Dominators.h revision fe7d4e50b8a34e660a8713da79613041987c19d6
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. ETForest: Efficient data structure for dominance comparisons and
13//     nearest-common-ancestor queries.
14//  3. DominanceFrontier: Calculate and hold the dominance frontier for a
15//     function.
16//
17//  These data structures are listed in increasing order of complexity.  It
18//  takes longer to calculate the dominator frontier, for example, than the
19//  DominatorTree mapping.
20//
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_ANALYSIS_DOMINATORS_H
24#define LLVM_ANALYSIS_DOMINATORS_H
25
26#include "llvm/Analysis/ET-Forest.h"
27#include "llvm/Pass.h"
28#include <set>
29
30namespace llvm {
31
32class Instruction;
33
34template <typename GraphType> struct GraphTraits;
35
36//===----------------------------------------------------------------------===//
37/// DominatorBase - Base class that other, more interesting dominator analyses
38/// inherit from.
39///
40class DominatorBase : public FunctionPass {
41protected:
42  std::vector<BasicBlock*> Roots;
43  const bool IsPostDominators;
44  inline DominatorBase(intptr_t ID, bool isPostDom) :
45    FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
46public:
47
48  /// getRoots -  Return the root blocks of the current CFG.  This may include
49  /// multiple blocks if we are computing post dominators.  For forward
50  /// dominators, this will always be a single block (the entry node).
51  ///
52  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
53
54  /// isPostDominator - Returns true if analysis based of postdoms
55  ///
56  bool isPostDominator() const { return IsPostDominators; }
57};
58
59
60//===----------------------------------------------------------------------===//
61// DomTreeNode - Dominator Tree Node
62
63class DomTreeNode {
64  BasicBlock *TheBB;
65  DomTreeNode *IDom;
66  ETNode *ETN;
67  std::vector<DomTreeNode*> Children;
68public:
69  typedef std::vector<DomTreeNode*>::iterator iterator;
70  typedef std::vector<DomTreeNode*>::const_iterator const_iterator;
71
72  iterator begin()             { return Children.begin(); }
73  iterator end()               { return Children.end(); }
74  const_iterator begin() const { return Children.begin(); }
75  const_iterator end()   const { return Children.end(); }
76
77  inline BasicBlock *getBlock() const { return TheBB; }
78  inline DomTreeNode *getIDom() const { return IDom; }
79  inline ETNode *getETNode() const { return ETN; }
80  inline const std::vector<DomTreeNode*> &getChildren() const { return Children; }
81
82  inline DomTreeNode(BasicBlock *BB, DomTreeNode *iDom, ETNode *E)
83    : TheBB(BB), IDom(iDom), ETN(E) {
84    if (IDom)
85      ETN->setFather(IDom->getETNode());
86  }
87  inline DomTreeNode *addChild(DomTreeNode *C) { Children.push_back(C); return C; }
88  void setIDom(DomTreeNode *NewIDom);
89};
90
91//===----------------------------------------------------------------------===//
92/// DominatorTree - Calculate the immediate dominator tree for a function.
93///
94class DominatorTreeBase : public DominatorBase {
95
96protected:
97  void reset();
98  typedef std::map<BasicBlock*, DomTreeNode*> DomTreeNodeMapType;
99  DomTreeNodeMapType DomTreeNodes;
100  DomTreeNode *RootNode;
101
102  typedef std::map<BasicBlock*, ETNode*> ETMapType;
103  ETMapType ETNodes;
104
105  bool DFSInfoValid;
106  unsigned int SlowQueries;
107  // Information record used during immediate dominators computation.
108  struct InfoRec {
109    unsigned Semi;
110    unsigned Size;
111    BasicBlock *Label, *Parent, *Child, *Ancestor;
112
113    std::vector<BasicBlock*> Bucket;
114
115    InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
116  };
117
118  std::map<BasicBlock*, BasicBlock*> IDoms;
119
120  // Vertex - Map the DFS number to the BasicBlock*
121  std::vector<BasicBlock*> Vertex;
122
123  // Info - Collection of information used during the computation of idoms.
124  std::map<BasicBlock*, InfoRec> Info;
125
126  public:
127  DominatorTreeBase(intptr_t ID, bool isPostDom)
128    : DominatorBase(ID, isPostDom), DFSInfoValid(false), SlowQueries(0) {}
129  ~DominatorTreeBase() { reset(); }
130
131  virtual void releaseMemory() { reset(); }
132
133  /// getNode - return the (Post)DominatorTree node for the specified basic
134  /// block.  This is the same as using operator[] on this class.
135  ///
136  inline DomTreeNode *getNode(BasicBlock *BB) const {
137    DomTreeNodeMapType::const_iterator i = DomTreeNodes.find(BB);
138    return (i != DomTreeNodes.end()) ? i->second : 0;
139  }
140
141  inline DomTreeNode *operator[](BasicBlock *BB) const {
142    return getNode(BB);
143  }
144
145  /// getIDomBlock - return basic block BB's immediate dominator basic block.
146  ///
147  BasicBlock *getIDomBlock(BasicBlock *BB) {
148    DomTreeNode *N = getNode(BB);
149    assert (N && "Missing dominator tree node");
150    DomTreeNode *I = N->getIDom();
151    assert (N && "Missing immediate dominator");
152    return I->getBlock();
153  }
154
155  /// getRootNode - This returns the entry node for the CFG of the function.  If
156  /// this tree represents the post-dominance relations for a function, however,
157  /// this root may be a node with the block == NULL.  This is the case when
158  /// there are multiple exit nodes from a particular function.  Consumers of
159  /// post-dominance information must be capable of dealing with this
160  /// possibility.
161  ///
162  DomTreeNode *getRootNode() { return RootNode; }
163  const DomTreeNode *getRootNode() const { return RootNode; }
164
165  /// properlyDominates - Returns true iff this dominates N and this != N.
166  /// Note that this is not a constant time operation!
167  ///
168  bool properlyDominates(const DomTreeNode *A, DomTreeNode *B) const {
169    if (A == 0 || B == 0) return false;
170    return dominatedBySlowTreeWalk(A, B);
171  }
172
173  inline bool properlyDominates(BasicBlock *A, BasicBlock *B) {
174    return properlyDominates(getNode(A), getNode(B));
175  }
176
177  bool dominatedBySlowTreeWalk(const DomTreeNode *A,
178                               const DomTreeNode *B) const {
179    const DomTreeNode *IDom;
180    if (A == 0 || B == 0) return false;
181    while ((IDom = B->getIDom()) != 0 && IDom != A)
182      B = IDom;   // Walk up the tree
183    return IDom != 0;
184  }
185
186  void updateDFSNumbers();
187
188  /// Return the nearest common dominator of A and B.
189  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
190    ETNode *NodeA = getNode(A)->getETNode();
191    ETNode *NodeB = getNode(B)->getETNode();
192
193    ETNode *Common = NodeA->NCA(NodeB);
194    if (!Common)
195      return NULL;
196    return Common->getData<BasicBlock>();
197  }
198
199  /// isReachableFromEntry - Return true if A is dominated by the entry
200  /// block of the function containing it.
201  const bool isReachableFromEntry(BasicBlock* A);
202
203  /// dominates - Returns true iff this dominates N.  Note that this is not a
204  /// constant time operation!
205  ///
206  inline bool dominates(const DomTreeNode *A, DomTreeNode *B) {
207    if (B == A)
208      return true;  // A node trivially dominates itself.
209
210    if (A == 0 || B == 0)
211      return false;
212
213    ETNode *NodeA = A->getETNode();
214    ETNode *NodeB = B->getETNode();
215
216    if (DFSInfoValid)
217      return NodeB->DominatedBy(NodeA);
218
219    // If we end up with too many slow queries, just update the
220    // DFS numbers on the theory that we are going to keep querying.
221    SlowQueries++;
222    if (SlowQueries > 32) {
223      updateDFSNumbers();
224      return NodeB->DominatedBy(NodeA);
225    }
226    //return NodeB->DominatedBySlow(NodeA);
227    return dominatedBySlowTreeWalk(A, B);
228  }
229
230  inline bool dominates(BasicBlock *A, BasicBlock *B) {
231    if (A == B)
232      return true;
233
234    return dominates(getNode(A), getNode(B));
235  }
236
237  /// findNearestCommonDominator - Find nearest common dominator basic block
238  /// for basic block A and B. If there is no such block then return NULL.
239  BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B);
240
241  // dominates - Return true if A dominates B. This performs the
242  // special checks necessary if A and B are in the same basic block.
243  bool dominates(Instruction *A, Instruction *B);
244
245  //===--------------------------------------------------------------------===//
246  // API to update (Post)DominatorTree information based on modifications to
247  // the CFG...
248
249  /// addNewBlock - Add a new node to the dominator tree information.  This
250  /// creates a new node as a child of DomBB dominator node,linking it into
251  /// the children list of the immediate dominator.
252  DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
253    assert(getNode(BB) == 0 && "Block already in dominator tree!");
254    DomTreeNode *IDomNode = getNode(DomBB);
255    assert(IDomNode && "Not immediate dominator specified for block!");
256    DFSInfoValid = false;
257    ETNode *E = new ETNode(BB);
258    ETNodes[BB] = E;
259    return DomTreeNodes[BB] =
260      IDomNode->addChild(new DomTreeNode(BB, IDomNode, E));
261  }
262
263  /// changeImmediateDominator - This method is used to update the dominator
264  /// tree information when a node's immediate dominator changes.
265  ///
266  void changeImmediateDominator(DomTreeNode *N, DomTreeNode *NewIDom) {
267    assert(N && NewIDom && "Cannot change null node pointers!");
268    DFSInfoValid = false;
269    N->setIDom(NewIDom);
270  }
271
272  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB) {
273    changeImmediateDominator(getNode(BB), getNode(NewBB));
274  }
275
276  /// removeNode - Removes a node from the dominator tree.  Block must not
277  /// dominate any other blocks.  Invalidates any node pointing to removed
278  /// block.
279  void removeNode(BasicBlock *BB) {
280    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
281    DomTreeNodes.erase(BB);
282  }
283
284  /// print - Convert to human readable form
285  ///
286  virtual void print(std::ostream &OS, const Module* = 0) const;
287  void print(std::ostream *OS, const Module* M = 0) const {
288    if (OS) print(*OS, M);
289  }
290  virtual void dump();
291};
292
293//===-------------------------------------
294/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
295/// compute a normal dominator tree.
296///
297class DominatorTree : public DominatorTreeBase {
298public:
299  static char ID; // Pass ID, replacement for typeid
300  DominatorTree() : DominatorTreeBase((intptr_t)&ID, false) {}
301
302  BasicBlock *getRoot() const {
303    assert(Roots.size() == 1 && "Should always have entry node!");
304    return Roots[0];
305  }
306
307  virtual bool runOnFunction(Function &F);
308
309  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
310    AU.setPreservesAll();
311  }
312private:
313  void calculate(Function& F);
314  DomTreeNode *getNodeForBlock(BasicBlock *BB);
315  unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
316  void Compress(BasicBlock *V);
317  BasicBlock *Eval(BasicBlock *v);
318  void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
319  inline BasicBlock *getIDom(BasicBlock *BB) const {
320      std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
321      return I != IDoms.end() ? I->second : 0;
322    }
323};
324
325//===-------------------------------------
326/// DominatorTree GraphTraits specialization so the DominatorTree can be
327/// iterable by generic graph iterators.
328///
329template <> struct GraphTraits<DomTreeNode*> {
330  typedef DomTreeNode NodeType;
331  typedef NodeType::iterator  ChildIteratorType;
332
333  static NodeType *getEntryNode(NodeType *N) {
334    return N;
335  }
336  static inline ChildIteratorType child_begin(NodeType* N) {
337    return N->begin();
338  }
339  static inline ChildIteratorType child_end(NodeType* N) {
340    return N->end();
341  }
342};
343
344template <> struct GraphTraits<DominatorTree*>
345  : public GraphTraits<DomTreeNode*> {
346  static NodeType *getEntryNode(DominatorTree *DT) {
347    return DT->getRootNode();
348  }
349};
350
351
352//===-------------------------------------
353/// ET-Forest Class - Class used to construct forwards and backwards
354/// ET-Forests
355///
356class ETForestBase : public DominatorBase {
357public:
358  ETForestBase(intptr_t ID, bool isPostDom)
359    : DominatorBase(ID, isPostDom), Nodes(),
360      DFSInfoValid(false), SlowQueries(0) {}
361
362  virtual void releaseMemory() { reset(); }
363
364  typedef std::map<BasicBlock*, ETNode*> ETMapType;
365
366  // FIXME : There is no need to make this interface public.
367  // Fix predicate simplifier.
368  void updateDFSNumbers();
369
370  /// dominates - Return true if A dominates B.
371  ///
372  inline bool dominates(BasicBlock *A, BasicBlock *B) {
373    if (A == B)
374      return true;
375
376    ETNode *NodeA = getNode(A);
377    ETNode *NodeB = getNode(B);
378
379    if (DFSInfoValid)
380      return NodeB->DominatedBy(NodeA);
381    else {
382      // If we end up with too many slow queries, just update the
383      // DFS numbers on the theory that we are going to keep querying.
384      SlowQueries++;
385      if (SlowQueries > 32) {
386        updateDFSNumbers();
387        return NodeB->DominatedBy(NodeA);
388      }
389      return NodeB->DominatedBySlow(NodeA);
390    }
391  }
392
393  // dominates - Return true if A dominates B. This performs the
394  // special checks necessary if A and B are in the same basic block.
395  bool dominates(Instruction *A, Instruction *B);
396
397  /// properlyDominates - Return true if A dominates B and A != B.
398  ///
399  bool properlyDominates(BasicBlock *A, BasicBlock *B) {
400    return dominates(A, B) && A != B;
401  }
402
403  /// isReachableFromEntry - Return true if A is dominated by the entry
404  /// block of the function containing it.
405  const bool isReachableFromEntry(BasicBlock* A);
406
407  /// Return the nearest common dominator of A and B.
408  BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const  {
409    ETNode *NodeA = getNode(A);
410    ETNode *NodeB = getNode(B);
411
412    ETNode *Common = NodeA->NCA(NodeB);
413    if (!Common)
414      return NULL;
415    return Common->getData<BasicBlock>();
416  }
417
418  /// Return the immediate dominator of A.
419  BasicBlock *getIDom(BasicBlock *A) const {
420    ETNode *NodeA = getNode(A);
421    if (!NodeA) return 0;
422    const ETNode *idom = NodeA->getFather();
423    return idom ? idom->getData<BasicBlock>() : 0;
424  }
425
426  void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
427    ETNode *NodeA = getNode(A);
428    if (!NodeA) return;
429    const ETNode* son = NodeA->getSon();
430
431    if (!son) return;
432    children.push_back(son->getData<BasicBlock>());
433
434    const ETNode* brother = son->getBrother();
435    while (brother != son) {
436      children.push_back(brother->getData<BasicBlock>());
437      brother = brother->getBrother();
438    }
439  }
440
441  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
442    AU.setPreservesAll();
443    AU.addRequired<DominatorTree>();
444  }
445  //===--------------------------------------------------------------------===//
446  // API to update Forest information based on modifications
447  // to the CFG...
448
449  /// addNewBlock - Add a new block to the CFG, with the specified immediate
450  /// dominator.
451  ///
452  void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
453
454  /// setImmediateDominator - Update the immediate dominator information to
455  /// change the current immediate dominator for the specified block
456  /// to another block.  This method requires that BB for NewIDom
457  /// already have an ETNode, otherwise just use addNewBlock.
458  ///
459  void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
460  /// print - Convert to human readable form
461  ///
462  virtual void print(std::ostream &OS, const Module* = 0) const;
463  void print(std::ostream *OS, const Module* M = 0) const {
464    if (OS) print(*OS, M);
465  }
466  virtual void dump();
467protected:
468  /// getNode - return the (Post)DominatorTree node for the specified basic
469  /// block.  This is the same as using operator[] on this class.
470  ///
471  inline ETNode *getNode(BasicBlock *BB) const {
472    ETMapType::const_iterator i = Nodes.find(BB);
473    return (i != Nodes.end()) ? i->second : 0;
474  }
475
476  inline ETNode *operator[](BasicBlock *BB) const {
477    return getNode(BB);
478  }
479
480  void reset();
481  ETMapType Nodes;
482  bool DFSInfoValid;
483  unsigned int SlowQueries;
484
485};
486
487//==-------------------------------------
488/// ETForest Class - Concrete subclass of ETForestBase that is used to
489/// compute a forwards ET-Forest.
490
491class ETForest : public ETForestBase {
492public:
493  static char ID; // Pass identification, replacement for typeid
494
495  ETForest() : ETForestBase((intptr_t)&ID, false) {}
496
497  BasicBlock *getRoot() const {
498    assert(Roots.size() == 1 && "Should always have entry node!");
499    return Roots[0];
500  }
501
502  virtual bool runOnFunction(Function &F) {
503    reset();     // Reset from the last time we were run...
504    DominatorTree &DT = getAnalysis<DominatorTree>();
505    Roots = DT.getRoots();
506    calculate(DT);
507    return false;
508  }
509
510  void calculate(const DominatorTree &DT);
511  // FIXME : There is no need to make getNodeForBlock public. Fix
512  // predicate simplifier.
513  ETNode *getNodeForBlock(BasicBlock *BB);
514};
515
516//===----------------------------------------------------------------------===//
517/// DominanceFrontierBase - Common base class for computing forward and inverse
518/// dominance frontiers for a function.
519///
520class DominanceFrontierBase : public DominatorBase {
521public:
522  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
523  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
524protected:
525  DomSetMapType Frontiers;
526public:
527  DominanceFrontierBase(intptr_t ID, bool isPostDom)
528    : DominatorBase(ID, isPostDom) {}
529
530  virtual void releaseMemory() { Frontiers.clear(); }
531
532  // Accessor interface:
533  typedef DomSetMapType::iterator iterator;
534  typedef DomSetMapType::const_iterator const_iterator;
535  iterator       begin()       { return Frontiers.begin(); }
536  const_iterator begin() const { return Frontiers.begin(); }
537  iterator       end()         { return Frontiers.end(); }
538  const_iterator end()   const { return Frontiers.end(); }
539  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
540  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
541
542  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
543    assert(find(BB) == end() && "Block already in DominanceFrontier!");
544    Frontiers.insert(std::make_pair(BB, frontier));
545  }
546
547  void addToFrontier(iterator I, BasicBlock *Node) {
548    assert(I != end() && "BB is not in DominanceFrontier!");
549    I->second.insert(Node);
550  }
551
552  void removeFromFrontier(iterator I, BasicBlock *Node) {
553    assert(I != end() && "BB is not in DominanceFrontier!");
554    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
555    I->second.erase(Node);
556  }
557
558  /// print - Convert to human readable form
559  ///
560  virtual void print(std::ostream &OS, const Module* = 0) const;
561  void print(std::ostream *OS, const Module* M = 0) const {
562    if (OS) print(*OS, M);
563  }
564  virtual void dump();
565};
566
567
568//===-------------------------------------
569/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
570/// used to compute a forward dominator frontiers.
571///
572class DominanceFrontier : public DominanceFrontierBase {
573public:
574  static char ID; // Pass ID, replacement for typeid
575  DominanceFrontier() :
576    DominanceFrontierBase((intptr_t)& ID, false) {}
577
578  BasicBlock *getRoot() const {
579    assert(Roots.size() == 1 && "Should always have entry node!");
580    return Roots[0];
581  }
582
583  virtual bool runOnFunction(Function &) {
584    Frontiers.clear();
585    DominatorTree &DT = getAnalysis<DominatorTree>();
586    Roots = DT.getRoots();
587    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
588    calculate(DT, DT[Roots[0]]);
589    return false;
590  }
591
592  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
593    AU.setPreservesAll();
594    AU.addRequired<DominatorTree>();
595  }
596
597private:
598  const DomSetType &calculate(const DominatorTree &DT,
599                              const DomTreeNode *Node);
600};
601
602
603} // End llvm namespace
604
605#endif
606