Dominators.h revision fde781b8d6020c78bb2f3a59845dba251e84808d
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/GraphTraits.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/raw_ostream.h"
36#include <algorithm>
37#include <map>
38#include <set>
39
40namespace llvm {
41
42//===----------------------------------------------------------------------===//
43/// DominatorBase - Base class that other, more interesting dominator analyses
44/// inherit from.
45///
46template <class NodeT>
47class DominatorBase {
48protected:
49  std::vector<NodeT*> Roots;
50  const bool IsPostDominators;
51  inline explicit DominatorBase(bool isPostDom) :
52    Roots(), IsPostDominators(isPostDom) {}
53public:
54
55  /// getRoots -  Return the root blocks of the current CFG.  This may include
56  /// multiple blocks if we are computing post dominators.  For forward
57  /// dominators, this will always be a single block (the entry node).
58  ///
59  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
60
61  /// isPostDominator - Returns true if analysis based of postdoms
62  ///
63  bool isPostDominator() const { return IsPostDominators; }
64};
65
66
67//===----------------------------------------------------------------------===//
68// DomTreeNode - Dominator Tree Node
69template<class NodeT> class DominatorTreeBase;
70struct PostDominatorTree;
71class MachineBasicBlock;
72
73template <class NodeT>
74class DomTreeNodeBase {
75  NodeT *TheBB;
76  DomTreeNodeBase<NodeT> *IDom;
77  std::vector<DomTreeNodeBase<NodeT> *> Children;
78  int DFSNumIn, DFSNumOut;
79
80  template<class N> friend class DominatorTreeBase;
81  friend struct PostDominatorTree;
82public:
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
84  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
85                   const_iterator;
86
87  iterator begin()             { return Children.begin(); }
88  iterator end()               { return Children.end(); }
89  const_iterator begin() const { return Children.begin(); }
90  const_iterator end()   const { return Children.end(); }
91
92  NodeT *getBlock() const { return TheBB; }
93  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
94  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
95    return Children;
96  }
97
98  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
99    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
100
101  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
102    Children.push_back(C);
103    return C;
104  }
105
106  size_t getNumChildren() const {
107    return Children.size();
108  }
109
110  void clearAllChildren() {
111    Children.clear();
112  }
113
114  bool compare(DomTreeNodeBase<NodeT> *Other) {
115    if (getNumChildren() != Other->getNumChildren())
116      return true;
117
118    SmallPtrSet<NodeT *, 4> OtherChildren;
119    for(iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
120      NodeT *Nd = (*I)->getBlock();
121      OtherChildren.insert(Nd);
122    }
123
124    for(iterator I = begin(), E = end(); I != E; ++I) {
125      NodeT *N = (*I)->getBlock();
126      if (OtherChildren.count(N) == 0)
127        return true;
128    }
129    return false;
130  }
131
132  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
133    assert(IDom && "No immediate dominator?");
134    if (IDom != NewIDom) {
135      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
136                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
137      assert(I != IDom->Children.end() &&
138             "Not in immediate dominator children set!");
139      // I am no longer your child...
140      IDom->Children.erase(I);
141
142      // Switch to new dominator
143      IDom = NewIDom;
144      IDom->Children.push_back(this);
145    }
146  }
147
148  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
149  /// not call them.
150  unsigned getDFSNumIn() const { return DFSNumIn; }
151  unsigned getDFSNumOut() const { return DFSNumOut; }
152private:
153  // Return true if this node is dominated by other. Use this only if DFS info
154  // is valid.
155  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
156    return this->DFSNumIn >= other->DFSNumIn &&
157      this->DFSNumOut <= other->DFSNumOut;
158  }
159};
160
161EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
162EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
163
164template<class NodeT>
165static raw_ostream &operator<<(raw_ostream &o,
166                               const DomTreeNodeBase<NodeT> *Node) {
167  if (Node->getBlock())
168    WriteAsOperand(o, Node->getBlock(), false);
169  else
170    o << " <<exit node>>";
171
172  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
173
174  return o << "\n";
175}
176
177template<class NodeT>
178static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
179                         unsigned Lev) {
180  o.indent(2*Lev) << "[" << Lev << "] " << N;
181  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
182       E = N->end(); I != E; ++I)
183    PrintDomTree<NodeT>(*I, o, Lev+1);
184}
185
186typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
187
188//===----------------------------------------------------------------------===//
189/// DominatorTree - Calculate the immediate dominator tree for a function.
190///
191
192template<class FuncT, class N>
193void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
194               FuncT& F);
195
196template<class NodeT>
197class DominatorTreeBase : public DominatorBase<NodeT> {
198protected:
199  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
200  DomTreeNodeMapType DomTreeNodes;
201  DomTreeNodeBase<NodeT> *RootNode;
202
203  bool DFSInfoValid;
204  unsigned int SlowQueries;
205  // Information record used during immediate dominators computation.
206  struct InfoRec {
207    unsigned DFSNum;
208    unsigned Semi;
209    unsigned Size;
210    NodeT *Label, *Child;
211    unsigned Parent, Ancestor;
212
213    std::vector<NodeT*> Bucket;
214
215    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
216                Ancestor(0) {}
217  };
218
219  DenseMap<NodeT*, NodeT*> IDoms;
220
221  // Vertex - Map the DFS number to the BasicBlock*
222  std::vector<NodeT*> Vertex;
223
224  // Info - Collection of information used during the computation of idoms.
225  DenseMap<NodeT*, InfoRec> Info;
226
227  void reset() {
228    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
229           E = DomTreeNodes.end(); I != E; ++I)
230      delete I->second;
231    DomTreeNodes.clear();
232    IDoms.clear();
233    this->Roots.clear();
234    Vertex.clear();
235    RootNode = 0;
236  }
237
238  // NewBB is split and now it has one successor. Update dominator tree to
239  // reflect this change.
240  template<class N, class GraphT>
241  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
242             typename GraphT::NodeType* NewBB) {
243    assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
244           && "NewBB should have a single successor!");
245    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
246
247    std::vector<typename GraphT::NodeType*> PredBlocks;
248    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
249         GraphTraits<Inverse<N> >::child_begin(NewBB),
250         PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
251      PredBlocks.push_back(*PI);
252
253    assert(!PredBlocks.empty() && "No predblocks??");
254
255    bool NewBBDominatesNewBBSucc = true;
256    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
257         GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
258         E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
259      if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI) &&
260          DT.isReachableFromEntry(*PI)) {
261        NewBBDominatesNewBBSucc = false;
262        break;
263      }
264
265    // Find NewBB's immediate dominator and create new dominator tree node for
266    // NewBB.
267    NodeT *NewBBIDom = 0;
268    unsigned i = 0;
269    for (i = 0; i < PredBlocks.size(); ++i)
270      if (DT.isReachableFromEntry(PredBlocks[i])) {
271        NewBBIDom = PredBlocks[i];
272        break;
273      }
274
275    // It's possible that none of the predecessors of NewBB are reachable;
276    // in that case, NewBB itself is unreachable, so nothing needs to be
277    // changed.
278    if (!NewBBIDom)
279      return;
280
281    for (i = i + 1; i < PredBlocks.size(); ++i) {
282      if (DT.isReachableFromEntry(PredBlocks[i]))
283        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
284    }
285
286    // Create the new dominator tree node... and set the idom of NewBB.
287    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
288
289    // If NewBB strictly dominates other blocks, then it is now the immediate
290    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
291    if (NewBBDominatesNewBBSucc) {
292      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
293      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
294    }
295  }
296
297public:
298  explicit DominatorTreeBase(bool isPostDom)
299    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
300  virtual ~DominatorTreeBase() { reset(); }
301
302  // FIXME: Should remove this
303  virtual bool runOnFunction(Function &F) { return false; }
304
305  /// compare - Return false if the other dominator tree base matches this
306  /// dominator tree base. Otherwise return true.
307  bool compare(DominatorTreeBase &Other) const {
308
309    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
310    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
311      return true;
312
313    for (typename DomTreeNodeMapType::const_iterator
314           I = this->DomTreeNodes.begin(),
315           E = this->DomTreeNodes.end(); I != E; ++I) {
316      NodeT *BB = I->first;
317      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
318      if (OI == OtherDomTreeNodes.end())
319        return true;
320
321      DomTreeNodeBase<NodeT>* MyNd = I->second;
322      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
323
324      if (MyNd->compare(OtherNd))
325        return true;
326    }
327
328    return false;
329  }
330
331  virtual void releaseMemory() { reset(); }
332
333  /// getNode - return the (Post)DominatorTree node for the specified basic
334  /// block.  This is the same as using operator[] on this class.
335  ///
336  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
337    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
338    return I != DomTreeNodes.end() ? I->second : 0;
339  }
340
341  /// getRootNode - This returns the entry node for the CFG of the function.  If
342  /// this tree represents the post-dominance relations for a function, however,
343  /// this root may be a node with the block == NULL.  This is the case when
344  /// there are multiple exit nodes from a particular function.  Consumers of
345  /// post-dominance information must be capable of dealing with this
346  /// possibility.
347  ///
348  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
349  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
350
351  /// properlyDominates - Returns true iff this dominates N and this != N.
352  /// Note that this is not a constant time operation!
353  ///
354  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
355                         const DomTreeNodeBase<NodeT> *B) const {
356    if (A == 0 || B == 0) return false;
357    return dominatedBySlowTreeWalk(A, B);
358  }
359
360  inline bool properlyDominates(NodeT *A, NodeT *B) {
361    return properlyDominates(getNode(A), getNode(B));
362  }
363
364  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
365                               const DomTreeNodeBase<NodeT> *B) const {
366    const DomTreeNodeBase<NodeT> *IDom;
367    if (A == 0 || B == 0) return false;
368    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
369      B = IDom;   // Walk up the tree
370    return IDom != 0;
371  }
372
373
374  /// isReachableFromEntry - Return true if A is dominated by the entry
375  /// block of the function containing it.
376  bool isReachableFromEntry(NodeT* A) {
377    assert (!this->isPostDominator()
378            && "This is not implemented for post dominators");
379    return dominates(&A->getParent()->front(), A);
380  }
381
382  /// dominates - Returns true iff A dominates B.  Note that this is not a
383  /// constant time operation!
384  ///
385  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
386                        const DomTreeNodeBase<NodeT> *B) {
387    if (B == A)
388      return true;  // A node trivially dominates itself.
389
390    if (A == 0 || B == 0)
391      return false;
392
393    // Compare the result of the tree walk and the dfs numbers, if expensive
394    // checks are enabled.
395#ifdef XDEBUG
396    assert(!DFSInfoValid
397           || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A)));
398#endif
399
400    if (DFSInfoValid)
401      return B->DominatedBy(A);
402
403    // If we end up with too many slow queries, just update the
404    // DFS numbers on the theory that we are going to keep querying.
405    SlowQueries++;
406    if (SlowQueries > 32) {
407      updateDFSNumbers();
408      return B->DominatedBy(A);
409    }
410
411    return dominatedBySlowTreeWalk(A, B);
412  }
413
414  inline bool dominates(const NodeT *A, const NodeT *B) {
415    if (A == B)
416      return true;
417
418    // Cast away the const qualifiers here. This is ok since
419    // this function doesn't actually return the values returned
420    // from getNode.
421    return dominates(getNode(const_cast<NodeT *>(A)),
422                     getNode(const_cast<NodeT *>(B)));
423  }
424
425  NodeT *getRoot() const {
426    assert(this->Roots.size() == 1 && "Should always have entry node!");
427    return this->Roots[0];
428  }
429
430  /// findNearestCommonDominator - Find nearest common dominator basic block
431  /// for basic block A and B. If there is no such block then return NULL.
432  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
433
434    assert (!this->isPostDominator()
435            && "This is not implemented for post dominators");
436    assert (A->getParent() == B->getParent()
437            && "Two blocks are not in same function");
438
439    // If either A or B is a entry block then it is nearest common dominator.
440    NodeT &Entry  = A->getParent()->front();
441    if (A == &Entry || B == &Entry)
442      return &Entry;
443
444    // If B dominates A then B is nearest common dominator.
445    if (dominates(B, A))
446      return B;
447
448    // If A dominates B then A is nearest common dominator.
449    if (dominates(A, B))
450      return A;
451
452    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
453    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
454
455    // Collect NodeA dominators set.
456    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
457    NodeADoms.insert(NodeA);
458    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
459    while (IDomA) {
460      NodeADoms.insert(IDomA);
461      IDomA = IDomA->getIDom();
462    }
463
464    // Walk NodeB immediate dominators chain and find common dominator node.
465    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
466    while(IDomB) {
467      if (NodeADoms.count(IDomB) != 0)
468        return IDomB->getBlock();
469
470      IDomB = IDomB->getIDom();
471    }
472
473    return NULL;
474  }
475
476  //===--------------------------------------------------------------------===//
477  // API to update (Post)DominatorTree information based on modifications to
478  // the CFG...
479
480  /// addNewBlock - Add a new node to the dominator tree information.  This
481  /// creates a new node as a child of DomBB dominator node,linking it into
482  /// the children list of the immediate dominator.
483  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
484    assert(getNode(BB) == 0 && "Block already in dominator tree!");
485    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
486    assert(IDomNode && "Not immediate dominator specified for block!");
487    DFSInfoValid = false;
488    return DomTreeNodes[BB] =
489      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
490  }
491
492  /// changeImmediateDominator - This method is used to update the dominator
493  /// tree information when a node's immediate dominator changes.
494  ///
495  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
496                                DomTreeNodeBase<NodeT> *NewIDom) {
497    assert(N && NewIDom && "Cannot change null node pointers!");
498    DFSInfoValid = false;
499    N->setIDom(NewIDom);
500  }
501
502  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
503    changeImmediateDominator(getNode(BB), getNode(NewBB));
504  }
505
506  /// eraseNode - Removes a node from  the dominator tree. Block must not
507  /// domiante any other blocks. Removes node from its immediate dominator's
508  /// children list. Deletes dominator node associated with basic block BB.
509  void eraseNode(NodeT *BB) {
510    DomTreeNodeBase<NodeT> *Node = getNode(BB);
511    assert (Node && "Removing node that isn't in dominator tree.");
512    assert (Node->getChildren().empty() && "Node is not a leaf node.");
513
514      // Remove node from immediate dominator's children list.
515    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
516    if (IDom) {
517      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
518        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
519      assert(I != IDom->Children.end() &&
520             "Not in immediate dominator children set!");
521      // I am no longer your child...
522      IDom->Children.erase(I);
523    }
524
525    DomTreeNodes.erase(BB);
526    delete Node;
527  }
528
529  /// removeNode - Removes a node from the dominator tree.  Block must not
530  /// dominate any other blocks.  Invalidates any node pointing to removed
531  /// block.
532  void removeNode(NodeT *BB) {
533    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
534    DomTreeNodes.erase(BB);
535  }
536
537  /// splitBlock - BB is split and now it has one successor. Update dominator
538  /// tree to reflect this change.
539  void splitBlock(NodeT* NewBB) {
540    if (this->IsPostDominators)
541      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
542    else
543      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
544  }
545
546  /// print - Convert to human readable form
547  ///
548  void print(raw_ostream &o) const {
549    o << "=============================--------------------------------\n";
550    if (this->isPostDominator())
551      o << "Inorder PostDominator Tree: ";
552    else
553      o << "Inorder Dominator Tree: ";
554    if (this->DFSInfoValid)
555      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
556    o << "\n";
557
558    // The postdom tree can have a null root if there are no returns.
559    if (getRootNode())
560      PrintDomTree<NodeT>(getRootNode(), o, 1);
561  }
562
563protected:
564  template<class GraphT>
565  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
566                       typename GraphT::NodeType* VIn);
567
568  template<class GraphT>
569  friend typename GraphT::NodeType* Eval(
570                               DominatorTreeBase<typename GraphT::NodeType>& DT,
571                                         typename GraphT::NodeType* V);
572
573  template<class GraphT>
574  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
575                   unsigned DFSNumV, typename GraphT::NodeType* W,
576         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
577
578  template<class GraphT>
579  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
580                          typename GraphT::NodeType* V,
581                          unsigned N);
582
583  template<class FuncT, class N>
584  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
585                        FuncT& F);
586
587  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
588  /// dominator tree in dfs order.
589  void updateDFSNumbers() {
590    unsigned DFSNum = 0;
591
592    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
593                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
594
595    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
596
597    if (!ThisRoot)
598      return;
599
600    // Even in the case of multiple exits that form the post dominator root
601    // nodes, do not iterate over all exits, but start from the virtual root
602    // node. Otherwise bbs, that are not post dominated by any exit but by the
603    // virtual root node, will never be assigned a DFS number.
604    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
605    ThisRoot->DFSNumIn = DFSNum++;
606
607    while (!WorkStack.empty()) {
608      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
609      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
610        WorkStack.back().second;
611
612      // If we visited all of the children of this node, "recurse" back up the
613      // stack setting the DFOutNum.
614      if (ChildIt == Node->end()) {
615        Node->DFSNumOut = DFSNum++;
616        WorkStack.pop_back();
617      } else {
618        // Otherwise, recursively visit this child.
619        DomTreeNodeBase<NodeT> *Child = *ChildIt;
620        ++WorkStack.back().second;
621
622        WorkStack.push_back(std::make_pair(Child, Child->begin()));
623        Child->DFSNumIn = DFSNum++;
624      }
625    }
626
627    SlowQueries = 0;
628    DFSInfoValid = true;
629  }
630
631  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
632    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
633    if (I != this->DomTreeNodes.end() && I->second)
634      return I->second;
635
636    // Haven't calculated this node yet?  Get or calculate the node for the
637    // immediate dominator.
638    NodeT *IDom = getIDom(BB);
639
640    assert(IDom || this->DomTreeNodes[NULL]);
641    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
642
643    // Add a new tree node for this BasicBlock, and link it as a child of
644    // IDomNode
645    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
646    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
647  }
648
649  inline NodeT *getIDom(NodeT *BB) const {
650    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
651    return I != IDoms.end() ? I->second : 0;
652  }
653
654  inline void addRoot(NodeT* BB) {
655    this->Roots.push_back(BB);
656  }
657
658public:
659  /// recalculate - compute a dominator tree for the given function
660  template<class FT>
661  void recalculate(FT& F) {
662    reset();
663    this->Vertex.push_back(0);
664
665    if (!this->IsPostDominators) {
666      // Initialize root
667      this->Roots.push_back(&F.front());
668      this->IDoms[&F.front()] = 0;
669      this->DomTreeNodes[&F.front()] = 0;
670
671      Calculate<FT, NodeT*>(*this, F);
672    } else {
673      // Initialize the roots list
674      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
675        if (std::distance(GraphTraits<FT*>::child_begin(I),
676                          GraphTraits<FT*>::child_end(I)) == 0)
677          addRoot(I);
678
679        // Prepopulate maps so that we don't get iterator invalidation issues later.
680        this->IDoms[I] = 0;
681        this->DomTreeNodes[I] = 0;
682      }
683
684      Calculate<FT, Inverse<NodeT*> >(*this, F);
685    }
686  }
687};
688
689EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
690
691//===-------------------------------------
692/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
693/// compute a normal dominator tree.
694///
695class DominatorTree : public FunctionPass {
696public:
697  static char ID; // Pass ID, replacement for typeid
698  DominatorTreeBase<BasicBlock>* DT;
699
700  DominatorTree() : FunctionPass(&ID) {
701    DT = new DominatorTreeBase<BasicBlock>(false);
702  }
703
704  ~DominatorTree() {
705    DT->releaseMemory();
706    delete DT;
707  }
708
709  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
710
711  /// getRoots -  Return the root blocks of the current CFG.  This may include
712  /// multiple blocks if we are computing post dominators.  For forward
713  /// dominators, this will always be a single block (the entry node).
714  ///
715  inline const std::vector<BasicBlock*> &getRoots() const {
716    return DT->getRoots();
717  }
718
719  inline BasicBlock *getRoot() const {
720    return DT->getRoot();
721  }
722
723  inline DomTreeNode *getRootNode() const {
724    return DT->getRootNode();
725  }
726
727  /// compare - Return false if the other dominator tree matches this
728  /// dominator tree. Otherwise return true.
729  inline bool compare(DominatorTree &Other) const {
730    DomTreeNode *R = getRootNode();
731    DomTreeNode *OtherR = Other.getRootNode();
732
733    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
734      return true;
735
736    if (DT->compare(Other.getBase()))
737      return true;
738
739    return false;
740  }
741
742  virtual bool runOnFunction(Function &F);
743
744  virtual void verifyAnalysis() const;
745
746  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
747    AU.setPreservesAll();
748  }
749
750  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
751    return DT->dominates(A, B);
752  }
753
754  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
755    return DT->dominates(A, B);
756  }
757
758  // dominates - Return true if A dominates B. This performs the
759  // special checks necessary if A and B are in the same basic block.
760  bool dominates(const Instruction *A, const Instruction *B) const;
761
762  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
763    return DT->properlyDominates(A, B);
764  }
765
766  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
767    return DT->properlyDominates(A, B);
768  }
769
770  /// findNearestCommonDominator - Find nearest common dominator basic block
771  /// for basic block A and B. If there is no such block then return NULL.
772  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
773    return DT->findNearestCommonDominator(A, B);
774  }
775
776  inline DomTreeNode *operator[](BasicBlock *BB) const {
777    return DT->getNode(BB);
778  }
779
780  /// getNode - return the (Post)DominatorTree node for the specified basic
781  /// block.  This is the same as using operator[] on this class.
782  ///
783  inline DomTreeNode *getNode(BasicBlock *BB) const {
784    return DT->getNode(BB);
785  }
786
787  /// addNewBlock - Add a new node to the dominator tree information.  This
788  /// creates a new node as a child of DomBB dominator node,linking it into
789  /// the children list of the immediate dominator.
790  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
791    return DT->addNewBlock(BB, DomBB);
792  }
793
794  /// changeImmediateDominator - This method is used to update the dominator
795  /// tree information when a node's immediate dominator changes.
796  ///
797  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
798    DT->changeImmediateDominator(N, NewIDom);
799  }
800
801  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
802    DT->changeImmediateDominator(N, NewIDom);
803  }
804
805  /// eraseNode - Removes a node from  the dominator tree. Block must not
806  /// domiante any other blocks. Removes node from its immediate dominator's
807  /// children list. Deletes dominator node associated with basic block BB.
808  inline void eraseNode(BasicBlock *BB) {
809    DT->eraseNode(BB);
810  }
811
812  /// splitBlock - BB is split and now it has one successor. Update dominator
813  /// tree to reflect this change.
814  inline void splitBlock(BasicBlock* NewBB) {
815    DT->splitBlock(NewBB);
816  }
817
818  bool isReachableFromEntry(BasicBlock* A) {
819    return DT->isReachableFromEntry(A);
820  }
821
822
823  virtual void releaseMemory() {
824    DT->releaseMemory();
825  }
826
827  virtual void print(raw_ostream &OS, const Module* M= 0) const;
828};
829
830//===-------------------------------------
831/// DominatorTree GraphTraits specialization so the DominatorTree can be
832/// iterable by generic graph iterators.
833///
834template <> struct GraphTraits<DomTreeNode*> {
835  typedef DomTreeNode NodeType;
836  typedef NodeType::iterator  ChildIteratorType;
837
838  static NodeType *getEntryNode(NodeType *N) {
839    return N;
840  }
841  static inline ChildIteratorType child_begin(NodeType *N) {
842    return N->begin();
843  }
844  static inline ChildIteratorType child_end(NodeType *N) {
845    return N->end();
846  }
847
848  typedef df_iterator<DomTreeNode*> nodes_iterator;
849
850  static nodes_iterator nodes_begin(DomTreeNode *N) {
851    return df_begin(getEntryNode(N));
852  }
853
854  static nodes_iterator nodes_end(DomTreeNode *N) {
855    return df_end(getEntryNode(N));
856  }
857};
858
859template <> struct GraphTraits<DominatorTree*>
860  : public GraphTraits<DomTreeNode*> {
861  static NodeType *getEntryNode(DominatorTree *DT) {
862    return DT->getRootNode();
863  }
864
865  static nodes_iterator nodes_begin(DominatorTree *N) {
866    return df_begin(getEntryNode(N));
867  }
868
869  static nodes_iterator nodes_end(DominatorTree *N) {
870    return df_end(getEntryNode(N));
871  }
872};
873
874
875//===----------------------------------------------------------------------===//
876/// DominanceFrontierBase - Common base class for computing forward and inverse
877/// dominance frontiers for a function.
878///
879class DominanceFrontierBase : public FunctionPass {
880public:
881  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
882  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
883protected:
884  DomSetMapType Frontiers;
885  std::vector<BasicBlock*> Roots;
886  const bool IsPostDominators;
887
888public:
889  DominanceFrontierBase(void *ID, bool isPostDom)
890    : FunctionPass(ID), IsPostDominators(isPostDom) {}
891
892  /// getRoots -  Return the root blocks of the current CFG.  This may include
893  /// multiple blocks if we are computing post dominators.  For forward
894  /// dominators, this will always be a single block (the entry node).
895  ///
896  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
897
898  /// isPostDominator - Returns true if analysis based of postdoms
899  ///
900  bool isPostDominator() const { return IsPostDominators; }
901
902  virtual void releaseMemory() { Frontiers.clear(); }
903
904  // Accessor interface:
905  typedef DomSetMapType::iterator iterator;
906  typedef DomSetMapType::const_iterator const_iterator;
907  iterator       begin()       { return Frontiers.begin(); }
908  const_iterator begin() const { return Frontiers.begin(); }
909  iterator       end()         { return Frontiers.end(); }
910  const_iterator end()   const { return Frontiers.end(); }
911  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
912  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
913
914  iterator addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
915    assert(find(BB) == end() && "Block already in DominanceFrontier!");
916    return Frontiers.insert(std::make_pair(BB, frontier)).first;
917  }
918
919  /// removeBlock - Remove basic block BB's frontier.
920  void removeBlock(BasicBlock *BB) {
921    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
922    for (iterator I = begin(), E = end(); I != E; ++I)
923      I->second.erase(BB);
924    Frontiers.erase(BB);
925  }
926
927  void addToFrontier(iterator I, BasicBlock *Node) {
928    assert(I != end() && "BB is not in DominanceFrontier!");
929    I->second.insert(Node);
930  }
931
932  void removeFromFrontier(iterator I, BasicBlock *Node) {
933    assert(I != end() && "BB is not in DominanceFrontier!");
934    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
935    I->second.erase(Node);
936  }
937
938  /// compareDomSet - Return false if two domsets match. Otherwise
939  /// return true;
940  bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
941    std::set<BasicBlock *> tmpSet;
942    for (DomSetType::const_iterator I = DS2.begin(),
943           E = DS2.end(); I != E; ++I)
944      tmpSet.insert(*I);
945
946    for (DomSetType::const_iterator I = DS1.begin(),
947           E = DS1.end(); I != E; ) {
948      BasicBlock *Node = *I++;
949
950      if (tmpSet.erase(Node) == 0)
951        // Node is in DS1 but not in DS2.
952        return true;
953    }
954
955    if(!tmpSet.empty())
956      // There are nodes that are in DS2 but not in DS1.
957      return true;
958
959    // DS1 and DS2 matches.
960    return false;
961  }
962
963  /// compare - Return true if the other dominance frontier base matches
964  /// this dominance frontier base. Otherwise return false.
965  bool compare(DominanceFrontierBase &Other) const {
966    DomSetMapType tmpFrontiers;
967    for (DomSetMapType::const_iterator I = Other.begin(),
968           E = Other.end(); I != E; ++I)
969      tmpFrontiers.insert(std::make_pair(I->first, I->second));
970
971    for (DomSetMapType::iterator I = tmpFrontiers.begin(),
972           E = tmpFrontiers.end(); I != E; ) {
973      BasicBlock *Node = I->first;
974      const_iterator DFI = find(Node);
975      if (DFI == end())
976        return true;
977
978      if (compareDomSet(I->second, DFI->second))
979        return true;
980
981      ++I;
982      tmpFrontiers.erase(Node);
983    }
984
985    if (!tmpFrontiers.empty())
986      return true;
987
988    return false;
989  }
990
991  /// print - Convert to human readable form
992  ///
993  virtual void print(raw_ostream &OS, const Module* = 0) const;
994};
995
996
997//===-------------------------------------
998/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
999/// used to compute a forward dominator frontiers.
1000///
1001class DominanceFrontier : public DominanceFrontierBase {
1002public:
1003  static char ID; // Pass ID, replacement for typeid
1004  DominanceFrontier() :
1005    DominanceFrontierBase(&ID, false) {}
1006
1007  BasicBlock *getRoot() const {
1008    assert(Roots.size() == 1 && "Should always have entry node!");
1009    return Roots[0];
1010  }
1011
1012  virtual bool runOnFunction(Function &) {
1013    Frontiers.clear();
1014    DominatorTree &DT = getAnalysis<DominatorTree>();
1015    Roots = DT.getRoots();
1016    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
1017    calculate(DT, DT[Roots[0]]);
1018    return false;
1019  }
1020
1021  virtual void verifyAnalysis() const;
1022
1023  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1024    AU.setPreservesAll();
1025    AU.addRequired<DominatorTree>();
1026  }
1027
1028  /// splitBlock - BB is split and now it has one successor. Update dominance
1029  /// frontier to reflect this change.
1030  void splitBlock(BasicBlock *BB);
1031
1032  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
1033  /// to reflect this change.
1034  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
1035                                DominatorTree *DT) {
1036    // NewBB is now  dominating BB. Which means BB's dominance
1037    // frontier is now part of NewBB's dominance frontier. However, BB
1038    // itself is not member of NewBB's dominance frontier.
1039    DominanceFrontier::iterator NewDFI = find(NewBB);
1040    DominanceFrontier::iterator DFI = find(BB);
1041    // If BB was an entry block then its frontier is empty.
1042    if (DFI == end())
1043      return;
1044    DominanceFrontier::DomSetType BBSet = DFI->second;
1045    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
1046           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
1047      BasicBlock *DFMember = *BBSetI;
1048      // Insert only if NewBB dominates DFMember.
1049      if (!DT->dominates(NewBB, DFMember))
1050        NewDFI->second.insert(DFMember);
1051    }
1052    NewDFI->second.erase(BB);
1053  }
1054
1055  const DomSetType &calculate(const DominatorTree &DT,
1056                              const DomTreeNode *Node);
1057};
1058
1059
1060} // End llvm namespace
1061
1062#endif
1063