NewBB) {
243    assert(std::distance(GraphT::child_begin(NewBB),
244                         GraphT::child_end(NewBB)) == 1 &&
245           "NewBB should have a single successor!");
246    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
247
248    std::vector<typename GraphT::NodeType*> PredBlocks;
249    typedef GraphTraits<Inverse<N> > InvTraits;
250    for (typename InvTraits::ChildIteratorType PI =
251         InvTraits::child_begin(NewBB),
252         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
253      PredBlocks.push_back(*PI);
254
255    assert(!PredBlocks.empty() && "No predblocks?");
256
257    bool NewBBDominatesNewBBSucc = true;
258    for (typename InvTraits::ChildIteratorType PI =
259         InvTraits::child_begin(NewBBSucc),
260         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
261      typename InvTraits::NodeType *ND = *PI;
262      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
263          DT.isReachableFromEntry(ND)) {
264        NewBBDominatesNewBBSucc = false;
265        break;
266      }
267    }
268
269    // Find NewBB's immediate dominator and create new dominator tree node for
270    // NewBB.
271    NodeT *NewBBIDom = 0;
272    unsigned i = 0;
273    for (i = 0; i < PredBlocks.size(); ++i)
274      if (DT.isReachableFromEntry(PredBlocks[i])) {
275        NewBBIDom = PredBlocks[i];
276        break;
277      }
278
279    // It's possible that none of the predecessors of NewBB are reachable;
280    // in that case, NewBB itself is unreachable, so nothing needs to be
281    // changed.
282    if (!NewBBIDom)
283      return;
284
285    for (i = i + 1; i < PredBlocks.size(); ++i) {
286      if (DT.isReachableFromEntry(PredBlocks[i]))
287        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
288    }
289
290    // Create the new dominator tree node... and set the idom of NewBB.
291    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
292
293    // If NewBB strictly dominates other blocks, then it is now the immediate
294    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
295    if (NewBBDominatesNewBBSucc) {
296      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
297      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
298    }
299  }
300
301public:
302  explicit DominatorTreeBase(bool isPostDom)
303    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
304  virtual ~DominatorTreeBase() { reset(); }
305
306  // FIXME: Should remove this
307  virtual bool runOnFunction(Function &F) { return false; }
308
309  /// compare - Return false if the other dominator tree base matches this
310  /// dominator tree base. Otherwise return true.
311  bool compare(DominatorTreeBase &Other) const {
312
313    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
314    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
315      return true;
316
317    for (typename DomTreeNodeMapType::const_iterator
318           I = this->DomTreeNodes.begin(),
319           E = this->DomTreeNodes.end(); I != E; ++I) {
320      NodeT *BB = I->first;
321      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
322      if (OI == OtherDomTreeNodes.end())
323        return true;
324
325      DomTreeNodeBase<NodeT>* MyNd = I->second;
326      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
327
328      if (MyNd->compare(OtherNd))
329        return true;
330    }
331
332    return false;
333  }
334
335  virtual void releaseMemory() { reset(); }
336
337  /// getNode - return the (Post)DominatorTree node for the specified basic
338  /// block.  This is the same as using operator[] on this class.
339  ///
340  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
341    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
342    return I != DomTreeNodes.end() ? I->second : 0;
343  }
344
345  /// getRootNode - This returns the entry node for the CFG of the function.  If
346  /// this tree represents the post-dominance relations for a function, however,
347  /// this root may be a node with the block == NULL.  This is the case when
348  /// there are multiple exit nodes from a particular function.  Consumers of
349  /// post-dominance information must be capable of dealing with this
350  /// possibility.
351  ///
352  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
353  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
354
355  /// properlyDominates - Returns true iff this dominates N and this != N.
356  /// Note that this is not a constant time operation!
357  ///
358  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
359                         const DomTreeNodeBase<NodeT> *B) const {
360    if (A == 0 || B == 0) return false;
361    return dominatedBySlowTreeWalk(A, B);
362  }
363
364  inline bool properlyDominates(NodeT *A, NodeT *B) {
365    return properlyDominates(getNode(A), getNode(B));
366  }
367
368  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
369                               const DomTreeNodeBase<NodeT> *B) const {
370    const DomTreeNodeBase<NodeT> *IDom;
371    if (A == 0 || B == 0) return false;
372    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
373      B = IDom;   // Walk up the tree
374    return IDom != 0;
375  }
376
377
378  /// isReachableFromEntry - Return true if A is dominated by the entry
379  /// block of the function containing it.
380  bool isReachableFromEntry(NodeT* A) {
381    assert(!this->isPostDominator() &&
382           "This is not implemented for post dominators");
383    return dominates(&A->getParent()->front(), A);
384  }
385
386  /// dominates - Returns true iff A dominates B.  Note that this is not a
387  /// constant time operation!
388  ///
389  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
390                        const DomTreeNodeBase<NodeT> *B) {
391    if (B == A)
392      return true;  // A node trivially dominates itself.
393
394    if (A == 0 || B == 0)
395      return false;
396
397    // Compare the result of the tree walk and the dfs numbers, if expensive
398    // checks are enabled.
399#ifdef XDEBUG
400    assert((!DFSInfoValid ||
401            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
402           "Tree walk disagrees with dfs numbers!");
403#endif
404
405    if (DFSInfoValid)
406      return B->DominatedBy(A);
407
408    // If we end up with too many slow queries, just update the
409    // DFS numbers on the theory that we are going to keep querying.
410    SlowQueries++;
411    if (SlowQueries > 32) {
412      updateDFSNumbers();
413      return B->DominatedBy(A);
414    }
415
416    return dominatedBySlowTreeWalk(A, B);
417  }
418
419  inline bool dominates(const NodeT *A, const NodeT *B) {
420    if (A == B)
421      return true;
422
423    // Cast away the const qualifiers here. This is ok since
424    // this function doesn't actually return the values returned
425    // from getNode.
426    return dominates(getNode(const_cast<NodeT *>(A)),
427                     getNode(const_cast<NodeT *>(B)));
428  }
429
430  NodeT *getRoot() const {
431    assert(this->Roots.size() == 1 && "Should always have entry node!");
432    return this->Roots[0];
433  }
434
435  /// findNearestCommonDominator - Find nearest common dominator basic block
436  /// for basic block A and B. If there is no such block then return NULL.
437  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
438    assert(A->getParent() == B->getParent() &&
439           "Two blocks are not in same function");
440
441    // If either A or B is a entry block then it is nearest common dominator
442    // (for forward-dominators).
443    if (!this->isPostDominator()) {
444      NodeT &Entry = A->getParent()->front();
445      if (A == &Entry || B == &Entry)
446        return &Entry;
447    }
448
449    // If B dominates A then B is nearest common dominator.
450    if (dominates(B, A))
451      return B;
452
453    // If A dominates B then A is nearest common dominator.
454    if (dominates(A, B))
455      return A;
456
457    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
458    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
459
460    // Collect NodeA dominators set.
461    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
462    NodeADoms.insert(NodeA);
463    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
464    while (IDomA) {
465      NodeADoms.insert(IDomA);
466      IDomA = IDomA->getIDom();
467    }
468
469    // Walk NodeB immediate dominators chain and find common dominator node.
470    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
471    while (IDomB) {
472      if (NodeADoms.count(IDomB) != 0)
473        return IDomB->getBlock();
474
475      IDomB = IDomB->getIDom();
476    }
477
478    return NULL;
479  }
480
481  //===--------------------------------------------------------------------===//
482  // API to update (Post)DominatorTree information based on modifications to
483  // the CFG...
484
485  /// addNewBlock - Add a new node to the dominator tree information.  This
486  /// creates a new node as a child of DomBB dominator node,linking it into
487  /// the children list of the immediate dominator.
488  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
489    assert(getNode(BB) == 0 && "Block already in dominator tree!");
490    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
491    assert(IDomNode && "Not immediate dominator specified for block!");
492    DFSInfoValid = false;
493    return DomTreeNodes[BB] =
494      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
495  }
496
497  /// changeImmediateDominator - This method is used to update the dominator
498  /// tree information when a node's immediate dominator changes.
499  ///
500  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
501                                DomTreeNodeBase<NodeT> *NewIDom) {
502    assert(N && NewIDom && "Cannot change null node pointers!");
503    DFSInfoValid = false;
504    N->setIDom(NewIDom);
505  }
506
507  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
508    changeImmediateDominator(getNode(BB), getNode(NewBB));
509  }
510
511  /// eraseNode - Removes a node from the dominator tree. Block must not
512  /// domiante any other blocks. Removes node from its immediate dominator's
513  /// children list. Deletes dominator node associated with basic block BB.
514  void eraseNode(NodeT *BB) {
515    DomTreeNodeBase<NodeT> *Node = getNode(BB);
516    assert(Node && "Removing node that isn't in dominator tree.");
517    assert(Node->getChildren().empty() && "Node is not a leaf node.");
518
519      // Remove node from immediate dominator's children list.
520    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
521    if (IDom) {
522      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
523        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
524      assert(I != IDom->Children.end() &&
525             "Not in immediate dominator children set!");
526      // I am no longer your child...
527      IDom->Children.erase(I);
528    }
529
530    DomTreeNodes.erase(BB);
531    delete Node;
532  }
533
534  /// removeNode - Removes a node from the dominator tree.  Block must not
535  /// dominate any other blocks.  Invalidates any node pointing to removed
536  /// block.
537  void removeNode(NodeT *BB) {
538    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
539    DomTreeNodes.erase(BB);
540  }
541
542  /// splitBlock - BB is split and now it has one successor. Update dominator
543  /// tree to reflect this change.
544  void splitBlock(NodeT* NewBB) {
545    if (this->IsPostDominators)
546      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
547    else
548      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
549  }
550
551  /// print - Convert to human readable form
552  ///
553  void print(raw_ostream &o) const {
554    o << "=============================--------------------------------\n";
555    if (this->isPostDominator())
556      o << "Inorder PostDominator Tree: ";
557    else
558      o << "Inorder Dominator Tree: ";
559    if (this->DFSInfoValid)
560      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
561    o << "\n";
562
563    // The postdom tree can have a null root if there are no returns.
564    if (getRootNode())
565      PrintDomTree<NodeT>(getRootNode(), o, 1);
566  }
567
568protected:
569  template<class GraphT>
570  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
571                       typename GraphT::NodeType* VIn);
572
573  template<class GraphT>
574  friend typename GraphT::NodeType* Eval(
575                               DominatorTreeBase<typename GraphT::NodeType>& DT,
576                                         typename GraphT::NodeType* V);
577
578  template<class GraphT>
579  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
580                   unsigned DFSNumV, typename GraphT::NodeType* W,
581         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
582
583  template<class GraphT>
584  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
585                          typename GraphT::NodeType* V,
586                          unsigned N);
587
588  template<class FuncT, class N>
589  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
590                        FuncT& F);
591
592  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
593  /// dominator tree in dfs order.
594  void updateDFSNumbers() {
595    unsigned DFSNum = 0;
596
597    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
598                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
599
600    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
601
602    if (!ThisRoot)
603      return;
604
605    // Even in the case of multiple exits that form the post dominator root
606    // nodes, do not iterate over all exits, but start from the virtual root
607    // node. Otherwise bbs, that are not post dominated by any exit but by the
608    // virtual root node, will never be assigned a DFS number.
609    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
610    ThisRoot->DFSNumIn = DFSNum++;
611
612    while (!WorkStack.empty()) {
613      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
614      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
615        WorkStack.back().second;
616
617      // If we visited all of the children of this node, "recurse" back up the
618      // stack setting the DFOutNum.
619      if (ChildIt == Node->end()) {
620        Node->DFSNumOut = DFSNum++;
621        WorkStack.pop_back();
622      } else {
623        // Otherwise, recursively visit this child.
624        DomTreeNodeBase<NodeT> *Child = *ChildIt;
625        ++WorkStack.back().second;
626
627        WorkStack.push_back(std::make_pair(Child, Child->begin()));
628        Child->DFSNumIn = DFSNum++;
629      }
630    }
631
632    SlowQueries = 0;
633    DFSInfoValid = true;
634  }
635
636  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
637    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
638    if (I != this->DomTreeNodes.end() && I->second)
639      return I->second;
640
641    // Haven't calculated this node yet?  Get or calculate the node for the
642    // immediate dominator.
643    NodeT *IDom = getIDom(BB);
644
645    assert(IDom || this->DomTreeNodes[NULL]);
646    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
647
648    // Add a new tree node for this BasicBlock, and link it as a child of
649    // IDomNode
650    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
651    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
652  }
653
654  inline NodeT *getIDom(NodeT *BB) const {
655    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
656    return I != IDoms.end() ? I->second : 0;
657  }
658
659  inline void addRoot(NodeT* BB) {
660    this->Roots.push_back(BB);
661  }
662
663public:
664  /// recalculate - compute a dominator tree for the given function
665  template<class FT>
666  void recalculate(FT& F) {
667    reset();
668    this->Vertex.push_back(0);
669
670    if (!this->IsPostDominators) {
671      // Initialize root
672      this->Roots.push_back(&F.front());
673      this->IDoms[&F.front()] = 0;
674      this->DomTreeNodes[&F.front()] = 0;
675
676      Calculate<FT, NodeT*>(*this, F);
677    } else {
678      // Initialize the roots list
679      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
680        if (std::distance(GraphTraits<FT*>::child_begin(I),
681                          GraphTraits<FT*>::child_end(I)) == 0)
682          addRoot(I);
683
684        // Prepopulate maps so that we don't get iterator invalidation issues later.
685        this->IDoms[I] = 0;
686        this->DomTreeNodes[I] = 0;
687      }
688
689      Calculate<FT, Inverse<NodeT*> >(*this, F);
690    }
691  }
692};
693
694EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
695
696//===-------------------------------------
697/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
698/// compute a normal dominator tree.
699///
700class DominatorTree : public FunctionPass {
701public:
702  static char ID; // Pass ID, replacement for typeid
703  DominatorTreeBase<BasicBlock>* DT;
704
705  DominatorTree() : FunctionPass(&ID) {
706    DT = new DominatorTreeBase<BasicBlock>(false);
707  }
708
709  ~DominatorTree() {
710    delete DT;
711  }
712
713  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
714
715  /// getRoots - Return the root blocks of the current CFG.  This may include
716  /// multiple blocks if we are computing post dominators.  For forward
717  /// dominators, this will always be a single block (the entry node).
718  ///
719  inline const std::vector<BasicBlock*> &getRoots() const {
720    return DT->getRoots();
721  }
722
723  inline BasicBlock *getRoot() const {
724    return DT->getRoot();
725  }
726
727  inline DomTreeNode *getRootNode() const {
728    return DT->getRootNode();
729  }
730
731  /// compare - Return false if the other dominator tree matches this
732  /// dominator tree. Otherwise return true.
733  inline bool compare(DominatorTree &Other) const {
734    DomTreeNode *R = getRootNode();
735    DomTreeNode *OtherR = Other.getRootNode();
736
737    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
738      return true;
739
740    if (DT->compare(Other.getBase()))
741      return true;
742
743    return false;
744  }
745
746  virtual bool runOnFunction(Function &F);
747
748  virtual void verifyAnalysis() const;
749
750  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
751    AU.setPreservesAll();
752  }
753
754  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
755    return DT->dominates(A, B);
756  }
757
758  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
759    return DT->dominates(A, B);
760  }
761
762  // dominates - Return true if A dominates B. This performs the
763  // special checks necessary if A and B are in the same basic block.
764  bool dominates(const Instruction *A, const Instruction *B) const;
765
766  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
767    return DT->properlyDominates(A, B);
768  }
769
770  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
771    return DT->properlyDominates(A, B);
772  }
773
774  /// findNearestCommonDominator - Find nearest common dominator basic block
775  /// for basic block A and B. If there is no such block then return NULL.
776  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
777    return DT->findNearestCommonDominator(A, B);
778  }
779
780  inline DomTreeNode *operator[](BasicBlock *BB) const {
781    return DT->getNode(BB);
782  }
783
784  /// getNode - return the (Post)DominatorTree node for the specified basic
785  /// block.  This is the same as using operator[] on this class.
786  ///
787  inline DomTreeNode *getNode(BasicBlock *BB) const {
788    return DT->getNode(BB);
789  }
790
791  /// addNewBlock - Add a new node to the dominator tree information.  This
792  /// creates a new node as a child of DomBB dominator node,linking it into
793  /// the children list of the immediate dominator.
794  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
795    return DT->addNewBlock(BB, DomBB);
796  }
797
798  /// changeImmediateDominator - This method is used to update the dominator
799  /// tree information when a node's immediate dominator changes.
800  ///
801  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
802    DT->changeImmediateDominator(N, NewIDom);
803  }
804
805  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
806    DT->changeImmediateDominator(N, NewIDom);
807  }
808
809  /// eraseNode - Removes a node from the dominator tree. Block must not
810  /// domiante any other blocks. Removes node from its immediate dominator's
811  /// children list. Deletes dominator node associated with basic block BB.
812  inline void eraseNode(BasicBlock *BB) {
813    DT->eraseNode(BB);
814  }
815
816  /// splitBlock - BB is split and now it has one successor. Update dominator
817  /// tree to reflect this change.
818  inline void splitBlock(BasicBlock* NewBB) {
819    DT->splitBlock(NewBB);
820  }
821
822  bool isReachableFromEntry(BasicBlock* A) {
823    return DT->isReachableFromEntry(A);
824  }
825
826
827  virtual void releaseMemory() {
828    DT->releaseMemory();
829  }
830
831  virtual void print(raw_ostream &OS, const Module* M= 0) const;
832};
833
834//===-------------------------------------
835/// DominatorTree GraphTraits specialization so the DominatorTree can be
836/// iterable by generic graph iterators.
837///
838template <> struct GraphTraits<DomTreeNode*> {
839  typedef DomTreeNode NodeType;
840  typedef NodeType::iterator  ChildIteratorType;
841
842  static NodeType *getEntryNode(NodeType *N) {
843    return N;
844  }
845  static inline ChildIteratorType child_begin(NodeType *N) {
846    return N->begin();
847  }
848  static inline ChildIteratorType child_end(NodeType *N) {
849    return N->end();
850  }
851
852  typedef df_iterator<DomTreeNode*> nodes_iterator;
853
854  static nodes_iterator nodes_begin(DomTreeNode *N) {
855    return df_begin(getEntryNode(N));
856  }
857
858  static nodes_iterator nodes_end(DomTreeNode *N) {
859    return df_end(getEntryNode(N));
860  }
861};
862
863template <> struct GraphTraits<DominatorTree*>
864  : public GraphTraits<DomTreeNode*> {
865  static NodeType *getEntryNode(DominatorTree *DT) {
866    return DT->getRootNode();
867  }
868
869  static nodes_iterator nodes_begin(DominatorTree *N) {
870    return df_begin(getEntryNode(N));
871  }
872
873  static nodes_iterator nodes_end(DominatorTree *N) {
874    return df_end(getEntryNode(N));
875  }
876};
877
878
879//===----------------------------------------------------------------------===//
880/// DominanceFrontierBase - Common base class for computing forward and inverse
881/// dominance frontiers for a function.
882///
883class DominanceFrontierBase : public FunctionPass {
884public:
885  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
886  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
887protected:
888  DomSetMapType Frontiers;
889  std::vector<BasicBlock*> Roots;
890  const bool IsPostDominators;
891
892public:
893  DominanceFrontierBase(void *ID, bool isPostDom)
894    : FunctionPass(ID), IsPostDominators(isPostDom) {}
895
896  /// getRoots - Return the root blocks of the current CFG.  This may include
897  /// multiple blocks if we are computing post dominators.  For forward
898  /// dominators, this will always be a single block (the entry node).
899  ///
900  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
901
902  /// isPostDominator - Returns true if analysis based of postdoms
903  ///
904  bool isPostDominator() const { return IsPostDominators; }
905
906  virtual void releaseMemory() { Frontiers.clear(); }
907
908  // Accessor interface:
909  typedef DomSetMapType::iterator iterator;
910  typedef DomSetMapType::const_iterator const_iterator;
911  iterator       begin()       { return Frontiers.begin(); }
912  const_iterator begin() const { return Frontiers.begin(); }
913  iterator       end()         { return Frontiers.end(); }
914  const_iterator end()   const { return Frontiers.end(); }
915  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
916  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
917
918  iterator addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
919    assert(find(BB) == end() && "Block already in DominanceFrontier!");
920    return Frontiers.insert(std::make_pair(BB, frontier)).first;
921  }
922
923  /// removeBlock - Remove basic block BB's frontier.
924  void removeBlock(BasicBlock *BB) {
925    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
926    for (iterator I = begin(), E = end(); I != E; ++I)
927      I->second.erase(BB);
928    Frontiers.erase(BB);
929  }
930
931  void addToFrontier(iterator I, BasicBlock *Node) {
932    assert(I != end() && "BB is not in DominanceFrontier!");
933    I->second.insert(Node);
934  }
935
936  void removeFromFrontier(iterator I, BasicBlock *Node) {
937    assert(I != end() && "BB is not in DominanceFrontier!");
938    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
939    I->second.erase(Node);
940  }
941
942  /// compareDomSet - Return false if two domsets match. Otherwise
943  /// return true;
944  bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
945    std::set<BasicBlock *> tmpSet;
946    for (DomSetType::const_iterator I = DS2.begin(),
947           E = DS2.end(); I != E; ++I)
948      tmpSet.insert(*I);
949
950    for (DomSetType::const_iterator I = DS1.begin(),
951           E = DS1.end(); I != E; ) {
952      BasicBlock *Node = *I++;
953
954      if (tmpSet.erase(Node) == 0)
955        // Node is in DS1 but not in DS2.
956        return true;
957    }
958
959    if (!tmpSet.empty())
960      // There are nodes that are in DS2 but not in DS1.
961      return true;
962
963    // DS1 and DS2 matches.
964    return false;
965  }
966
967  /// compare - Return true if the other dominance frontier base matches
968  /// this dominance frontier base. Otherwise return false.
969  bool compare(DominanceFrontierBase &Other) const {
970    DomSetMapType tmpFrontiers;
971    for (DomSetMapType::const_iterator I = Other.begin(),
972           E = Other.end(); I != E; ++I)
973      tmpFrontiers.insert(std::make_pair(I->first, I->second));
974
975    for (DomSetMapType::iterator I = tmpFrontiers.begin(),
976           E = tmpFrontiers.end(); I != E; ) {
977      BasicBlock *Node = I->first;
978      const_iterator DFI = find(Node);
979      if (DFI == end())
980        return true;
981
982      if (compareDomSet(I->second, DFI->second))
983        return true;
984
985      ++I;
986      tmpFrontiers.erase(Node);
987    }
988
989    if (!tmpFrontiers.empty())
990      return true;
991
992    return false;
993  }
994
995  /// print - Convert to human readable form
996  ///
997  virtual void print(raw_ostream &OS, const Module* = 0) const;
998
999  /// dump - Dump the dominance frontier to dbgs().
1000  void dump() const;
1001};
1002
1003
1004//===-------------------------------------
1005/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
1006/// used to compute a forward dominator frontiers.
1007///
1008class DominanceFrontier : public DominanceFrontierBase {
1009public:
1010  static char ID; // Pass ID, replacement for typeid
1011  DominanceFrontier() :
1012    DominanceFrontierBase(&ID, false) {}
1013
1014  BasicBlock *getRoot() const {
1015    assert(Roots.size() == 1 && "Should always have entry node!");
1016    return Roots[0];
1017  }
1018
1019  virtual bool runOnFunction(Function &) {
1020    Frontiers.clear();
1021    DominatorTree &DT = getAnalysis<DominatorTree>();
1022    Roots = DT.getRoots();
1023    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
1024    calculate(DT, DT[Roots[0]]);
1025    return false;
1026  }
1027
1028  virtual void verifyAnalysis() const;
1029
1030  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1031    AU.setPreservesAll();
1032    AU.addRequired<DominatorTree>();
1033  }
1034
1035  /// splitBlock - BB is split and now it has one successor. Update dominance
1036  /// frontier to reflect this change.
1037  void splitBlock(BasicBlock *BB);
1038
1039  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
1040  /// to reflect this change.
1041  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
1042                                DominatorTree *DT) {
1043    // NewBB is now dominating BB. Which means BB's dominance
1044    // frontier is now part of NewBB's dominance frontier. However, BB
1045    // itself is not member of NewBB's dominance frontier.
1046    DominanceFrontier::iterator NewDFI = find(NewBB);
1047    DominanceFrontier::iterator DFI = find(BB);
1048    // If BB was an entry block then its frontier is empty.
1049    if (DFI == end())
1050      return;
1051    DominanceFrontier::DomSetType BBSet = DFI->second;
1052    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
1053           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
1054      BasicBlock *DFMember = *BBSetI;
1055      // Insert only if NewBB dominates DFMember.
1056      if (!DT->dominates(NewBB, DFMember))
1057        NewDFI->second.insert(DFMember);
1058    }
1059    NewDFI->second.erase(BB);
1060  }
1061
1062  const DomSetType &calculate(const DominatorTree &DT,
1063                              const DomTreeNode *Node);
1064};
1065
1066
1067} // End llvm namespace
1068
1069#endif
1070