ScheduleDAG.h revision 89bf0a6b05c8c353890c88ed1c10dec96a9a7bd8
1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for SelectionDAG-based instruction scheduler.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16#define LLVM_CODEGEN_SCHEDULEDAG_H
17
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/GraphTraits.h"
23#include "llvm/ADT/SmallSet.h"
24
25namespace llvm {
26  struct InstrStage;
27  struct SUnit;
28  class MachineConstantPool;
29  class MachineFunction;
30  class MachineModuleInfo;
31  class MachineRegisterInfo;
32  class MachineInstr;
33  class TargetRegisterInfo;
34  class SelectionDAG;
35  class SelectionDAGISel;
36  class TargetInstrInfo;
37  class TargetInstrDesc;
38  class TargetLowering;
39  class TargetMachine;
40  class TargetRegisterClass;
41
42  /// HazardRecognizer - This determines whether or not an instruction can be
43  /// issued this cycle, and whether or not a noop needs to be inserted to handle
44  /// the hazard.
45  class HazardRecognizer {
46  public:
47    virtual ~HazardRecognizer();
48
49    enum HazardType {
50      NoHazard,      // This instruction can be emitted at this cycle.
51      Hazard,        // This instruction can't be emitted at this cycle.
52      NoopHazard     // This instruction can't be emitted, and needs noops.
53    };
54
55    /// getHazardType - Return the hazard type of emitting this node.  There are
56    /// three possible results.  Either:
57    ///  * NoHazard: it is legal to issue this instruction on this cycle.
58    ///  * Hazard: issuing this instruction would stall the machine.  If some
59    ///     other instruction is available, issue it first.
60    ///  * NoopHazard: issuing this instruction would break the program.  If
61    ///     some other instruction can be issued, do so, otherwise issue a noop.
62    virtual HazardType getHazardType(SDNode *Node) {
63      return NoHazard;
64    }
65
66    /// EmitInstruction - This callback is invoked when an instruction is
67    /// emitted, to advance the hazard state.
68    virtual void EmitInstruction(SDNode *Node) {
69    }
70
71    /// AdvanceCycle - This callback is invoked when no instructions can be
72    /// issued on this cycle without a hazard.  This should increment the
73    /// internal state of the hazard recognizer so that previously "Hazard"
74    /// instructions will now not be hazards.
75    virtual void AdvanceCycle() {
76    }
77
78    /// EmitNoop - This callback is invoked when a noop was added to the
79    /// instruction stream.
80    virtual void EmitNoop() {
81    }
82  };
83
84  /// SDep - Scheduling dependency. It keeps track of dependent nodes,
85  /// cost of the depdenency, etc.
86  struct SDep {
87    SUnit    *Dep;           // Dependent - either a predecessor or a successor.
88    unsigned  Reg;           // If non-zero, this dep is a phy register dependency.
89    int       Cost;          // Cost of the dependency.
90    bool      isCtrl    : 1; // True iff it's a control dependency.
91    bool      isSpecial : 1; // True iff it's a special ctrl dep added during sched.
92    SDep(SUnit *d, unsigned r, int t, bool c, bool s)
93      : Dep(d), Reg(r), Cost(t), isCtrl(c), isSpecial(s) {}
94  };
95
96  /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
97  /// a group of nodes flagged together.
98  struct SUnit {
99    SDNode *Node;                       // Representative node.
100    SmallVector<SDNode*,4> FlaggedNodes;// All nodes flagged to Node.
101    unsigned InstanceNo;                // Instance#. One SDNode can be multiple
102                                        // SUnit due to cloning.
103
104    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
105    // is true if the edge is a token chain edge, false if it is a value edge.
106    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
107    SmallVector<SDep, 4> Succs;  // All sunit successors.
108
109    typedef SmallVector<SDep, 4>::iterator pred_iterator;
110    typedef SmallVector<SDep, 4>::iterator succ_iterator;
111    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
112    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
113
114    unsigned NodeNum;                   // Entry # of node in the node vector.
115    unsigned short Latency;             // Node latency.
116    short NumPreds;                     // # of preds.
117    short NumSuccs;                     // # of sucss.
118    short NumPredsLeft;                 // # of preds not scheduled.
119    short NumSuccsLeft;                 // # of succs not scheduled.
120    bool isTwoAddress     : 1;          // Is a two-address instruction.
121    bool isCommutable     : 1;          // Is a commutable instruction.
122    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
123    bool isPending        : 1;          // True once pending.
124    bool isAvailable      : 1;          // True once available.
125    bool isScheduled      : 1;          // True once scheduled.
126    unsigned CycleBound;                // Upper/lower cycle to be scheduled at.
127    unsigned Cycle;                     // Once scheduled, the cycle of the op.
128    unsigned Depth;                     // Node depth;
129    unsigned Height;                    // Node height;
130    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
131    const TargetRegisterClass *CopySrcRC;
132
133    SUnit(SDNode *node, unsigned nodenum)
134      : Node(node), InstanceNo(0), NodeNum(nodenum), Latency(0),
135        NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
136        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
137        isPending(false), isAvailable(false), isScheduled(false),
138        CycleBound(0), Cycle(0), Depth(0), Height(0),
139        CopyDstRC(NULL), CopySrcRC(NULL) {}
140
141    /// addPred - This adds the specified node as a pred of the current node if
142    /// not already.  This returns true if this is a new pred.
143    bool addPred(SUnit *N, bool isCtrl, bool isSpecial,
144                 unsigned PhyReg = 0, int Cost = 1) {
145      for (unsigned i = 0, e = Preds.size(); i != e; ++i)
146        if (Preds[i].Dep == N &&
147            Preds[i].isCtrl == isCtrl && Preds[i].isSpecial == isSpecial)
148          return false;
149      Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isSpecial));
150      N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl, isSpecial));
151      if (!isCtrl) {
152        ++NumPreds;
153        ++N->NumSuccs;
154      }
155      if (!N->isScheduled)
156        ++NumPredsLeft;
157      if (!isScheduled)
158        ++N->NumSuccsLeft;
159      return true;
160    }
161
162    bool removePred(SUnit *N, bool isCtrl, bool isSpecial) {
163      for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
164           I != E; ++I)
165        if (I->Dep == N && I->isCtrl == isCtrl && I->isSpecial == isSpecial) {
166          bool FoundSucc = false;
167          for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
168                 EE = N->Succs.end(); II != EE; ++II)
169            if (II->Dep == this &&
170                II->isCtrl == isCtrl && II->isSpecial == isSpecial) {
171              FoundSucc = true;
172              N->Succs.erase(II);
173              break;
174            }
175          assert(FoundSucc && "Mismatching preds / succs lists!");
176          Preds.erase(I);
177          if (!isCtrl) {
178            --NumPreds;
179            --N->NumSuccs;
180          }
181          if (!N->isScheduled)
182            --NumPredsLeft;
183          if (!isScheduled)
184            --N->NumSuccsLeft;
185          return true;
186        }
187      return false;
188    }
189
190    bool isPred(SUnit *N) {
191      for (unsigned i = 0, e = Preds.size(); i != e; ++i)
192        if (Preds[i].Dep == N)
193          return true;
194      return false;
195    }
196
197    bool isSucc(SUnit *N) {
198      for (unsigned i = 0, e = Succs.size(); i != e; ++i)
199        if (Succs[i].Dep == N)
200          return true;
201      return false;
202    }
203
204    void dump(const SelectionDAG *G) const;
205    void dumpAll(const SelectionDAG *G) const;
206  };
207
208  //===--------------------------------------------------------------------===//
209  /// SchedulingPriorityQueue - This interface is used to plug different
210  /// priorities computation algorithms into the list scheduler. It implements
211  /// the interface of a standard priority queue, where nodes are inserted in
212  /// arbitrary order and returned in priority order.  The computation of the
213  /// priority and the representation of the queue are totally up to the
214  /// implementation to decide.
215  ///
216  class SchedulingPriorityQueue {
217  public:
218    virtual ~SchedulingPriorityQueue() {}
219
220    virtual void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &SUMap,
221                           std::vector<SUnit> &SUnits) = 0;
222    virtual void addNode(const SUnit *SU) = 0;
223    virtual void updateNode(const SUnit *SU) = 0;
224    virtual void releaseState() = 0;
225
226    virtual unsigned size() const = 0;
227    virtual bool empty() const = 0;
228    virtual void push(SUnit *U) = 0;
229
230    virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
231    virtual SUnit *pop() = 0;
232
233    virtual void remove(SUnit *SU) = 0;
234
235    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
236    /// allows the priority function to adjust the priority of node that have
237    /// already been emitted.
238    virtual void ScheduledNode(SUnit *Node) {}
239
240    virtual void UnscheduledNode(SUnit *Node) {}
241  };
242
243  class ScheduleDAG {
244  public:
245    SelectionDAG &DAG;                    // DAG of the current basic block
246    MachineBasicBlock *BB;                // Current basic block
247    const TargetMachine &TM;              // Target processor
248    const TargetInstrInfo *TII;           // Target instruction information
249    const TargetRegisterInfo *TRI;        // Target processor register info
250    TargetLowering *TLI;                  // Target lowering info
251    MachineFunction *MF;                  // Machine function
252    MachineRegisterInfo &MRI;             // Virtual/real register map
253    MachineConstantPool *ConstPool;       // Target constant pool
254    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
255                                          // represent noop instructions.
256    DenseMap<SDNode*, std::vector<SUnit*> > SUnitMap;
257                                          // SDNode to SUnit mapping (n -> n).
258    std::vector<SUnit> SUnits;            // The scheduling units.
259    SmallSet<SDNode*, 16> CommuteSet;     // Nodes that should be commuted.
260
261    ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb,
262                const TargetMachine &tm);
263
264    virtual ~ScheduleDAG() {}
265
266    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
267    /// using 'dot'.
268    ///
269    void viewGraph();
270
271    /// Run - perform scheduling.
272    ///
273    MachineBasicBlock *Run();
274
275    /// isPassiveNode - Return true if the node is a non-scheduled leaf.
276    ///
277    static bool isPassiveNode(SDNode *Node) {
278      if (isa<ConstantSDNode>(Node))       return true;
279      if (isa<ConstantFPSDNode>(Node))     return true;
280      if (isa<RegisterSDNode>(Node))       return true;
281      if (isa<GlobalAddressSDNode>(Node))  return true;
282      if (isa<BasicBlockSDNode>(Node))     return true;
283      if (isa<FrameIndexSDNode>(Node))     return true;
284      if (isa<ConstantPoolSDNode>(Node))   return true;
285      if (isa<JumpTableSDNode>(Node))      return true;
286      if (isa<ExternalSymbolSDNode>(Node)) return true;
287      if (isa<MemOperandSDNode>(Node))     return true;
288      return false;
289    }
290
291    /// NewSUnit - Creates a new SUnit and return a ptr to it.
292    ///
293    SUnit *NewSUnit(SDNode *N) {
294      SUnits.push_back(SUnit(N, SUnits.size()));
295      return &SUnits.back();
296    }
297
298    /// Clone - Creates a clone of the specified SUnit. It does not copy the
299    /// predecessors / successors info nor the temporary scheduling states.
300    SUnit *Clone(SUnit *N);
301
302    /// BuildSchedUnits - Build SUnits from the selection dag that we are input.
303    /// This SUnit graph is similar to the SelectionDAG, but represents flagged
304    /// together nodes with a single SUnit.
305    void BuildSchedUnits();
306
307    /// ComputeLatency - Compute node latency.
308    ///
309    void ComputeLatency(SUnit *SU);
310
311    /// CalculateDepths, CalculateHeights - Calculate node depth / height.
312    ///
313    void CalculateDepths();
314    void CalculateHeights();
315
316    /// CountResults - The results of target nodes have register or immediate
317    /// operands first, then an optional chain, and optional flag operands
318    /// (which do not go into the machine instrs.)
319    static unsigned CountResults(SDNode *Node);
320
321    /// CountOperands - The inputs to target nodes have any actual inputs first,
322    /// followed by special operands that describe memory references, then an
323    /// optional chain operand, then flag operands.  Compute the number of
324    /// actual operands that will go into the resulting MachineInstr.
325    static unsigned CountOperands(SDNode *Node);
326
327    /// ComputeMemOperandsEnd - Find the index one past the last
328    /// MemOperandSDNode operand
329    static unsigned ComputeMemOperandsEnd(SDNode *Node);
330
331    /// EmitNode - Generate machine code for an node and needed dependencies.
332    /// VRBaseMap contains, for each already emitted node, the first virtual
333    /// register number for the results of the node.
334    ///
335    void EmitNode(SDNode *Node, unsigned InstNo,
336                  DenseMap<SDOperandImpl, unsigned> &VRBaseMap);
337
338    /// EmitNoop - Emit a noop instruction.
339    ///
340    void EmitNoop();
341
342    void EmitSchedule();
343
344    void dumpSchedule() const;
345
346    /// Schedule - Order nodes according to selected style.
347    ///
348    virtual void Schedule() {}
349
350  private:
351    /// EmitSubregNode - Generate machine code for subreg nodes.
352    ///
353    void EmitSubregNode(SDNode *Node,
354                        DenseMap<SDOperandImpl, unsigned> &VRBaseMap);
355
356    /// getVR - Return the virtual register corresponding to the specified result
357    /// of the specified node.
358    unsigned getVR(SDOperand Op, DenseMap<SDOperandImpl, unsigned> &VRBaseMap);
359
360    /// getDstOfCopyToRegUse - If the only use of the specified result number of
361    /// node is a CopyToReg, return its destination register. Return 0 otherwise.
362    unsigned getDstOfOnlyCopyToRegUse(SDNode *Node, unsigned ResNo) const;
363
364    void AddOperand(MachineInstr *MI, SDOperand Op, unsigned IIOpNum,
365                    const TargetInstrDesc *II,
366                    DenseMap<SDOperandImpl, unsigned> &VRBaseMap);
367
368    void AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO);
369
370    void EmitCrossRCCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
371
372    /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
373    /// implicit physical register output.
374    void EmitCopyFromReg(SDNode *Node, unsigned ResNo, unsigned InstNo,
375                         unsigned SrcReg,
376                         DenseMap<SDOperandImpl, unsigned> &VRBaseMap);
377
378    void CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
379                                const TargetInstrDesc &II,
380                                DenseMap<SDOperandImpl, unsigned> &VRBaseMap);
381
382    /// EmitLiveInCopy - Emit a copy for a live in physical register. If the
383    /// physical register has only a single copy use, then coalesced the copy
384    /// if possible.
385    void EmitLiveInCopy(MachineBasicBlock *MBB,
386                        MachineBasicBlock::iterator &InsertPos,
387                        unsigned VirtReg, unsigned PhysReg,
388                        const TargetRegisterClass *RC,
389                        DenseMap<MachineInstr*, unsigned> &CopyRegMap);
390
391    /// EmitLiveInCopies - If this is the first basic block in the function,
392    /// and if it has live ins that need to be copied into vregs, emit the
393    /// copies into the top of the block.
394    void EmitLiveInCopies(MachineBasicBlock *MBB);
395  };
396
397  /// createBURRListDAGScheduler - This creates a bottom up register usage
398  /// reduction list scheduler.
399  ScheduleDAG* createBURRListDAGScheduler(SelectionDAGISel *IS,
400                                          SelectionDAG *DAG,
401                                          MachineBasicBlock *BB);
402
403  /// createTDRRListDAGScheduler - This creates a top down register usage
404  /// reduction list scheduler.
405  ScheduleDAG* createTDRRListDAGScheduler(SelectionDAGISel *IS,
406                                          SelectionDAG *DAG,
407                                          MachineBasicBlock *BB);
408
409  /// createTDListDAGScheduler - This creates a top-down list scheduler with
410  /// a hazard recognizer.
411  ScheduleDAG* createTDListDAGScheduler(SelectionDAGISel *IS,
412                                        SelectionDAG *DAG,
413                                        MachineBasicBlock *BB);
414
415  /// createDefaultScheduler - This creates an instruction scheduler appropriate
416  /// for the target.
417  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
418                                      SelectionDAG *DAG,
419                                      MachineBasicBlock *BB);
420
421  class SUnitIterator : public forward_iterator<SUnit, ptrdiff_t> {
422    SUnit *Node;
423    unsigned Operand;
424
425    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
426  public:
427    bool operator==(const SUnitIterator& x) const {
428      return Operand == x.Operand;
429    }
430    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
431
432    const SUnitIterator &operator=(const SUnitIterator &I) {
433      assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
434      Operand = I.Operand;
435      return *this;
436    }
437
438    pointer operator*() const {
439      return Node->Preds[Operand].Dep;
440    }
441    pointer operator->() const { return operator*(); }
442
443    SUnitIterator& operator++() {                // Preincrement
444      ++Operand;
445      return *this;
446    }
447    SUnitIterator operator++(int) { // Postincrement
448      SUnitIterator tmp = *this; ++*this; return tmp;
449    }
450
451    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
452    static SUnitIterator end  (SUnit *N) {
453      return SUnitIterator(N, N->Preds.size());
454    }
455
456    unsigned getOperand() const { return Operand; }
457    const SUnit *getNode() const { return Node; }
458    bool isCtrlDep() const { return Node->Preds[Operand].isCtrl; }
459    bool isSpecialDep() const { return Node->Preds[Operand].isSpecial; }
460  };
461
462  template <> struct GraphTraits<SUnit*> {
463    typedef SUnit NodeType;
464    typedef SUnitIterator ChildIteratorType;
465    static inline NodeType *getEntryNode(SUnit *N) { return N; }
466    static inline ChildIteratorType child_begin(NodeType *N) {
467      return SUnitIterator::begin(N);
468    }
469    static inline ChildIteratorType child_end(NodeType *N) {
470      return SUnitIterator::end(N);
471    }
472  };
473
474  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
475    typedef std::vector<SUnit>::iterator nodes_iterator;
476    static nodes_iterator nodes_begin(ScheduleDAG *G) {
477      return G->SUnits.begin();
478    }
479    static nodes_iterator nodes_end(ScheduleDAG *G) {
480      return G->SUnits.end();
481    }
482  };
483}
484
485#endif
486