Dominators.h revision 68099d58cbad1fc6de980b2b01b6f221b560d5d5
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include <set>
26#include "llvm/ADT/DenseMap.h"
27
28namespace llvm {
29
30class Instruction;
31
32template <typename GraphType> struct GraphTraits;
33
34//===----------------------------------------------------------------------===//
35/// DominatorBase - Base class that other, more interesting dominator analyses
36/// inherit from.
37///
38class DominatorBase : public FunctionPass {
39protected:
40  std::vector<BasicBlock*> Roots;
41  const bool IsPostDominators;
42  inline DominatorBase(intptr_t ID, bool isPostDom) :
43    FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
44public:
45
46  /// getRoots -  Return the root blocks of the current CFG.  This may include
47  /// multiple blocks if we are computing post dominators.  For forward
48  /// dominators, this will always be a single block (the entry node).
49  ///
50  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
51
52  /// isPostDominator - Returns true if analysis based of postdoms
53  ///
54  bool isPostDominator() const { return IsPostDominators; }
55};
56
57
58//===----------------------------------------------------------------------===//
59// DomTreeNode - Dominator Tree Node
60class DominatorTreeBase;
61class PostDominatorTree;
62class DomTreeNode {
63  BasicBlock *TheBB;
64  DomTreeNode *IDom;
65  std::vector<DomTreeNode*> Children;
66  int DFSNumIn, DFSNumOut;
67
68  friend class DominatorTreeBase;
69  friend class PostDominatorTree;
70public:
71  typedef std::vector<DomTreeNode*>::iterator iterator;
72  typedef std::vector<DomTreeNode*>::const_iterator const_iterator;
73
74  iterator begin()             { return Children.begin(); }
75  iterator end()               { return Children.end(); }
76  const_iterator begin() const { return Children.begin(); }
77  const_iterator end()   const { return Children.end(); }
78
79  BasicBlock *getBlock() const { return TheBB; }
80  DomTreeNode *getIDom() const { return IDom; }
81  const std::vector<DomTreeNode*> &getChildren() const { return Children; }
82
83  DomTreeNode(BasicBlock *BB, DomTreeNode *iDom)
84    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
85  DomTreeNode *addChild(DomTreeNode *C) { Children.push_back(C); return C; }
86  void setIDom(DomTreeNode *NewIDom);
87
88
89  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
90  /// not call them.
91  unsigned getDFSNumIn() const { return DFSNumIn; }
92  unsigned getDFSNumOut() const { return DFSNumOut; }
93private:
94  // Return true if this node is dominated by other. Use this only if DFS info
95  // is valid.
96  bool DominatedBy(const DomTreeNode *other) const {
97    return this->DFSNumIn >= other->DFSNumIn &&
98      this->DFSNumOut <= other->DFSNumOut;
99  }
100};
101
102//===----------------------------------------------------------------------===//
103/// DominatorTree - Calculate the immediate dominator tree for a function.
104///
105class DominatorTreeBase : public DominatorBase {
106protected:
107  void reset();
108  typedef DenseMap<BasicBlock*, DomTreeNode*> DomTreeNodeMapType;
109  DomTreeNodeMapType DomTreeNodes;
110  DomTreeNode *RootNode;
111
112  bool DFSInfoValid;
113  unsigned int SlowQueries;
114  // Information record used during immediate dominators computation.
115  struct InfoRec {
116    unsigned Semi;
117    unsigned Size;
118    BasicBlock *Label, *Parent, *Child, *Ancestor;
119
120    std::vector<BasicBlock*> Bucket;
121
122    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0) {}
123  };
124
125  DenseMap<BasicBlock*, BasicBlock*> IDoms;
126
127  // Vertex - Map the DFS number to the BasicBlock*
128  std::vector<BasicBlock*> Vertex;
129
130  // Info - Collection of information used during the computation of idoms.
131  DenseMap<BasicBlock*, InfoRec> Info;
132
133public:
134  DominatorTreeBase(intptr_t ID, bool isPostDom)
135    : DominatorBase(ID, isPostDom), DFSInfoValid(false), SlowQueries(0) {}
136  ~DominatorTreeBase() { reset(); }
137
138  virtual void releaseMemory() { reset(); }
139
140  /// getNode - return the (Post)DominatorTree node for the specified basic
141  /// block.  This is the same as using operator[] on this class.
142  ///
143  inline DomTreeNode *getNode(BasicBlock *BB) const {
144    DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
145    return I != DomTreeNodes.end() ? I->second : 0;
146  }
147
148  inline DomTreeNode *operator[](BasicBlock *BB) const {
149    return getNode(BB);
150  }
151
152  /// getRootNode - This returns the entry node for the CFG of the function.  If
153  /// this tree represents the post-dominance relations for a function, however,
154  /// this root may be a node with the block == NULL.  This is the case when
155  /// there are multiple exit nodes from a particular function.  Consumers of
156  /// post-dominance information must be capable of dealing with this
157  /// possibility.
158  ///
159  DomTreeNode *getRootNode() { return RootNode; }
160  const DomTreeNode *getRootNode() const { return RootNode; }
161
162  /// properlyDominates - Returns true iff this dominates N and this != N.
163  /// Note that this is not a constant time operation!
164  ///
165  bool properlyDominates(const DomTreeNode *A, DomTreeNode *B) const {
166    if (A == 0 || B == 0) return false;
167    return dominatedBySlowTreeWalk(A, B);
168  }
169
170  inline bool properlyDominates(BasicBlock *A, BasicBlock *B) {
171    return properlyDominates(getNode(A), getNode(B));
172  }
173
174  bool dominatedBySlowTreeWalk(const DomTreeNode *A,
175                               const DomTreeNode *B) const {
176    const DomTreeNode *IDom;
177    if (A == 0 || B == 0) return false;
178    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
179      B = IDom;   // Walk up the tree
180    return IDom != 0;
181  }
182
183
184  /// isReachableFromEntry - Return true if A is dominated by the entry
185  /// block of the function containing it.
186  const bool isReachableFromEntry(BasicBlock* A);
187
188  /// dominates - Returns true iff A dominates B.  Note that this is not a
189  /// constant time operation!
190  ///
191  inline bool dominates(const DomTreeNode *A, DomTreeNode *B) {
192    if (B == A)
193      return true;  // A node trivially dominates itself.
194
195    if (A == 0 || B == 0)
196      return false;
197
198    if (DFSInfoValid)
199      return B->DominatedBy(A);
200
201    // If we end up with too many slow queries, just update the
202    // DFS numbers on the theory that we are going to keep querying.
203    SlowQueries++;
204    if (SlowQueries > 32) {
205      updateDFSNumbers();
206      return B->DominatedBy(A);
207    }
208
209    return dominatedBySlowTreeWalk(A, B);
210  }
211
212  inline bool dominates(BasicBlock *A, BasicBlock *B) {
213    if (A == B)
214      return true;
215
216    return dominates(getNode(A), getNode(B));
217  }
218
219  /// findNearestCommonDominator - Find nearest common dominator basic block
220  /// for basic block A and B. If there is no such block then return NULL.
221  BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B);
222
223  // dominates - Return true if A dominates B. This performs the
224  // special checks necessary if A and B are in the same basic block.
225  bool dominates(Instruction *A, Instruction *B);
226
227  //===--------------------------------------------------------------------===//
228  // API to update (Post)DominatorTree information based on modifications to
229  // the CFG...
230
231  /// addNewBlock - Add a new node to the dominator tree information.  This
232  /// creates a new node as a child of DomBB dominator node,linking it into
233  /// the children list of the immediate dominator.
234  DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
235    assert(getNode(BB) == 0 && "Block already in dominator tree!");
236    DomTreeNode *IDomNode = getNode(DomBB);
237    assert(IDomNode && "Not immediate dominator specified for block!");
238    DFSInfoValid = false;
239    return DomTreeNodes[BB] =
240      IDomNode->addChild(new DomTreeNode(BB, IDomNode));
241  }
242
243  /// changeImmediateDominator - This method is used to update the dominator
244  /// tree information when a node's immediate dominator changes.
245  ///
246  void changeImmediateDominator(DomTreeNode *N, DomTreeNode *NewIDom) {
247    assert(N && NewIDom && "Cannot change null node pointers!");
248    DFSInfoValid = false;
249    N->setIDom(NewIDom);
250  }
251
252  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB) {
253    changeImmediateDominator(getNode(BB), getNode(NewBB));
254  }
255
256  /// eraseNode - Removes a node from  the dominator tree. Block must not
257  /// domiante any other blocks. Removes node from its immediate dominator's
258  /// children list. Deletes dominator node associated with basic block BB.
259  void eraseNode(BasicBlock *BB);
260
261  /// removeNode - Removes a node from the dominator tree.  Block must not
262  /// dominate any other blocks.  Invalidates any node pointing to removed
263  /// block.
264  void removeNode(BasicBlock *BB) {
265    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
266    DomTreeNodes.erase(BB);
267  }
268
269  /// print - Convert to human readable form
270  ///
271  virtual void print(std::ostream &OS, const Module* = 0) const;
272  void print(std::ostream *OS, const Module* M = 0) const {
273    if (OS) print(*OS, M);
274  }
275  virtual void dump();
276
277protected:
278  friend void Compress(DominatorTreeBase& DT, BasicBlock *VIn);
279  friend BasicBlock *Eval(DominatorTreeBase& DT, BasicBlock *V);
280  friend void Link(DominatorTreeBase& DT, BasicBlock *V,
281                   BasicBlock *W, InfoRec &WInfo);
282
283  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
284  /// dominator tree in dfs order.
285  void updateDFSNumbers();
286
287  DomTreeNode *getNodeForBlock(BasicBlock *BB);
288
289  inline BasicBlock *getIDom(BasicBlock *BB) const {
290    DenseMap<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
291    return I != IDoms.end() ? I->second : 0;
292  }
293};
294
295//===-------------------------------------
296/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
297/// compute a normal dominator tree.
298///
299class DominatorTree : public DominatorTreeBase {
300public:
301  static char ID; // Pass ID, replacement for typeid
302  DominatorTree() : DominatorTreeBase(intptr_t(&ID), false) {}
303
304  BasicBlock *getRoot() const {
305    assert(Roots.size() == 1 && "Should always have entry node!");
306    return Roots[0];
307  }
308
309  virtual bool runOnFunction(Function &F);
310
311  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
312    AU.setPreservesAll();
313  }
314
315  /// splitBlock
316  /// BB is split and now it has one successor. Update dominator tree to
317  /// reflect this change.
318  void splitBlock(BasicBlock *BB);
319
320private:
321  friend void DTcalculate(DominatorTree& DT, Function& F);
322
323  unsigned DFSPass(BasicBlock *V, unsigned N);
324};
325
326//===-------------------------------------
327/// DominatorTree GraphTraits specialization so the DominatorTree can be
328/// iterable by generic graph iterators.
329///
330template <> struct GraphTraits<DomTreeNode*> {
331  typedef DomTreeNode NodeType;
332  typedef NodeType::iterator  ChildIteratorType;
333
334  static NodeType *getEntryNode(NodeType *N) {
335    return N;
336  }
337  static inline ChildIteratorType child_begin(NodeType* N) {
338    return N->begin();
339  }
340  static inline ChildIteratorType child_end(NodeType* N) {
341    return N->end();
342  }
343};
344
345template <> struct GraphTraits<DominatorTree*>
346  : public GraphTraits<DomTreeNode*> {
347  static NodeType *getEntryNode(DominatorTree *DT) {
348    return DT->getRootNode();
349  }
350};
351
352
353//===----------------------------------------------------------------------===//
354/// DominanceFrontierBase - Common base class for computing forward and inverse
355/// dominance frontiers for a function.
356///
357class DominanceFrontierBase : public DominatorBase {
358public:
359  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
360  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
361protected:
362  DomSetMapType Frontiers;
363public:
364  DominanceFrontierBase(intptr_t ID, bool isPostDom)
365    : DominatorBase(ID, isPostDom) {}
366
367  virtual void releaseMemory() { Frontiers.clear(); }
368
369  // Accessor interface:
370  typedef DomSetMapType::iterator iterator;
371  typedef DomSetMapType::const_iterator const_iterator;
372  iterator       begin()       { return Frontiers.begin(); }
373  const_iterator begin() const { return Frontiers.begin(); }
374  iterator       end()         { return Frontiers.end(); }
375  const_iterator end()   const { return Frontiers.end(); }
376  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
377  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
378
379  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
380    assert(find(BB) == end() && "Block already in DominanceFrontier!");
381    Frontiers.insert(std::make_pair(BB, frontier));
382  }
383
384  /// removeBlock - Remove basic block BB's frontier.
385  void removeBlock(BasicBlock *BB) {
386    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
387    for (iterator I = begin(), E = end(); I != E; ++I)
388      I->second.erase(BB);
389    Frontiers.erase(BB);
390  }
391
392  void addToFrontier(iterator I, BasicBlock *Node) {
393    assert(I != end() && "BB is not in DominanceFrontier!");
394    I->second.insert(Node);
395  }
396
397  void removeFromFrontier(iterator I, BasicBlock *Node) {
398    assert(I != end() && "BB is not in DominanceFrontier!");
399    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
400    I->second.erase(Node);
401  }
402
403  /// print - Convert to human readable form
404  ///
405  virtual void print(std::ostream &OS, const Module* = 0) const;
406  void print(std::ostream *OS, const Module* M = 0) const {
407    if (OS) print(*OS, M);
408  }
409  virtual void dump();
410};
411
412
413//===-------------------------------------
414/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
415/// used to compute a forward dominator frontiers.
416///
417class DominanceFrontier : public DominanceFrontierBase {
418public:
419  static char ID; // Pass ID, replacement for typeid
420  DominanceFrontier() :
421    DominanceFrontierBase(intptr_t(&ID), false) {}
422
423  BasicBlock *getRoot() const {
424    assert(Roots.size() == 1 && "Should always have entry node!");
425    return Roots[0];
426  }
427
428  virtual bool runOnFunction(Function &) {
429    Frontiers.clear();
430    DominatorTree &DT = getAnalysis<DominatorTree>();
431    Roots = DT.getRoots();
432    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
433    calculate(DT, DT[Roots[0]]);
434    return false;
435  }
436
437  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
438    AU.setPreservesAll();
439    AU.addRequired<DominatorTree>();
440  }
441
442  /// splitBlock - BB is split and now it has one successor. Update dominance
443  /// frontier to reflect this change.
444  void splitBlock(BasicBlock *BB);
445
446  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
447  /// to reflect this change.
448  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
449                                DominatorTree *DT) {
450    // NewBB is now  dominating BB. Which means BB's dominance
451    // frontier is now part of NewBB's dominance frontier. However, BB
452    // itself is not member of NewBB's dominance frontier.
453    DominanceFrontier::iterator NewDFI = find(NewBB);
454    DominanceFrontier::iterator DFI = find(BB);
455    DominanceFrontier::DomSetType BBSet = DFI->second;
456    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
457           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
458      BasicBlock *DFMember = *BBSetI;
459      // Insert only if NewBB dominates DFMember.
460      if (!DT->dominates(NewBB, DFMember))
461        NewDFI->second.insert(DFMember);
462    }
463    NewDFI->second.erase(BB);
464  }
465
466private:
467  const DomSetType &calculate(const DominatorTree &DT,
468                              const DomTreeNode *Node);
469};
470
471
472} // End llvm namespace
473
474#endif
475