Dominators.h revision 4f1bd9e9963239c119db70070db1d68286b3de7e
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. ImmediateDominators: Calculates and holds a mapping between BasicBlocks
12//     and their immediate dominator.
13//  2. DominatorSet: Calculates the [reverse] dominator set for a function
14//  3. DominatorTree: Represent the ImmediateDominator as an explicit tree
15//     structure.
16//  4. ETForest: Efficient data structure for dominance comparisons and
17//     nearest-common-ancestor queries.
18//  5. DominanceFrontier: Calculate and hold the dominance frontier for a
19//     function.
20//
21//  These data structures are listed in increasing order of complexity.  It
22//  takes longer to calculate the dominator frontier, for example, than the
23//  ImmediateDominator mapping.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_DOMINATORS_H
28#define LLVM_ANALYSIS_DOMINATORS_H
29
30#include "llvm/Analysis/ET-Forest.h"
31#include "llvm/Pass.h"
32#include <set>
33
34namespace llvm {
35
36class Instruction;
37
38template <typename GraphType> struct GraphTraits;
39
40//===----------------------------------------------------------------------===//
41/// DominatorBase - Base class that other, more interesting dominator analyses
42/// inherit from.
43///
44class DominatorBase : public FunctionPass {
45protected:
46  std::vector<BasicBlock*> Roots;
47  const bool IsPostDominators;
48
49  inline DominatorBase(bool isPostDom) : Roots(), IsPostDominators(isPostDom) {}
50public:
51  /// getRoots -  Return the root blocks of the current CFG.  This may include
52  /// multiple blocks if we are computing post dominators.  For forward
53  /// dominators, this will always be a single block (the entry node).
54  ///
55  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
56
57  /// isPostDominator - Returns true if analysis based of postdoms
58  ///
59  bool isPostDominator() const { return IsPostDominators; }
60};
61
62
63//===----------------------------------------------------------------------===//
64/// ImmediateDominators - Calculate the immediate dominator for each node in a
65/// function.
66///
67class ImmediateDominatorsBase : public DominatorBase {
68protected:
69  struct InfoRec {
70    unsigned Semi;
71    unsigned Size;
72    BasicBlock *Label, *Parent, *Child, *Ancestor;
73
74    std::vector<BasicBlock*> Bucket;
75
76    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
77  };
78
79  std::map<BasicBlock*, BasicBlock*> IDoms;
80
81  // Vertex - Map the DFS number to the BasicBlock*
82  std::vector<BasicBlock*> Vertex;
83
84  // Info - Collection of information used during the computation of idoms.
85  std::map<BasicBlock*, InfoRec> Info;
86public:
87  ImmediateDominatorsBase(bool isPostDom) : DominatorBase(isPostDom) {}
88
89  virtual void releaseMemory() { IDoms.clear(); }
90
91  // Accessor interface:
92  typedef std::map<BasicBlock*, BasicBlock*> IDomMapType;
93  typedef IDomMapType::const_iterator const_iterator;
94  inline const_iterator begin() const { return IDoms.begin(); }
95  inline const_iterator end()   const { return IDoms.end(); }
96  inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);}
97
98  /// operator[] - Return the idom for the specified basic block.  The start
99  /// node returns null, because it does not have an immediate dominator.
100  ///
101  inline BasicBlock *operator[](BasicBlock *BB) const {
102    return get(BB);
103  }
104
105  /// get() - Synonym for operator[].
106  ///
107  inline BasicBlock *get(BasicBlock *BB) const {
108    std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
109    return I != IDoms.end() ? I->second : 0;
110  }
111
112  //===--------------------------------------------------------------------===//
113  // API to update Immediate(Post)Dominators information based on modifications
114  // to the CFG...
115
116  /// addNewBlock - Add a new block to the CFG, with the specified immediate
117  /// dominator.
118  ///
119  void addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
120    assert(get(BB) == 0 && "BasicBlock already in idom info!");
121    IDoms[BB] = IDom;
122  }
123
124  /// setImmediateDominator - Update the immediate dominator information to
125  /// change the current immediate dominator for the specified block to another
126  /// block.  This method requires that BB already have an IDom, otherwise just
127  /// use addNewBlock.
128  ///
129  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom) {
130    assert(IDoms.find(BB) != IDoms.end() && "BB doesn't have idom yet!");
131    IDoms[BB] = NewIDom;
132  }
133
134  /// print - Convert to human readable form
135  ///
136  virtual void print(std::ostream &OS, const Module* = 0) const;
137};
138
139//===-------------------------------------
140/// ImmediateDominators Class - Concrete subclass of ImmediateDominatorsBase
141/// that is used to compute a normal immediate dominator set.
142///
143class ImmediateDominators : public ImmediateDominatorsBase {
144public:
145  ImmediateDominators() : ImmediateDominatorsBase(false) {}
146
147  BasicBlock *getRoot() const {
148    assert(Roots.size() == 1 && "Should always have entry node!");
149    return Roots[0];
150  }
151
152  virtual bool runOnFunction(Function &F);
153
154  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155    AU.setPreservesAll();
156  }
157
158private:
159  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
160  void Compress(BasicBlock *V, InfoRec &VInfo);
161  BasicBlock *Eval(BasicBlock *v);
162  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
163};
164
165
166
167//===----------------------------------------------------------------------===//
168/// DominatorSet - Maintain a set<BasicBlock*> for every basic block in a
169/// function, that represents the blocks that dominate the block.  If the block
170/// is unreachable in this function, the set will be empty.  This cannot happen
171/// for reachable code, because every block dominates at least itself.
172///
173class DominatorSetBase : public DominatorBase {
174public:
175  typedef std::set<BasicBlock*> DomSetType;    // Dom set for a bb
176  // Map of dom sets
177  typedef std::map<BasicBlock*, DomSetType> DomSetMapType;
178protected:
179  DomSetMapType Doms;
180public:
181  DominatorSetBase(bool isPostDom) : DominatorBase(isPostDom) {}
182
183  virtual void releaseMemory() { Doms.clear(); }
184
185  // Accessor interface:
186  typedef DomSetMapType::const_iterator const_iterator;
187  typedef DomSetMapType::iterator iterator;
188  inline const_iterator begin() const { return Doms.begin(); }
189  inline       iterator begin()       { return Doms.begin(); }
190  inline const_iterator end()   const { return Doms.end(); }
191  inline       iterator end()         { return Doms.end(); }
192  inline const_iterator find(BasicBlock* B) const { return Doms.find(B); }
193  inline       iterator find(BasicBlock* B)       { return Doms.find(B); }
194
195
196  /// getDominators - Return the set of basic blocks that dominate the specified
197  /// block.
198  ///
199  inline const DomSetType &getDominators(BasicBlock *BB) const {
200    const_iterator I = find(BB);
201    assert(I != end() && "BB not in function!");
202    return I->second;
203  }
204
205  /// isReachable - Return true if the specified basicblock is reachable.  If
206  /// the block is reachable, we have dominator set information for it.
207  ///
208  bool isReachable(BasicBlock *BB) const {
209    return !getDominators(BB).empty();
210  }
211
212  /// dominates - Return true if A dominates B.
213  ///
214  inline bool dominates(BasicBlock *A, BasicBlock *B) const {
215    return getDominators(B).count(A) != 0;
216  }
217
218  /// properlyDominates - Return true if A dominates B and A != B.
219  ///
220  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
221    return dominates(A, B) && A != B;
222  }
223
224  /// print - Convert to human readable form
225  ///
226  virtual void print(std::ostream &OS, const Module* = 0) const;
227
228  /// dominates - Return true if A dominates B.  This performs the special
229  /// checks necessary if A and B are in the same basic block.
230  ///
231  bool dominates(Instruction *A, Instruction *B) const;
232
233  //===--------------------------------------------------------------------===//
234  // API to update (Post)DominatorSet information based on modifications to
235  // the CFG...
236
237  /// addBasicBlock - Call to update the dominator set with information about a
238  /// new block that was inserted into the function.
239  ///
240  void addBasicBlock(BasicBlock *BB, const DomSetType &Dominators) {
241    assert(find(BB) == end() && "Block already in DominatorSet!");
242    Doms.insert(std::make_pair(BB, Dominators));
243  }
244
245  /// addDominator - If a new block is inserted into the CFG, then method may be
246  /// called to notify the blocks it dominates that it is in their set.
247  ///
248  void addDominator(BasicBlock *BB, BasicBlock *NewDominator) {
249    iterator I = find(BB);
250    assert(I != end() && "BB is not in DominatorSet!");
251    I->second.insert(NewDominator);
252  }
253};
254
255
256//===-------------------------------------
257/// DominatorSet Class - Concrete subclass of DominatorSetBase that is used to
258/// compute a normal dominator set.
259///
260class DominatorSet : public DominatorSetBase {
261public:
262  DominatorSet() : DominatorSetBase(false) {}
263
264  virtual bool runOnFunction(Function &F);
265
266  BasicBlock *getRoot() const {
267    assert(Roots.size() == 1 && "Should always have entry node!");
268    return Roots[0];
269  }
270
271  /// getAnalysisUsage - This simply provides a dominator set
272  ///
273  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
274    AU.addRequired<ImmediateDominators>();
275    AU.setPreservesAll();
276  }
277
278  // stub - dummy function, just ignore it
279  static int stub;
280};
281
282
283//===----------------------------------------------------------------------===//
284/// DominatorTree - Calculate the immediate dominator tree for a function.
285///
286class DominatorTreeBase : public DominatorBase {
287public:
288  class Node;
289protected:
290  std::map<BasicBlock*, Node*> Nodes;
291  void reset();
292  typedef std::map<BasicBlock*, Node*> NodeMapType;
293
294  Node *RootNode;
295public:
296  class Node {
297    friend struct DominatorTree;
298    friend struct PostDominatorTree;
299    friend struct DominatorTreeBase;
300    BasicBlock *TheBB;
301    Node *IDom;
302    std::vector<Node*> Children;
303  public:
304    typedef std::vector<Node*>::iterator iterator;
305    typedef std::vector<Node*>::const_iterator const_iterator;
306
307    iterator begin()             { return Children.begin(); }
308    iterator end()               { return Children.end(); }
309    const_iterator begin() const { return Children.begin(); }
310    const_iterator end()   const { return Children.end(); }
311
312    inline BasicBlock *getBlock() const { return TheBB; }
313    inline Node *getIDom() const { return IDom; }
314    inline const std::vector<Node*> &getChildren() const { return Children; }
315
316    /// properlyDominates - Returns true iff this dominates N and this != N.
317    /// Note that this is not a constant time operation!
318    ///
319    bool properlyDominates(const Node *N) const {
320      const Node *IDom;
321      if (this == 0 || N == 0) return false;
322      while ((IDom = N->getIDom()) != 0 && IDom != this)
323        N = IDom;   // Walk up the tree
324      return IDom != 0;
325    }
326
327    /// dominates - Returns true iff this dominates N.  Note that this is not a
328    /// constant time operation!
329    ///
330    inline bool dominates(const Node *N) const {
331      if (N == this) return true;  // A node trivially dominates itself.
332      return properlyDominates(N);
333    }
334
335  private:
336    inline Node(BasicBlock *BB, Node *iDom) : TheBB(BB), IDom(iDom) {}
337    inline Node *addChild(Node *C) { Children.push_back(C); return C; }
338
339    void setIDom(Node *NewIDom);
340  };
341
342public:
343  DominatorTreeBase(bool isPostDom) : DominatorBase(isPostDom) {}
344  ~DominatorTreeBase() { reset(); }
345
346  virtual void releaseMemory() { reset(); }
347
348  /// getNode - return the (Post)DominatorTree node for the specified basic
349  /// block.  This is the same as using operator[] on this class.
350  ///
351  inline Node *getNode(BasicBlock *BB) const {
352    NodeMapType::const_iterator i = Nodes.find(BB);
353    return (i != Nodes.end()) ? i->second : 0;
354  }
355
356  inline Node *operator[](BasicBlock *BB) const {
357    return getNode(BB);
358  }
359
360  /// getRootNode - This returns the entry node for the CFG of the function.  If
361  /// this tree represents the post-dominance relations for a function, however,
362  /// this root may be a node with the block == NULL.  This is the case when
363  /// there are multiple exit nodes from a particular function.  Consumers of
364  /// post-dominance information must be capable of dealing with this
365  /// possibility.
366  ///
367  Node *getRootNode() { return RootNode; }
368  const Node *getRootNode() const { return RootNode; }
369
370  //===--------------------------------------------------------------------===//
371  // API to update (Post)DominatorTree information based on modifications to
372  // the CFG...
373
374  /// createNewNode - Add a new node to the dominator tree information.  This
375  /// creates a new node as a child of IDomNode, linking it into the children
376  /// list of the immediate dominator.
377  ///
378  Node *createNewNode(BasicBlock *BB, Node *IDomNode) {
379    assert(getNode(BB) == 0 && "Block already in dominator tree!");
380    assert(IDomNode && "Not immediate dominator specified for block!");
381    return Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
382  }
383
384  /// changeImmediateDominator - This method is used to update the dominator
385  /// tree information when a node's immediate dominator changes.
386  ///
387  void changeImmediateDominator(Node *N, Node *NewIDom) {
388    assert(N && NewIDom && "Cannot change null node pointers!");
389    N->setIDom(NewIDom);
390  }
391
392  /// print - Convert to human readable form
393  ///
394  virtual void print(std::ostream &OS, const Module* = 0) const;
395};
396
397
398//===-------------------------------------
399/// ET-Forest Class - Class used to construct forwards and backwards
400/// ET-Forests
401///
402class ETForestBase : public DominatorBase {
403public:
404  ETForestBase(bool isPostDom) : DominatorBase(isPostDom), Nodes(),
405                                 DFSInfoValid(false), SlowQueries(0) {}
406
407  virtual void releaseMemory() { reset(); }
408
409  typedef std::map<BasicBlock*, ETNode*> ETMapType;
410
411  void updateDFSNumbers();
412
413  /// dominates - Return true if A dominates B.
414  ///
415  inline bool dominates(BasicBlock *A, BasicBlock *B) {
416    if (A == B)
417      return true;
418
419    ETNode *NodeA = getNode(A);
420    ETNode *NodeB = getNode(B);
421
422    if (DFSInfoValid)
423      return NodeB->DominatedBy(NodeA);
424    else {
425      // If we end up with too many slow queries, just update the
426      // DFS numbers on the theory that we are going to keep querying.
427      SlowQueries++;
428      if (SlowQueries > 32) {
429        updateDFSNumbers();
430        return NodeB->DominatedBy(NodeA);
431      }
432      return NodeB->DominatedBySlow(NodeA);
433    }
434  }
435
436  /// properlyDominates - Return true if A dominates B and A != B.
437  ///
438  bool properlyDominates(BasicBlock *A, BasicBlock *B) {
439    return dominates(A, B) && A != B;
440  }
441
442  /// Return the nearest common dominator of A and B.
443  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
444    ETNode *NodeA = getNode(A);
445    ETNode *NodeB = getNode(B);
446
447    ETNode *Common = NodeA->NCA(NodeB);
448    if (!Common)
449      return NULL;
450    return Common->getData<BasicBlock>();
451  }
452
453  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
454    AU.setPreservesAll();
455    AU.addRequired<ImmediateDominators>();
456  }
457  //===--------------------------------------------------------------------===//
458  // API to update Forest information based on modifications
459  // to the CFG...
460
461  /// addNewBlock - Add a new block to the CFG, with the specified immediate
462  /// dominator.
463  ///
464  void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
465
466  /// setImmediateDominator - Update the immediate dominator information to
467  /// change the current immediate dominator for the specified block
468  /// to another block.  This method requires that BB for NewIDom
469  /// already have an ETNode, otherwise just use addNewBlock.
470  ///
471  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
472  /// print - Convert to human readable form
473  ///
474  virtual void print(std::ostream &OS, const Module* = 0) const;
475protected:
476  /// getNode - return the (Post)DominatorTree node for the specified basic
477  /// block.  This is the same as using operator[] on this class.
478  ///
479  inline ETNode *getNode(BasicBlock *BB) const {
480    ETMapType::const_iterator i = Nodes.find(BB);
481    return (i != Nodes.end()) ? i->second : 0;
482  }
483
484  inline ETNode *operator[](BasicBlock *BB) const {
485    return getNode(BB);
486  }
487
488  void reset();
489  ETMapType Nodes;
490  bool DFSInfoValid;
491  unsigned int SlowQueries;
492
493};
494
495//==-------------------------------------
496/// ETForest Class - Concrete subclass of ETForestBase that is used to
497/// compute a forwards ET-Forest.
498
499class ETForest : public ETForestBase {
500public:
501  ETForest() : ETForestBase(false) {}
502
503  BasicBlock *getRoot() const {
504    assert(Roots.size() == 1 && "Should always have entry node!");
505    return Roots[0];
506  }
507
508  virtual bool runOnFunction(Function &F) {
509    reset();     // Reset from the last time we were run...
510    ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
511    Roots = ID.getRoots();
512    calculate(ID);
513    return false;
514  }
515
516  void calculate(const ImmediateDominators &ID);
517  ETNode *getNodeForBlock(BasicBlock *BB);
518};
519
520//===-------------------------------------
521/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
522/// compute a normal dominator tree.
523///
524class DominatorTree : public DominatorTreeBase {
525public:
526  DominatorTree() : DominatorTreeBase(false) {}
527
528  BasicBlock *getRoot() const {
529    assert(Roots.size() == 1 && "Should always have entry node!");
530    return Roots[0];
531  }
532
533  virtual bool runOnFunction(Function &F) {
534    reset();     // Reset from the last time we were run...
535    ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
536    Roots = ID.getRoots();
537    calculate(ID);
538    return false;
539  }
540
541  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
542    AU.setPreservesAll();
543    AU.addRequired<ImmediateDominators>();
544  }
545private:
546  void calculate(const ImmediateDominators &ID);
547  Node *getNodeForBlock(BasicBlock *BB);
548};
549
550//===-------------------------------------
551/// DominatorTree GraphTraits specialization so the DominatorTree can be
552/// iterable by generic graph iterators.
553///
554template <> struct GraphTraits<DominatorTree::Node*> {
555  typedef DominatorTree::Node NodeType;
556  typedef NodeType::iterator  ChildIteratorType;
557
558  static NodeType *getEntryNode(NodeType *N) {
559    return N;
560  }
561  static inline ChildIteratorType child_begin(NodeType* N) {
562    return N->begin();
563  }
564  static inline ChildIteratorType child_end(NodeType* N) {
565    return N->end();
566  }
567};
568
569template <> struct GraphTraits<DominatorTree*>
570  : public GraphTraits<DominatorTree::Node*> {
571  static NodeType *getEntryNode(DominatorTree *DT) {
572    return DT->getRootNode();
573  }
574};
575
576//===----------------------------------------------------------------------===//
577/// DominanceFrontierBase - Common base class for computing forward and inverse
578/// dominance frontiers for a function.
579///
580class DominanceFrontierBase : public DominatorBase {
581public:
582  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
583  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
584protected:
585  DomSetMapType Frontiers;
586public:
587  DominanceFrontierBase(bool isPostDom) : DominatorBase(isPostDom) {}
588
589  virtual void releaseMemory() { Frontiers.clear(); }
590
591  // Accessor interface:
592  typedef DomSetMapType::iterator iterator;
593  typedef DomSetMapType::const_iterator const_iterator;
594  iterator       begin()       { return Frontiers.begin(); }
595  const_iterator begin() const { return Frontiers.begin(); }
596  iterator       end()         { return Frontiers.end(); }
597  const_iterator end()   const { return Frontiers.end(); }
598  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
599  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
600
601  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
602    assert(find(BB) == end() && "Block already in DominanceFrontier!");
603    Frontiers.insert(std::make_pair(BB, frontier));
604  }
605
606  void addToFrontier(iterator I, BasicBlock *Node) {
607    assert(I != end() && "BB is not in DominanceFrontier!");
608    I->second.insert(Node);
609  }
610
611  void removeFromFrontier(iterator I, BasicBlock *Node) {
612    assert(I != end() && "BB is not in DominanceFrontier!");
613    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
614    I->second.erase(Node);
615  }
616
617  /// print - Convert to human readable form
618  ///
619  virtual void print(std::ostream &OS, const Module* = 0) const;
620};
621
622
623//===-------------------------------------
624/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
625/// used to compute a forward dominator frontiers.
626///
627class DominanceFrontier : public DominanceFrontierBase {
628public:
629  DominanceFrontier() : DominanceFrontierBase(false) {}
630
631  BasicBlock *getRoot() const {
632    assert(Roots.size() == 1 && "Should always have entry node!");
633    return Roots[0];
634  }
635
636  virtual bool runOnFunction(Function &) {
637    Frontiers.clear();
638    DominatorTree &DT = getAnalysis<DominatorTree>();
639    Roots = DT.getRoots();
640    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
641    calculate(DT, DT[Roots[0]]);
642    return false;
643  }
644
645  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
646    AU.setPreservesAll();
647    AU.addRequired<DominatorTree>();
648  }
649private:
650  const DomSetType &calculate(const DominatorTree &DT,
651                              const DominatorTree::Node *Node);
652};
653
654
655} // End llvm namespace
656
657// Make sure that any clients of this file link in Dominators.cpp
658FORCE_DEFINING_FILE_TO_BE_LINKED(DominatorSet)
659
660#endif
661