Dominators.h revision 70b2bee8e7dda22d70475bf748385654559a0ef8
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/GraphTraits.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/raw_ostream.h"
36#include <algorithm>
37#include <map>
38#include <set>
39
40namespace llvm {
41
42//===----------------------------------------------------------------------===//
43/// DominatorBase - Base class that other, more interesting dominator analyses
44/// inherit from.
45///
46template <class NodeT>
47class DominatorBase {
48protected:
49  std::vector<NodeT*> Roots;
50  const bool IsPostDominators;
51  inline explicit DominatorBase(bool isPostDom) :
52    Roots(), IsPostDominators(isPostDom) {}
53public:
54
55  /// getRoots -  Return the root blocks of the current CFG.  This may include
56  /// multiple blocks if we are computing post dominators.  For forward
57  /// dominators, this will always be a single block (the entry node).
58  ///
59  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
60
61  /// isPostDominator - Returns true if analysis based of postdoms
62  ///
63  bool isPostDominator() const { return IsPostDominators; }
64};
65
66
67//===----------------------------------------------------------------------===//
68// DomTreeNode - Dominator Tree Node
69template<class NodeT> class DominatorTreeBase;
70struct PostDominatorTree;
71class MachineBasicBlock;
72
73template <class NodeT>
74class DomTreeNodeBase {
75  NodeT *TheBB;
76  DomTreeNodeBase<NodeT> *IDom;
77  std::vector<DomTreeNodeBase<NodeT> *> Children;
78  int DFSNumIn, DFSNumOut;
79
80  template<class N> friend class DominatorTreeBase;
81  friend struct PostDominatorTree;
82public:
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
84  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
85                   const_iterator;
86
87  iterator begin()             { return Children.begin(); }
88  iterator end()               { return Children.end(); }
89  const_iterator begin() const { return Children.begin(); }
90  const_iterator end()   const { return Children.end(); }
91
92  NodeT *getBlock() const { return TheBB; }
93  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
94  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
95    return Children;
96  }
97
98  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
99    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
100
101  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
102    Children.push_back(C);
103    return C;
104  }
105
106  size_t getNumChildren() const {
107    return Children.size();
108  }
109
110  void clearAllChildren() {
111    Children.clear();
112  }
113
114  bool compare(DomTreeNodeBase<NodeT> *Other) {
115    if (getNumChildren() != Other->getNumChildren())
116      return true;
117
118    SmallPtrSet<NodeT *, 4> OtherChildren;
119    for(iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
120      NodeT *Nd = (*I)->getBlock();
121      OtherChildren.insert(Nd);
122    }
123
124    for(iterator I = begin(), E = end(); I != E; ++I) {
125      NodeT *N = (*I)->getBlock();
126      if (OtherChildren.count(N) == 0)
127        return true;
128    }
129    return false;
130  }
131
132  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
133    assert(IDom && "No immediate dominator?");
134    if (IDom != NewIDom) {
135      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
136                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
137      assert(I != IDom->Children.end() &&
138             "Not in immediate dominator children set!");
139      // I am no longer your child...
140      IDom->Children.erase(I);
141
142      // Switch to new dominator
143      IDom = NewIDom;
144      IDom->Children.push_back(this);
145    }
146  }
147
148  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
149  /// not call them.
150  unsigned getDFSNumIn() const { return DFSNumIn; }
151  unsigned getDFSNumOut() const { return DFSNumOut; }
152private:
153  // Return true if this node is dominated by other. Use this only if DFS info
154  // is valid.
155  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
156    return this->DFSNumIn >= other->DFSNumIn &&
157      this->DFSNumOut <= other->DFSNumOut;
158  }
159};
160
161EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
162EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
163
164template<class NodeT>
165static raw_ostream &operator<<(raw_ostream &o,
166                               const DomTreeNodeBase<NodeT> *Node) {
167  if (Node->getBlock())
168    WriteAsOperand(o, Node->getBlock(), false);
169  else
170    o << " <<exit node>>";
171
172  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
173
174  return o << "\n";
175}
176
177template<class NodeT>
178static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
179                         unsigned Lev) {
180  o.indent(2*Lev) << "[" << Lev << "] " << N;
181  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
182       E = N->end(); I != E; ++I)
183    PrintDomTree<NodeT>(*I, o, Lev+1);
184}
185
186typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
187
188//===----------------------------------------------------------------------===//
189/// DominatorTree - Calculate the immediate dominator tree for a function.
190///
191
192template<class FuncT, class N>
193void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
194               FuncT& F);
195
196template<class NodeT>
197class DominatorTreeBase : public DominatorBase<NodeT> {
198protected:
199  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
200  DomTreeNodeMapType DomTreeNodes;
201  DomTreeNodeBase<NodeT> *RootNode;
202
203  bool DFSInfoValid;
204  unsigned int SlowQueries;
205  // Information record used during immediate dominators computation.
206  struct InfoRec {
207    unsigned DFSNum;
208    unsigned Semi;
209    unsigned Size;
210    NodeT *Label, *Child;
211    unsigned Parent, Ancestor;
212
213    std::vector<NodeT*> Bucket;
214
215    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
216                Ancestor(0) {}
217  };
218
219  DenseMap<NodeT*, NodeT*> IDoms;
220
221  // Vertex - Map the DFS number to the BasicBlock*
222  std::vector<NodeT*> Vertex;
223
224  // Info - Collection of information used during the computation of idoms.
225  DenseMap<NodeT*, InfoRec> Info;
226
227  void reset() {
228    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
229           E = DomTreeNodes.end(); I != E; ++I)
230      delete I->second;
231    DomTreeNodes.clear();
232    IDoms.clear();
233    this->Roots.clear();
234    Vertex.clear();
235    RootNode = 0;
236  }
237
238  // NewBB is split and now it has one successor. Update dominator tree to
239  // reflect this change.
240  template<class N, class GraphT>
241  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
242             typename GraphT::NodeType* NewBB) {
243    assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
244           && "NewBB should have a single successor!");
245    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
246
247    std::vector<typename GraphT::NodeType*> PredBlocks;
248    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
249         GraphTraits<Inverse<N> >::child_begin(NewBB),
250         PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
251      PredBlocks.push_back(*PI);
252
253    assert(!PredBlocks.empty() && "No predblocks??");
254
255    bool NewBBDominatesNewBBSucc = true;
256    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
257         GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
258         E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
259      if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI) &&
260          DT.isReachableFromEntry(*PI)) {
261        NewBBDominatesNewBBSucc = false;
262        break;
263      }
264
265    // Find NewBB's immediate dominator and create new dominator tree node for
266    // NewBB.
267    NodeT *NewBBIDom = 0;
268    unsigned i = 0;
269    for (i = 0; i < PredBlocks.size(); ++i)
270      if (DT.isReachableFromEntry(PredBlocks[i])) {
271        NewBBIDom = PredBlocks[i];
272        break;
273      }
274
275    // It's possible that none of the predecessors of NewBB are reachable;
276    // in that case, NewBB itself is unreachable, so nothing needs to be
277    // changed.
278    if (!NewBBIDom)
279      return;
280
281    for (i = i + 1; i < PredBlocks.size(); ++i) {
282      if (DT.isReachableFromEntry(PredBlocks[i]))
283        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
284    }
285
286    // Create the new dominator tree node... and set the idom of NewBB.
287    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
288
289    // If NewBB strictly dominates other blocks, then it is now the immediate
290    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
291    if (NewBBDominatesNewBBSucc) {
292      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
293      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
294    }
295  }
296
297public:
298  explicit DominatorTreeBase(bool isPostDom)
299    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
300  virtual ~DominatorTreeBase() { reset(); }
301
302  // FIXME: Should remove this
303  virtual bool runOnFunction(Function &F) { return false; }
304
305  /// compare - Return false if the other dominator tree base matches this
306  /// dominator tree base. Otherwise return true.
307  bool compare(DominatorTreeBase &Other) const {
308
309    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
310    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
311      return true;
312
313    SmallPtrSet<const NodeT *,4> MyBBs;
314    for (typename DomTreeNodeMapType::const_iterator
315           I = this->DomTreeNodes.begin(),
316           E = this->DomTreeNodes.end(); I != E; ++I) {
317      NodeT *BB = I->first;
318      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
319      if (OI == OtherDomTreeNodes.end())
320        return true;
321
322      DomTreeNodeBase<NodeT>* MyNd = I->second;
323      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
324
325      if (MyNd->compare(OtherNd))
326        return true;
327    }
328
329    return false;
330  }
331
332  virtual void releaseMemory() { reset(); }
333
334  /// getNode - return the (Post)DominatorTree node for the specified basic
335  /// block.  This is the same as using operator[] on this class.
336  ///
337  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
338    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
339    return I != DomTreeNodes.end() ? I->second : 0;
340  }
341
342  /// getRootNode - This returns the entry node for the CFG of the function.  If
343  /// this tree represents the post-dominance relations for a function, however,
344  /// this root may be a node with the block == NULL.  This is the case when
345  /// there are multiple exit nodes from a particular function.  Consumers of
346  /// post-dominance information must be capable of dealing with this
347  /// possibility.
348  ///
349  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
350  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
351
352  /// properlyDominates - Returns true iff this dominates N and this != N.
353  /// Note that this is not a constant time operation!
354  ///
355  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
356                         const DomTreeNodeBase<NodeT> *B) const {
357    if (A == 0 || B == 0) return false;
358    return dominatedBySlowTreeWalk(A, B);
359  }
360
361  inline bool properlyDominates(NodeT *A, NodeT *B) {
362    return properlyDominates(getNode(A), getNode(B));
363  }
364
365  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
366                               const DomTreeNodeBase<NodeT> *B) const {
367    const DomTreeNodeBase<NodeT> *IDom;
368    if (A == 0 || B == 0) return false;
369    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
370      B = IDom;   // Walk up the tree
371    return IDom != 0;
372  }
373
374
375  /// isReachableFromEntry - Return true if A is dominated by the entry
376  /// block of the function containing it.
377  bool isReachableFromEntry(NodeT* A) {
378    assert (!this->isPostDominator()
379            && "This is not implemented for post dominators");
380    return dominates(&A->getParent()->front(), A);
381  }
382
383  /// dominates - Returns true iff A dominates B.  Note that this is not a
384  /// constant time operation!
385  ///
386  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
387                        const DomTreeNodeBase<NodeT> *B) {
388    if (B == A)
389      return true;  // A node trivially dominates itself.
390
391    if (A == 0 || B == 0)
392      return false;
393
394    if (DFSInfoValid)
395      return B->DominatedBy(A);
396
397    // If we end up with too many slow queries, just update the
398    // DFS numbers on the theory that we are going to keep querying.
399    SlowQueries++;
400    if (SlowQueries > 32) {
401      updateDFSNumbers();
402      return B->DominatedBy(A);
403    }
404
405    return dominatedBySlowTreeWalk(A, B);
406  }
407
408  inline bool dominates(const NodeT *A, const NodeT *B) {
409    if (A == B)
410      return true;
411
412    // Cast away the const qualifiers here. This is ok since
413    // this function doesn't actually return the values returned
414    // from getNode.
415    return dominates(getNode(const_cast<NodeT *>(A)),
416                     getNode(const_cast<NodeT *>(B)));
417  }
418
419  NodeT *getRoot() const {
420    assert(this->Roots.size() == 1 && "Should always have entry node!");
421    return this->Roots[0];
422  }
423
424  /// findNearestCommonDominator - Find nearest common dominator basic block
425  /// for basic block A and B. If there is no such block then return NULL.
426  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
427
428    assert (!this->isPostDominator()
429            && "This is not implemented for post dominators");
430    assert (A->getParent() == B->getParent()
431            && "Two blocks are not in same function");
432
433    // If either A or B is a entry block then it is nearest common dominator.
434    NodeT &Entry  = A->getParent()->front();
435    if (A == &Entry || B == &Entry)
436      return &Entry;
437
438    // If B dominates A then B is nearest common dominator.
439    if (dominates(B, A))
440      return B;
441
442    // If A dominates B then A is nearest common dominator.
443    if (dominates(A, B))
444      return A;
445
446    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
447    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
448
449    // Collect NodeA dominators set.
450    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
451    NodeADoms.insert(NodeA);
452    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
453    while (IDomA) {
454      NodeADoms.insert(IDomA);
455      IDomA = IDomA->getIDom();
456    }
457
458    // Walk NodeB immediate dominators chain and find common dominator node.
459    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
460    while(IDomB) {
461      if (NodeADoms.count(IDomB) != 0)
462        return IDomB->getBlock();
463
464      IDomB = IDomB->getIDom();
465    }
466
467    return NULL;
468  }
469
470  //===--------------------------------------------------------------------===//
471  // API to update (Post)DominatorTree information based on modifications to
472  // the CFG...
473
474  /// addNewBlock - Add a new node to the dominator tree information.  This
475  /// creates a new node as a child of DomBB dominator node,linking it into
476  /// the children list of the immediate dominator.
477  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
478    assert(getNode(BB) == 0 && "Block already in dominator tree!");
479    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
480    assert(IDomNode && "Not immediate dominator specified for block!");
481    DFSInfoValid = false;
482    return DomTreeNodes[BB] =
483      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
484  }
485
486  /// changeImmediateDominator - This method is used to update the dominator
487  /// tree information when a node's immediate dominator changes.
488  ///
489  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
490                                DomTreeNodeBase<NodeT> *NewIDom) {
491    assert(N && NewIDom && "Cannot change null node pointers!");
492    DFSInfoValid = false;
493    N->setIDom(NewIDom);
494  }
495
496  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
497    changeImmediateDominator(getNode(BB), getNode(NewBB));
498  }
499
500  /// eraseNode - Removes a node from  the dominator tree. Block must not
501  /// domiante any other blocks. Removes node from its immediate dominator's
502  /// children list. Deletes dominator node associated with basic block BB.
503  void eraseNode(NodeT *BB) {
504    DomTreeNodeBase<NodeT> *Node = getNode(BB);
505    assert (Node && "Removing node that isn't in dominator tree.");
506    assert (Node->getChildren().empty() && "Node is not a leaf node.");
507
508      // Remove node from immediate dominator's children list.
509    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
510    if (IDom) {
511      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
512        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
513      assert(I != IDom->Children.end() &&
514             "Not in immediate dominator children set!");
515      // I am no longer your child...
516      IDom->Children.erase(I);
517    }
518
519    DomTreeNodes.erase(BB);
520    delete Node;
521  }
522
523  /// removeNode - Removes a node from the dominator tree.  Block must not
524  /// dominate any other blocks.  Invalidates any node pointing to removed
525  /// block.
526  void removeNode(NodeT *BB) {
527    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
528    DomTreeNodes.erase(BB);
529  }
530
531  /// splitBlock - BB is split and now it has one successor. Update dominator
532  /// tree to reflect this change.
533  void splitBlock(NodeT* NewBB) {
534    if (this->IsPostDominators)
535      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
536    else
537      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
538  }
539
540  /// print - Convert to human readable form
541  ///
542  void print(raw_ostream &o) const {
543    o << "=============================--------------------------------\n";
544    if (this->isPostDominator())
545      o << "Inorder PostDominator Tree: ";
546    else
547      o << "Inorder Dominator Tree: ";
548    if (this->DFSInfoValid)
549      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
550    o << "\n";
551
552    // The postdom tree can have a null root if there are no returns.
553    if (getRootNode())
554      PrintDomTree<NodeT>(getRootNode(), o, 1);
555  }
556
557protected:
558  template<class GraphT>
559  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
560                       typename GraphT::NodeType* VIn);
561
562  template<class GraphT>
563  friend typename GraphT::NodeType* Eval(
564                               DominatorTreeBase<typename GraphT::NodeType>& DT,
565                                         typename GraphT::NodeType* V);
566
567  template<class GraphT>
568  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
569                   unsigned DFSNumV, typename GraphT::NodeType* W,
570         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
571
572  template<class GraphT>
573  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
574                          typename GraphT::NodeType* V,
575                          unsigned N);
576
577  template<class FuncT, class N>
578  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
579                        FuncT& F);
580
581  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
582  /// dominator tree in dfs order.
583  void updateDFSNumbers() {
584    unsigned DFSNum = 0;
585
586    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
587                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
588
589    for (unsigned i = 0, e = (unsigned)this->Roots.size(); i != e; ++i) {
590      DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
591      WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
592      ThisRoot->DFSNumIn = DFSNum++;
593
594      while (!WorkStack.empty()) {
595        DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
596        typename DomTreeNodeBase<NodeT>::iterator ChildIt =
597                                                        WorkStack.back().second;
598
599        // If we visited all of the children of this node, "recurse" back up the
600        // stack setting the DFOutNum.
601        if (ChildIt == Node->end()) {
602          Node->DFSNumOut = DFSNum++;
603          WorkStack.pop_back();
604        } else {
605          // Otherwise, recursively visit this child.
606          DomTreeNodeBase<NodeT> *Child = *ChildIt;
607          ++WorkStack.back().second;
608
609          WorkStack.push_back(std::make_pair(Child, Child->begin()));
610          Child->DFSNumIn = DFSNum++;
611        }
612      }
613    }
614
615    SlowQueries = 0;
616    DFSInfoValid = true;
617  }
618
619  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
620    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
621    if (I != this->DomTreeNodes.end() && I->second)
622      return I->second;
623
624    // Haven't calculated this node yet?  Get or calculate the node for the
625    // immediate dominator.
626    NodeT *IDom = getIDom(BB);
627
628    assert(IDom || this->DomTreeNodes[NULL]);
629    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
630
631    // Add a new tree node for this BasicBlock, and link it as a child of
632    // IDomNode
633    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
634    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
635  }
636
637  inline NodeT *getIDom(NodeT *BB) const {
638    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
639    return I != IDoms.end() ? I->second : 0;
640  }
641
642  inline void addRoot(NodeT* BB) {
643    this->Roots.push_back(BB);
644  }
645
646public:
647  /// recalculate - compute a dominator tree for the given function
648  template<class FT>
649  void recalculate(FT& F) {
650    if (!this->IsPostDominators) {
651      reset();
652
653      // Initialize roots
654      this->Roots.push_back(&F.front());
655      this->IDoms[&F.front()] = 0;
656      this->DomTreeNodes[&F.front()] = 0;
657      this->Vertex.push_back(0);
658
659      Calculate<FT, NodeT*>(*this, F);
660
661      updateDFSNumbers();
662    } else {
663      reset();     // Reset from the last time we were run...
664
665      // Initialize the roots list
666      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
667        if (std::distance(GraphTraits<FT*>::child_begin(I),
668                          GraphTraits<FT*>::child_end(I)) == 0)
669          addRoot(I);
670
671        // Prepopulate maps so that we don't get iterator invalidation issues later.
672        this->IDoms[I] = 0;
673        this->DomTreeNodes[I] = 0;
674      }
675
676      this->Vertex.push_back(0);
677
678      Calculate<FT, Inverse<NodeT*> >(*this, F);
679    }
680  }
681};
682
683EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
684
685//===-------------------------------------
686/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
687/// compute a normal dominator tree.
688///
689class DominatorTree : public FunctionPass {
690public:
691  static char ID; // Pass ID, replacement for typeid
692  DominatorTreeBase<BasicBlock>* DT;
693
694  DominatorTree() : FunctionPass(&ID) {
695    DT = new DominatorTreeBase<BasicBlock>(false);
696  }
697
698  ~DominatorTree() {
699    DT->releaseMemory();
700    delete DT;
701  }
702
703  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
704
705  /// getRoots -  Return the root blocks of the current CFG.  This may include
706  /// multiple blocks if we are computing post dominators.  For forward
707  /// dominators, this will always be a single block (the entry node).
708  ///
709  inline const std::vector<BasicBlock*> &getRoots() const {
710    return DT->getRoots();
711  }
712
713  inline BasicBlock *getRoot() const {
714    return DT->getRoot();
715  }
716
717  inline DomTreeNode *getRootNode() const {
718    return DT->getRootNode();
719  }
720
721  /// compare - Return false if the other dominator tree matches this
722  /// dominator tree. Otherwise return true.
723  inline bool compare(DominatorTree &Other) const {
724    DomTreeNode *R = getRootNode();
725    DomTreeNode *OtherR = Other.getRootNode();
726
727    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
728      return true;
729
730    if (DT->compare(Other.getBase()))
731      return true;
732
733    return false;
734  }
735
736  virtual bool runOnFunction(Function &F);
737
738  virtual void verifyAnalysis() const;
739
740  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
741    AU.setPreservesAll();
742  }
743
744  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
745    return DT->dominates(A, B);
746  }
747
748  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
749    return DT->dominates(A, B);
750  }
751
752  // dominates - Return true if A dominates B. This performs the
753  // special checks necessary if A and B are in the same basic block.
754  bool dominates(const Instruction *A, const Instruction *B) const;
755
756  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
757    return DT->properlyDominates(A, B);
758  }
759
760  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
761    return DT->properlyDominates(A, B);
762  }
763
764  /// findNearestCommonDominator - Find nearest common dominator basic block
765  /// for basic block A and B. If there is no such block then return NULL.
766  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
767    return DT->findNearestCommonDominator(A, B);
768  }
769
770  inline DomTreeNode *operator[](BasicBlock *BB) const {
771    return DT->getNode(BB);
772  }
773
774  /// getNode - return the (Post)DominatorTree node for the specified basic
775  /// block.  This is the same as using operator[] on this class.
776  ///
777  inline DomTreeNode *getNode(BasicBlock *BB) const {
778    return DT->getNode(BB);
779  }
780
781  /// addNewBlock - Add a new node to the dominator tree information.  This
782  /// creates a new node as a child of DomBB dominator node,linking it into
783  /// the children list of the immediate dominator.
784  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
785    return DT->addNewBlock(BB, DomBB);
786  }
787
788  /// changeImmediateDominator - This method is used to update the dominator
789  /// tree information when a node's immediate dominator changes.
790  ///
791  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
792    DT->changeImmediateDominator(N, NewIDom);
793  }
794
795  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
796    DT->changeImmediateDominator(N, NewIDom);
797  }
798
799  /// eraseNode - Removes a node from  the dominator tree. Block must not
800  /// domiante any other blocks. Removes node from its immediate dominator's
801  /// children list. Deletes dominator node associated with basic block BB.
802  inline void eraseNode(BasicBlock *BB) {
803    DT->eraseNode(BB);
804  }
805
806  /// splitBlock - BB is split and now it has one successor. Update dominator
807  /// tree to reflect this change.
808  inline void splitBlock(BasicBlock* NewBB) {
809    DT->splitBlock(NewBB);
810  }
811
812  bool isReachableFromEntry(BasicBlock* A) {
813    return DT->isReachableFromEntry(A);
814  }
815
816
817  virtual void releaseMemory() {
818    DT->releaseMemory();
819  }
820
821  virtual void print(raw_ostream &OS, const Module* M= 0) const;
822};
823
824//===-------------------------------------
825/// DominatorTree GraphTraits specialization so the DominatorTree can be
826/// iterable by generic graph iterators.
827///
828template <> struct GraphTraits<DomTreeNode*> {
829  typedef DomTreeNode NodeType;
830  typedef NodeType::iterator  ChildIteratorType;
831
832  static NodeType *getEntryNode(NodeType *N) {
833    return N;
834  }
835  static inline ChildIteratorType child_begin(NodeType *N) {
836    return N->begin();
837  }
838  static inline ChildIteratorType child_end(NodeType *N) {
839    return N->end();
840  }
841
842  typedef df_iterator<DomTreeNode*> nodes_iterator;
843
844  static nodes_iterator nodes_begin(DomTreeNode *N) {
845    return df_begin(getEntryNode(N));
846  }
847
848  static nodes_iterator nodes_end(DomTreeNode *N) {
849    return df_end(getEntryNode(N));
850  }
851};
852
853template <> struct GraphTraits<DominatorTree*>
854  : public GraphTraits<DomTreeNode*> {
855  static NodeType *getEntryNode(DominatorTree *DT) {
856    return DT->getRootNode();
857  }
858
859  static nodes_iterator nodes_begin(DominatorTree *N) {
860    return df_begin(getEntryNode(N));
861  }
862
863  static nodes_iterator nodes_end(DominatorTree *N) {
864    return df_end(getEntryNode(N));
865  }
866};
867
868
869//===----------------------------------------------------------------------===//
870/// DominanceFrontierBase - Common base class for computing forward and inverse
871/// dominance frontiers for a function.
872///
873class DominanceFrontierBase : public FunctionPass {
874public:
875  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
876  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
877protected:
878  DomSetMapType Frontiers;
879  std::vector<BasicBlock*> Roots;
880  const bool IsPostDominators;
881
882public:
883  DominanceFrontierBase(void *ID, bool isPostDom)
884    : FunctionPass(ID), IsPostDominators(isPostDom) {}
885
886  /// getRoots -  Return the root blocks of the current CFG.  This may include
887  /// multiple blocks if we are computing post dominators.  For forward
888  /// dominators, this will always be a single block (the entry node).
889  ///
890  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
891
892  /// isPostDominator - Returns true if analysis based of postdoms
893  ///
894  bool isPostDominator() const { return IsPostDominators; }
895
896  virtual void releaseMemory() { Frontiers.clear(); }
897
898  // Accessor interface:
899  typedef DomSetMapType::iterator iterator;
900  typedef DomSetMapType::const_iterator const_iterator;
901  iterator       begin()       { return Frontiers.begin(); }
902  const_iterator begin() const { return Frontiers.begin(); }
903  iterator       end()         { return Frontiers.end(); }
904  const_iterator end()   const { return Frontiers.end(); }
905  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
906  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
907
908  iterator addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
909    assert(find(BB) == end() && "Block already in DominanceFrontier!");
910    return Frontiers.insert(std::make_pair(BB, frontier)).first;
911  }
912
913  /// removeBlock - Remove basic block BB's frontier.
914  void removeBlock(BasicBlock *BB) {
915    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
916    for (iterator I = begin(), E = end(); I != E; ++I)
917      I->second.erase(BB);
918    Frontiers.erase(BB);
919  }
920
921  void addToFrontier(iterator I, BasicBlock *Node) {
922    assert(I != end() && "BB is not in DominanceFrontier!");
923    I->second.insert(Node);
924  }
925
926  void removeFromFrontier(iterator I, BasicBlock *Node) {
927    assert(I != end() && "BB is not in DominanceFrontier!");
928    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
929    I->second.erase(Node);
930  }
931
932  /// compareDomSet - Return false if two domsets match. Otherwise
933  /// return true;
934  bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
935    std::set<BasicBlock *> tmpSet;
936    for (DomSetType::const_iterator I = DS2.begin(),
937           E = DS2.end(); I != E; ++I)
938      tmpSet.insert(*I);
939
940    for (DomSetType::const_iterator I = DS1.begin(),
941           E = DS1.end(); I != E; ) {
942      BasicBlock *Node = *I++;
943
944      if (tmpSet.erase(Node) == 0)
945        // Node is in DS1 but not in DS2.
946        return true;
947    }
948
949    if(!tmpSet.empty())
950      // There are nodes that are in DS2 but not in DS1.
951      return true;
952
953    // DS1 and DS2 matches.
954    return false;
955  }
956
957  /// compare - Return true if the other dominance frontier base matches
958  /// this dominance frontier base. Otherwise return false.
959  bool compare(DominanceFrontierBase &Other) const {
960    DomSetMapType tmpFrontiers;
961    for (DomSetMapType::const_iterator I = Other.begin(),
962           E = Other.end(); I != E; ++I)
963      tmpFrontiers.insert(std::make_pair(I->first, I->second));
964
965    for (DomSetMapType::iterator I = tmpFrontiers.begin(),
966           E = tmpFrontiers.end(); I != E; ) {
967      BasicBlock *Node = I->first;
968      const_iterator DFI = find(Node);
969      if (DFI == end())
970        return true;
971
972      if (compareDomSet(I->second, DFI->second))
973        return true;
974
975      ++I;
976      tmpFrontiers.erase(Node);
977    }
978
979    if (!tmpFrontiers.empty())
980      return true;
981
982    return false;
983  }
984
985  /// print - Convert to human readable form
986  ///
987  virtual void print(raw_ostream &OS, const Module* = 0) const;
988};
989
990
991//===-------------------------------------
992/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
993/// used to compute a forward dominator frontiers.
994///
995class DominanceFrontier : public DominanceFrontierBase {
996public:
997  static char ID; // Pass ID, replacement for typeid
998  DominanceFrontier() :
999    DominanceFrontierBase(&ID, false) {}
1000
1001  BasicBlock *getRoot() const {
1002    assert(Roots.size() == 1 && "Should always have entry node!");
1003    return Roots[0];
1004  }
1005
1006  virtual bool runOnFunction(Function &) {
1007    Frontiers.clear();
1008    DominatorTree &DT = getAnalysis<DominatorTree>();
1009    Roots = DT.getRoots();
1010    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
1011    calculate(DT, DT[Roots[0]]);
1012    return false;
1013  }
1014
1015  virtual void verifyAnalysis() const;
1016
1017  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1018    AU.setPreservesAll();
1019    AU.addRequired<DominatorTree>();
1020  }
1021
1022  /// splitBlock - BB is split and now it has one successor. Update dominance
1023  /// frontier to reflect this change.
1024  void splitBlock(BasicBlock *BB);
1025
1026  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
1027  /// to reflect this change.
1028  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
1029                                DominatorTree *DT) {
1030    // NewBB is now  dominating BB. Which means BB's dominance
1031    // frontier is now part of NewBB's dominance frontier. However, BB
1032    // itself is not member of NewBB's dominance frontier.
1033    DominanceFrontier::iterator NewDFI = find(NewBB);
1034    DominanceFrontier::iterator DFI = find(BB);
1035    // If BB was an entry block then its frontier is empty.
1036    if (DFI == end())
1037      return;
1038    DominanceFrontier::DomSetType BBSet = DFI->second;
1039    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
1040           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
1041      BasicBlock *DFMember = *BBSetI;
1042      // Insert only if NewBB dominates DFMember.
1043      if (!DT->dominates(NewBB, DFMember))
1044        NewDFI->second.insert(DFMember);
1045    }
1046    NewDFI->second.erase(BB);
1047  }
1048
1049  const DomSetType &calculate(const DominatorTree &DT,
1050                              const DomTreeNode *Node);
1051};
1052
1053
1054} // End llvm namespace
1055
1056#endif
1057