Dominators.h revision 4d42dea25397f2f822a93edfe9930b36ea85a7e7
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. ETForest: Efficient data structure for dominance comparisons and
13//     nearest-common-ancestor queries.
14//  3. DominanceFrontier: Calculate and hold the dominance frontier for a
15//     function.
16//
17//  These data structures are listed in increasing order of complexity.  It
18//  takes longer to calculate the dominator frontier, for example, than the
19//  DominatorTree mapping.
20//
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_ANALYSIS_DOMINATORS_H
24#define LLVM_ANALYSIS_DOMINATORS_H
25
26#include "llvm/Analysis/ET-Forest.h"
27#include "llvm/Pass.h"
28#include <set>
29
30namespace llvm {
31
32class Instruction;
33
34template <typename GraphType> struct GraphTraits;
35
36//===----------------------------------------------------------------------===//
37/// DominatorBase - Base class that other, more interesting dominator analyses
38/// inherit from.
39///
40class DominatorBase : public FunctionPass {
41protected:
42  std::vector<BasicBlock*> Roots;
43  const bool IsPostDominators;
44  inline DominatorBase(intptr_t ID, bool isPostDom) :
45    FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
46public:
47
48  /// getRoots -  Return the root blocks of the current CFG.  This may include
49  /// multiple blocks if we are computing post dominators.  For forward
50  /// dominators, this will always be a single block (the entry node).
51  ///
52  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
53
54  /// isPostDominator - Returns true if analysis based of postdoms
55  ///
56  bool isPostDominator() const { return IsPostDominators; }
57};
58
59
60//===----------------------------------------------------------------------===//
61// DomTreeNode - Dominator Tree Node
62
63class DomTreeNode {
64  BasicBlock *TheBB;
65  DomTreeNode *IDom;
66  std::vector<DomTreeNode*> Children;
67  int DFSNumIn, DFSNumOut;
68
69public:
70  typedef std::vector<DomTreeNode*>::iterator iterator;
71  typedef std::vector<DomTreeNode*>::const_iterator const_iterator;
72
73  iterator begin()             { return Children.begin(); }
74  iterator end()               { return Children.end(); }
75  const_iterator begin() const { return Children.begin(); }
76  const_iterator end()   const { return Children.end(); }
77
78  inline BasicBlock *getBlock() const { return TheBB; }
79  inline DomTreeNode *getIDom() const { return IDom; }
80  inline const std::vector<DomTreeNode*> &getChildren() const { return Children; }
81
82  inline DomTreeNode(BasicBlock *BB, DomTreeNode *iDom)
83    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
84  inline DomTreeNode *addChild(DomTreeNode *C) { Children.push_back(C); return C; }
85  void setIDom(DomTreeNode *NewIDom);
86
87  // Return true if this node is dominated by other. Use this only if DFS info is valid.
88  bool DominatedBy(const DomTreeNode *other) const {
89    return this->DFSNumIn >= other->DFSNumIn &&
90      this->DFSNumOut <= other->DFSNumOut;
91  }
92
93  /// assignDFSNumber - Assign In and Out numbers while walking dominator tree
94  /// in dfs order.
95  void assignDFSNumber(int num);
96};
97
98//===----------------------------------------------------------------------===//
99/// DominatorTree - Calculate the immediate dominator tree for a function.
100///
101class DominatorTreeBase : public DominatorBase {
102
103protected:
104  void reset();
105  typedef std::map<BasicBlock*, DomTreeNode*> DomTreeNodeMapType;
106  DomTreeNodeMapType DomTreeNodes;
107  DomTreeNode *RootNode;
108
109  bool DFSInfoValid;
110  unsigned int SlowQueries;
111  // Information record used during immediate dominators computation.
112  struct InfoRec {
113    unsigned Semi;
114    unsigned Size;
115    BasicBlock *Label, *Parent, *Child, *Ancestor;
116
117    std::vector<BasicBlock*> Bucket;
118
119    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
120  };
121
122  std::map<BasicBlock*, BasicBlock*> IDoms;
123
124  // Vertex - Map the DFS number to the BasicBlock*
125  std::vector<BasicBlock*> Vertex;
126
127  // Info - Collection of information used during the computation of idoms.
128  std::map<BasicBlock*, InfoRec> Info;
129
130  public:
131  DominatorTreeBase(intptr_t ID, bool isPostDom)
132    : DominatorBase(ID, isPostDom), DFSInfoValid(false), SlowQueries(0) {}
133  ~DominatorTreeBase() { reset(); }
134
135  virtual void releaseMemory() { reset(); }
136
137  /// getNode - return the (Post)DominatorTree node for the specified basic
138  /// block.  This is the same as using operator[] on this class.
139  ///
140  inline DomTreeNode *getNode(BasicBlock *BB) const {
141    DomTreeNodeMapType::const_iterator i = DomTreeNodes.find(BB);
142    return (i != DomTreeNodes.end()) ? i->second : 0;
143  }
144
145  inline DomTreeNode *operator[](BasicBlock *BB) const {
146    return getNode(BB);
147  }
148
149  /// getIDomBlock - return basic block BB's immediate dominator basic block.
150  ///
151  BasicBlock *getIDomBlock(BasicBlock *BB) {
152    DomTreeNode *N = getNode(BB);
153    assert (N && "Missing dominator tree node");
154    DomTreeNode *I = N->getIDom();
155    assert (N && "Missing immediate dominator");
156    return I->getBlock();
157  }
158
159  /// getRootNode - This returns the entry node for the CFG of the function.  If
160  /// this tree represents the post-dominance relations for a function, however,
161  /// this root may be a node with the block == NULL.  This is the case when
162  /// there are multiple exit nodes from a particular function.  Consumers of
163  /// post-dominance information must be capable of dealing with this
164  /// possibility.
165  ///
166  DomTreeNode *getRootNode() { return RootNode; }
167  const DomTreeNode *getRootNode() const { return RootNode; }
168
169  /// properlyDominates - Returns true iff this dominates N and this != N.
170  /// Note that this is not a constant time operation!
171  ///
172  bool properlyDominates(const DomTreeNode *A, DomTreeNode *B) const {
173    if (A == 0 || B == 0) return false;
174    return dominatedBySlowTreeWalk(A, B);
175  }
176
177  inline bool properlyDominates(BasicBlock *A, BasicBlock *B) {
178    return properlyDominates(getNode(A), getNode(B));
179  }
180
181  bool dominatedBySlowTreeWalk(const DomTreeNode *A,
182                               const DomTreeNode *B) const {
183    const DomTreeNode *IDom;
184    if (A == 0 || B == 0) return false;
185    while ((IDom = B->getIDom()) != 0 && IDom != A)
186      B = IDom;   // Walk up the tree
187    return IDom != 0;
188  }
189
190  void updateDFSNumbers();
191
192  /// isReachableFromEntry - Return true if A is dominated by the entry
193  /// block of the function containing it.
194  const bool isReachableFromEntry(BasicBlock* A);
195
196  /// dominates - Returns true iff this dominates N.  Note that this is not a
197  /// constant time operation!
198  ///
199  inline bool dominates(const DomTreeNode *A, DomTreeNode *B) {
200    if (B == A)
201      return true;  // A node trivially dominates itself.
202
203    if (A == 0 || B == 0)
204      return false;
205
206    if (DFSInfoValid)
207      return B->DominatedBy(A);
208
209    // If we end up with too many slow queries, just update the
210    // DFS numbers on the theory that we are going to keep querying.
211    SlowQueries++;
212    if (SlowQueries > 32) {
213      updateDFSNumbers();
214      return B->DominatedBy(A);
215    }
216
217    return dominatedBySlowTreeWalk(A, B);
218  }
219
220  inline bool dominates(BasicBlock *A, BasicBlock *B) {
221    if (A == B)
222      return true;
223
224    return dominates(getNode(A), getNode(B));
225  }
226
227  /// findNearestCommonDominator - Find nearest common dominator basic block
228  /// for basic block A and B. If there is no such block then return NULL.
229  BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B);
230
231  // dominates - Return true if A dominates B. This performs the
232  // special checks necessary if A and B are in the same basic block.
233  bool dominates(Instruction *A, Instruction *B);
234
235  //===--------------------------------------------------------------------===//
236  // API to update (Post)DominatorTree information based on modifications to
237  // the CFG...
238
239  /// addNewBlock - Add a new node to the dominator tree information.  This
240  /// creates a new node as a child of DomBB dominator node,linking it into
241  /// the children list of the immediate dominator.
242  DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
243    assert(getNode(BB) == 0 && "Block already in dominator tree!");
244    DomTreeNode *IDomNode = getNode(DomBB);
245    assert(IDomNode && "Not immediate dominator specified for block!");
246    DFSInfoValid = false;
247    return DomTreeNodes[BB] =
248      IDomNode->addChild(new DomTreeNode(BB, IDomNode));
249  }
250
251  /// changeImmediateDominator - This method is used to update the dominator
252  /// tree information when a node's immediate dominator changes.
253  ///
254  void changeImmediateDominator(DomTreeNode *N, DomTreeNode *NewIDom) {
255    assert(N && NewIDom && "Cannot change null node pointers!");
256    DFSInfoValid = false;
257    N->setIDom(NewIDom);
258  }
259
260  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB) {
261    changeImmediateDominator(getNode(BB), getNode(NewBB));
262  }
263
264  /// removeNode - Removes a node from the dominator tree.  Block must not
265  /// dominate any other blocks.  Invalidates any node pointing to removed
266  /// block.
267  void removeNode(BasicBlock *BB) {
268    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
269    DomTreeNodes.erase(BB);
270  }
271
272  /// print - Convert to human readable form
273  ///
274  virtual void print(std::ostream &OS, const Module* = 0) const;
275  void print(std::ostream *OS, const Module* M = 0) const {
276    if (OS) print(*OS, M);
277  }
278  virtual void dump();
279};
280
281//===-------------------------------------
282/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
283/// compute a normal dominator tree.
284///
285class DominatorTree : public DominatorTreeBase {
286public:
287  static char ID; // Pass ID, replacement for typeid
288  DominatorTree() : DominatorTreeBase((intptr_t)&ID, false) {}
289
290  BasicBlock *getRoot() const {
291    assert(Roots.size() == 1 && "Should always have entry node!");
292    return Roots[0];
293  }
294
295  virtual bool runOnFunction(Function &F);
296
297  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
298    AU.setPreservesAll();
299  }
300private:
301  void calculate(Function& F);
302  DomTreeNode *getNodeForBlock(BasicBlock *BB);
303  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
304  void Compress(BasicBlock *V);
305  BasicBlock *Eval(BasicBlock *v);
306  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
307  inline BasicBlock *getIDom(BasicBlock *BB) const {
308      std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
309      return I != IDoms.end() ? I->second : 0;
310    }
311};
312
313//===-------------------------------------
314/// DominatorTree GraphTraits specialization so the DominatorTree can be
315/// iterable by generic graph iterators.
316///
317template <> struct GraphTraits<DomTreeNode*> {
318  typedef DomTreeNode NodeType;
319  typedef NodeType::iterator  ChildIteratorType;
320
321  static NodeType *getEntryNode(NodeType *N) {
322    return N;
323  }
324  static inline ChildIteratorType child_begin(NodeType* N) {
325    return N->begin();
326  }
327  static inline ChildIteratorType child_end(NodeType* N) {
328    return N->end();
329  }
330};
331
332template <> struct GraphTraits<DominatorTree*>
333  : public GraphTraits<DomTreeNode*> {
334  static NodeType *getEntryNode(DominatorTree *DT) {
335    return DT->getRootNode();
336  }
337};
338
339
340//===-------------------------------------
341/// ET-Forest Class - Class used to construct forwards and backwards
342/// ET-Forests
343///
344class ETForestBase : public DominatorBase {
345public:
346  ETForestBase(intptr_t ID, bool isPostDom)
347    : DominatorBase(ID, isPostDom), Nodes(),
348      DFSInfoValid(false), SlowQueries(0) {}
349
350  virtual void releaseMemory() { reset(); }
351
352  typedef std::map<BasicBlock*, ETNode*> ETMapType;
353
354  // FIXME : There is no need to make this interface public.
355  // Fix predicate simplifier.
356  void updateDFSNumbers();
357
358  /// dominates - Return true if A dominates B.
359  ///
360  inline bool dominates(BasicBlock *A, BasicBlock *B) {
361    if (A == B)
362      return true;
363
364    ETNode *NodeA = getNode(A);
365    ETNode *NodeB = getNode(B);
366
367    if (DFSInfoValid)
368      return NodeB->DominatedBy(NodeA);
369    else {
370      // If we end up with too many slow queries, just update the
371      // DFS numbers on the theory that we are going to keep querying.
372      SlowQueries++;
373      if (SlowQueries > 32) {
374        updateDFSNumbers();
375        return NodeB->DominatedBy(NodeA);
376      }
377      return NodeB->DominatedBySlow(NodeA);
378    }
379  }
380
381  // dominates - Return true if A dominates B. This performs the
382  // special checks necessary if A and B are in the same basic block.
383  bool dominates(Instruction *A, Instruction *B);
384
385  /// properlyDominates - Return true if A dominates B and A != B.
386  ///
387  bool properlyDominates(BasicBlock *A, BasicBlock *B) {
388    return dominates(A, B) && A != B;
389  }
390
391  /// isReachableFromEntry - Return true if A is dominated by the entry
392  /// block of the function containing it.
393  const bool isReachableFromEntry(BasicBlock* A);
394
395  /// Return the nearest common dominator of A and B.
396  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
397    ETNode *NodeA = getNode(A);
398    ETNode *NodeB = getNode(B);
399
400    ETNode *Common = NodeA->NCA(NodeB);
401    if (!Common)
402      return NULL;
403    return Common->getData<BasicBlock>();
404  }
405
406  /// Return the immediate dominator of A.
407  BasicBlock *getIDom(BasicBlock *A) const {
408    ETNode *NodeA = getNode(A);
409    if (!NodeA) return 0;
410    const ETNode *idom = NodeA->getFather();
411    return idom ? idom->getData<BasicBlock>() : 0;
412  }
413
414  void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
415    ETNode *NodeA = getNode(A);
416    if (!NodeA) return;
417    const ETNode* son = NodeA->getSon();
418
419    if (!son) return;
420    children.push_back(son->getData<BasicBlock>());
421
422    const ETNode* brother = son->getBrother();
423    while (brother != son) {
424      children.push_back(brother->getData<BasicBlock>());
425      brother = brother->getBrother();
426    }
427  }
428
429  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
430    AU.setPreservesAll();
431    AU.addRequired<DominatorTree>();
432  }
433  //===--------------------------------------------------------------------===//
434  // API to update Forest information based on modifications
435  // to the CFG...
436
437  /// addNewBlock - Add a new block to the CFG, with the specified immediate
438  /// dominator.
439  ///
440  void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
441
442  /// setImmediateDominator - Update the immediate dominator information to
443  /// change the current immediate dominator for the specified block
444  /// to another block.  This method requires that BB for NewIDom
445  /// already have an ETNode, otherwise just use addNewBlock.
446  ///
447  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
448  /// print - Convert to human readable form
449  ///
450  virtual void print(std::ostream &OS, const Module* = 0) const;
451  void print(std::ostream *OS, const Module* M = 0) const {
452    if (OS) print(*OS, M);
453  }
454  virtual void dump();
455protected:
456  /// getNode - return the (Post)DominatorTree node for the specified basic
457  /// block.  This is the same as using operator[] on this class.
458  ///
459  inline ETNode *getNode(BasicBlock *BB) const {
460    ETMapType::const_iterator i = Nodes.find(BB);
461    return (i != Nodes.end()) ? i->second : 0;
462  }
463
464  inline ETNode *operator[](BasicBlock *BB) const {
465    return getNode(BB);
466  }
467
468  void reset();
469  ETMapType Nodes;
470  bool DFSInfoValid;
471  unsigned int SlowQueries;
472
473};
474
475//==-------------------------------------
476/// ETForest Class - Concrete subclass of ETForestBase that is used to
477/// compute a forwards ET-Forest.
478
479class ETForest : public ETForestBase {
480public:
481  static char ID; // Pass identification, replacement for typeid
482
483  ETForest() : ETForestBase((intptr_t)&ID, false) {}
484
485  BasicBlock *getRoot() const {
486    assert(Roots.size() == 1 && "Should always have entry node!");
487    return Roots[0];
488  }
489
490  virtual bool runOnFunction(Function &F) {
491    reset();     // Reset from the last time we were run...
492    DominatorTree &DT = getAnalysis<DominatorTree>();
493    Roots = DT.getRoots();
494    calculate(DT);
495    return false;
496  }
497
498  void calculate(const DominatorTree &DT);
499  // FIXME : There is no need to make getNodeForBlock public. Fix
500  // predicate simplifier.
501  ETNode *getNodeForBlock(BasicBlock *BB);
502};
503
504//===----------------------------------------------------------------------===//
505/// DominanceFrontierBase - Common base class for computing forward and inverse
506/// dominance frontiers for a function.
507///
508class DominanceFrontierBase : public DominatorBase {
509public:
510  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
511  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
512protected:
513  DomSetMapType Frontiers;
514public:
515  DominanceFrontierBase(intptr_t ID, bool isPostDom)
516    : DominatorBase(ID, isPostDom) {}
517
518  virtual void releaseMemory() { Frontiers.clear(); }
519
520  // Accessor interface:
521  typedef DomSetMapType::iterator iterator;
522  typedef DomSetMapType::const_iterator const_iterator;
523  iterator       begin()       { return Frontiers.begin(); }
524  const_iterator begin() const { return Frontiers.begin(); }
525  iterator       end()         { return Frontiers.end(); }
526  const_iterator end()   const { return Frontiers.end(); }
527  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
528  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
529
530  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
531    assert(find(BB) == end() && "Block already in DominanceFrontier!");
532    Frontiers.insert(std::make_pair(BB, frontier));
533  }
534
535  void addToFrontier(iterator I, BasicBlock *Node) {
536    assert(I != end() && "BB is not in DominanceFrontier!");
537    I->second.insert(Node);
538  }
539
540  void removeFromFrontier(iterator I, BasicBlock *Node) {
541    assert(I != end() && "BB is not in DominanceFrontier!");
542    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
543    I->second.erase(Node);
544  }
545
546  /// print - Convert to human readable form
547  ///
548  virtual void print(std::ostream &OS, const Module* = 0) const;
549  void print(std::ostream *OS, const Module* M = 0) const {
550    if (OS) print(*OS, M);
551  }
552  virtual void dump();
553};
554
555
556//===-------------------------------------
557/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
558/// used to compute a forward dominator frontiers.
559///
560class DominanceFrontier : public DominanceFrontierBase {
561public:
562  static char ID; // Pass ID, replacement for typeid
563  DominanceFrontier() :
564    DominanceFrontierBase((intptr_t)& ID, false) {}
565
566  BasicBlock *getRoot() const {
567    assert(Roots.size() == 1 && "Should always have entry node!");
568    return Roots[0];
569  }
570
571  virtual bool runOnFunction(Function &) {
572    Frontiers.clear();
573    DominatorTree &DT = getAnalysis<DominatorTree>();
574    Roots = DT.getRoots();
575    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
576    calculate(DT, DT[Roots[0]]);
577    return false;
578  }
579
580  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
581    AU.setPreservesAll();
582    AU.addRequired<DominatorTree>();
583  }
584
585private:
586  const DomSetType &calculate(const DominatorTree &DT,
587                              const DomTreeNode *Node);
588};
589
590
591} // End llvm namespace
592
593#endif
594