SelectionDAGNodes.h revision 174f938bd042a19d1a840eef6ed162fc938e2fd9
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/Constants.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/ilist_node.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/RecyclingAllocator.h"
33#include "llvm/Support/DataTypes.h"
34#include <cassert>
35
36namespace llvm {
37
38class SelectionDAG;
39class GlobalValue;
40class MachineBasicBlock;
41class MachineConstantPoolValue;
42class SDNode;
43class CompileUnitDesc;
44template <typename T> struct DenseMapInfo;
45template <typename T> struct simplify_type;
46template <typename T> struct ilist_traits;
47
48/// SDVTList - This represents a list of ValueType's that has been intern'd by
49/// a SelectionDAG.  Instances of this simple value class are returned by
50/// SelectionDAG::getVTList(...).
51///
52struct SDVTList {
53  const MVT *VTs;
54  unsigned short NumVTs;
55};
56
57/// ISD namespace - This namespace contains an enum which represents all of the
58/// SelectionDAG node types and value types.
59///
60/// If you add new elements here you should increase OpActionsCapacity in
61/// TargetLowering.h by the number of new elements.
62namespace ISD {
63
64  //===--------------------------------------------------------------------===//
65  /// ISD::NodeType enum - This enum defines all of the operators valid in a
66  /// SelectionDAG.
67  ///
68  enum NodeType {
69    // DELETED_NODE - This is an illegal flag value that is used to catch
70    // errors.  This opcode is not a legal opcode for any node.
71    DELETED_NODE,
72
73    // EntryToken - This is the marker used to indicate the start of the region.
74    EntryToken,
75
76    // TokenFactor - This node takes multiple tokens as input and produces a
77    // single token result.  This is used to represent the fact that the operand
78    // operators are independent of each other.
79    TokenFactor,
80
81    // AssertSext, AssertZext - These nodes record if a register contains a
82    // value that has already been zero or sign extended from a narrower type.
83    // These nodes take two operands.  The first is the node that has already
84    // been extended, and the second is a value type node indicating the width
85    // of the extension
86    AssertSext, AssertZext,
87
88    // Various leaf nodes.
89    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
90    Constant, ConstantFP,
91    GlobalAddress, GlobalTLSAddress, FrameIndex,
92    JumpTable, ConstantPool, ExternalSymbol,
93
94    // The address of the GOT
95    GLOBAL_OFFSET_TABLE,
96
97    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
98    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
99    // of the frame or return address to return.  An index of zero corresponds
100    // to the current function's frame or return address, an index of one to the
101    // parent's frame or return address, and so on.
102    FRAMEADDR, RETURNADDR,
103
104    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
105    // first (possible) on-stack argument. This is needed for correct stack
106    // adjustment during unwind.
107    FRAME_TO_ARGS_OFFSET,
108
109    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
110    // address of the exception block on entry to an landing pad block.
111    EXCEPTIONADDR,
112
113    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
114    // the selection index of the exception thrown.
115    EHSELECTION,
116
117    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
118    // 'eh_return' gcc dwarf builtin, which is used to return from
119    // exception. The general meaning is: adjust stack by OFFSET and pass
120    // execution to HANDLER. Many platform-related details also :)
121    EH_RETURN,
122
123    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
124    // simplification of the constant.
125    TargetConstant,
126    TargetConstantFP,
127
128    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
129    // anything else with this node, and this is valid in the target-specific
130    // dag, turning into a GlobalAddress operand.
131    TargetGlobalAddress,
132    TargetGlobalTLSAddress,
133    TargetFrameIndex,
134    TargetJumpTable,
135    TargetConstantPool,
136    TargetExternalSymbol,
137
138    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
139    /// This node represents a target intrinsic function with no side effects.
140    /// The first operand is the ID number of the intrinsic from the
141    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
142    /// node has returns the result of the intrinsic.
143    INTRINSIC_WO_CHAIN,
144
145    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
146    /// This node represents a target intrinsic function with side effects that
147    /// returns a result.  The first operand is a chain pointer.  The second is
148    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
149    /// operands to the intrinsic follow.  The node has two results, the result
150    /// of the intrinsic and an output chain.
151    INTRINSIC_W_CHAIN,
152
153    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
154    /// This node represents a target intrinsic function with side effects that
155    /// does not return a result.  The first operand is a chain pointer.  The
156    /// second is the ID number of the intrinsic from the llvm::Intrinsic
157    /// namespace.  The operands to the intrinsic follow.
158    INTRINSIC_VOID,
159
160    // CopyToReg - This node has three operands: a chain, a register number to
161    // set to this value, and a value.
162    CopyToReg,
163
164    // CopyFromReg - This node indicates that the input value is a virtual or
165    // physical register that is defined outside of the scope of this
166    // SelectionDAG.  The register is available from the RegisterSDNode object.
167    CopyFromReg,
168
169    // UNDEF - An undefined node
170    UNDEF,
171
172    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
173    /// represents the formal arguments for a function.  CC# is a Constant value
174    /// indicating the calling convention of the function, and ISVARARG is a
175    /// flag that indicates whether the function is varargs or not. This node
176    /// has one result value for each incoming argument, plus one for the output
177    /// chain. It must be custom legalized. See description of CALL node for
178    /// FLAG argument contents explanation.
179    ///
180    FORMAL_ARGUMENTS,
181
182    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
183    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
184    /// This node represents a fully general function call, before the legalizer
185    /// runs.  This has one result value for each argument / flag pair, plus
186    /// a chain result. It must be custom legalized. Flag argument indicates
187    /// misc. argument attributes. Currently:
188    /// Bit 0 - signness
189    /// Bit 1 - 'inreg' attribute
190    /// Bit 2 - 'sret' attribute
191    /// Bit 4 - 'byval' attribute
192    /// Bit 5 - 'nest' attribute
193    /// Bit 6-9 - alignment of byval structures
194    /// Bit 10-26 - size of byval structures
195    /// Bits 31:27 - argument ABI alignment in the first argument piece and
196    /// alignment '1' in other argument pieces.
197    ///
198    /// CALL nodes use the CallSDNode subclass of SDNode, which
199    /// additionally carries information about the calling convention,
200    /// whether the call is varargs, and if it's marked as a tail call.
201    ///
202    CALL,
203
204    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
205    // a Constant, which is required to be operand #1) half of the integer or
206    // float value specified as operand #0.  This is only for use before
207    // legalization, for values that will be broken into multiple registers.
208    EXTRACT_ELEMENT,
209
210    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
211    // two values of the same integer value type, this produces a value twice as
212    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
213    BUILD_PAIR,
214
215    // MERGE_VALUES - This node takes multiple discrete operands and returns
216    // them all as its individual results.  This nodes has exactly the same
217    // number of inputs and outputs, and is only valid before legalization.
218    // This node is useful for some pieces of the code generator that want to
219    // think about a single node with multiple results, not multiple nodes.
220    MERGE_VALUES,
221
222    // Simple integer binary arithmetic operators.
223    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
224
225    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
226    // a signed/unsigned value of type i[2*N], and return the full value as
227    // two results, each of type iN.
228    SMUL_LOHI, UMUL_LOHI,
229
230    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
231    // remainder result.
232    SDIVREM, UDIVREM,
233
234    // CARRY_FALSE - This node is used when folding other nodes,
235    // like ADDC/SUBC, which indicate the carry result is always false.
236    CARRY_FALSE,
237
238    // Carry-setting nodes for multiple precision addition and subtraction.
239    // These nodes take two operands of the same value type, and produce two
240    // results.  The first result is the normal add or sub result, the second
241    // result is the carry flag result.
242    ADDC, SUBC,
243
244    // Carry-using nodes for multiple precision addition and subtraction.  These
245    // nodes take three operands: The first two are the normal lhs and rhs to
246    // the add or sub, and the third is the input carry flag.  These nodes
247    // produce two results; the normal result of the add or sub, and the output
248    // carry flag.  These nodes both read and write a carry flag to allow them
249    // to them to be chained together for add and sub of arbitrarily large
250    // values.
251    ADDE, SUBE,
252
253    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
254    // These nodes take two operands: the normal LHS and RHS to the add. They
255    // produce two results: the normal result of the add, and a boolean that
256    // indicates if an overflow occured (*not* a flag, because it may be stored
257    // to memory, etc.).  If the type of the boolean is not i1 then the high
258    // bits conform to getBooleanContents.
259    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
260    SADDO, UADDO,
261
262    // Simple binary floating point operators.
263    FADD, FSUB, FMUL, FDIV, FREM,
264
265    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
266    // DAG node does not require that X and Y have the same type, just that they
267    // are both floating point.  X and the result must have the same type.
268    // FCOPYSIGN(f32, f64) is allowed.
269    FCOPYSIGN,
270
271    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
272    // value as an integer 0/1 value.
273    FGETSIGN,
274
275    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
276    /// with the specified, possibly variable, elements.  The number of elements
277    /// is required to be a power of two.
278    BUILD_VECTOR,
279
280    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
281    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
282    /// element type then VAL is truncated before replacement.
283    INSERT_VECTOR_ELT,
284
285    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
286    /// identified by the (potentially variable) element number IDX.
287    EXTRACT_VECTOR_ELT,
288
289    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
290    /// vector type with the same length and element type, this produces a
291    /// concatenated vector result value, with length equal to the sum of the
292    /// lengths of the input vectors.
293    CONCAT_VECTORS,
294
295    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
296    /// vector value) starting with the (potentially variable) element number
297    /// IDX, which must be a multiple of the result vector length.
298    EXTRACT_SUBVECTOR,
299
300    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
301    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
302    /// (maybe of an illegal datatype) or undef that indicate which value each
303    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
304    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
305    /// that the indices must be constants and are in terms of the element size
306    /// of VEC1/VEC2, not in terms of bytes.
307    VECTOR_SHUFFLE,
308
309    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
310    /// scalar value into element 0 of the resultant vector type.  The top
311    /// elements 1 to N-1 of the N-element vector are undefined.
312    SCALAR_TO_VECTOR,
313
314    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
315    // This node takes a superreg and a constant sub-register index as operands.
316    // Note sub-register indices must be increasing. That is, if the
317    // sub-register index of a 8-bit sub-register is N, then the index for a
318    // 16-bit sub-register must be at least N+1.
319    EXTRACT_SUBREG,
320
321    // INSERT_SUBREG - This node is used to insert a sub-register value.
322    // This node takes a superreg, a subreg value, and a constant sub-register
323    // index as operands.
324    INSERT_SUBREG,
325
326    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
327    // an unsigned/signed value of type i[2*N], then return the top part.
328    MULHU, MULHS,
329
330    // Bitwise operators - logical and, logical or, logical xor, shift left,
331    // shift right algebraic (shift in sign bits), shift right logical (shift in
332    // zeroes), rotate left, rotate right, and byteswap.
333    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
334
335    // Counting operators
336    CTTZ, CTLZ, CTPOP,
337
338    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
339    // i1 then the high bits must conform to getBooleanContents.
340    SELECT,
341
342    // Select with condition operator - This selects between a true value and
343    // a false value (ops #2 and #3) based on the boolean result of comparing
344    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
345    // condition code in op #4, a CondCodeSDNode.
346    SELECT_CC,
347
348    // SetCC operator - This evaluates to a true value iff the condition is
349    // true.  If the result value type is not i1 then the high bits conform
350    // to getBooleanContents.  The operands to this are the left and right
351    // operands to compare (ops #0, and #1) and the condition code to compare
352    // them with (op #2) as a CondCodeSDNode.
353    SETCC,
354
355    // Vector SetCC operator - This evaluates to a vector of integer elements
356    // with the high bit in each element set to true if the comparison is true
357    // and false if the comparison is false.  All other bits in each element
358    // are undefined.  The operands to this are the left and right operands
359    // to compare (ops #0, and #1) and the condition code to compare them with
360    // (op #2) as a CondCodeSDNode.
361    VSETCC,
362
363    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
364    // integer shift operations, just like ADD/SUB_PARTS.  The operation
365    // ordering is:
366    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
367    SHL_PARTS, SRA_PARTS, SRL_PARTS,
368
369    // Conversion operators.  These are all single input single output
370    // operations.  For all of these, the result type must be strictly
371    // wider or narrower (depending on the operation) than the source
372    // type.
373
374    // SIGN_EXTEND - Used for integer types, replicating the sign bit
375    // into new bits.
376    SIGN_EXTEND,
377
378    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
379    ZERO_EXTEND,
380
381    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
382    ANY_EXTEND,
383
384    // TRUNCATE - Completely drop the high bits.
385    TRUNCATE,
386
387    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
388    // depends on the first letter) to floating point.
389    SINT_TO_FP,
390    UINT_TO_FP,
391
392    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
393    // sign extend a small value in a large integer register (e.g. sign
394    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
395    // with the 7th bit).  The size of the smaller type is indicated by the 1th
396    // operand, a ValueType node.
397    SIGN_EXTEND_INREG,
398
399    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
400    /// integer.
401    FP_TO_SINT,
402    FP_TO_UINT,
403
404    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
405    /// down to the precision of the destination VT.  TRUNC is a flag, which is
406    /// always an integer that is zero or one.  If TRUNC is 0, this is a
407    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
408    /// value of Y.
409    ///
410    /// The TRUNC = 1 case is used in cases where we know that the value will
411    /// not be modified by the node, because Y is not using any of the extra
412    /// precision of source type.  This allows certain transformations like
413    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
414    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
415    FP_ROUND,
416
417    // FLT_ROUNDS_ - Returns current rounding mode:
418    // -1 Undefined
419    //  0 Round to 0
420    //  1 Round to nearest
421    //  2 Round to +inf
422    //  3 Round to -inf
423    FLT_ROUNDS_,
424
425    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
426    /// rounds it to a floating point value.  It then promotes it and returns it
427    /// in a register of the same size.  This operation effectively just
428    /// discards excess precision.  The type to round down to is specified by
429    /// the VT operand, a VTSDNode.
430    FP_ROUND_INREG,
431
432    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
433    FP_EXTEND,
434
435    // BIT_CONVERT - Theis operator converts between integer and FP values, as
436    // if one was stored to memory as integer and the other was loaded from the
437    // same address (or equivalently for vector format conversions, etc).  The
438    // source and result are required to have the same bit size (e.g.
439    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
440    // conversions, but that is a noop, deleted by getNode().
441    BIT_CONVERT,
442
443    // CONVERT_RNDSAT - This operator is used to support various conversions
444    // between various types (float, signed, unsigned and vectors of those
445    // types) with rounding and saturation. NOTE: Avoid using this operator as
446    // most target don't support it and the operator might be removed in the
447    // future. It takes the following arguments:
448    //   0) value
449    //   1) dest type (type to convert to)
450    //   2) src type (type to convert from)
451    //   3) rounding imm
452    //   4) saturation imm
453    //   5) ISD::CvtCode indicating the type of conversion to do
454    CONVERT_RNDSAT,
455
456    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
457    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
458    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
459    // point operations. These are inspired by libm.
460    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
461    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
462    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
463
464    // LOAD and STORE have token chains as their first operand, then the same
465    // operands as an LLVM load/store instruction, then an offset node that
466    // is added / subtracted from the base pointer to form the address (for
467    // indexed memory ops).
468    LOAD, STORE,
469
470    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
471    // to a specified boundary.  This node always has two return values: a new
472    // stack pointer value and a chain. The first operand is the token chain,
473    // the second is the number of bytes to allocate, and the third is the
474    // alignment boundary.  The size is guaranteed to be a multiple of the stack
475    // alignment, and the alignment is guaranteed to be bigger than the stack
476    // alignment (if required) or 0 to get standard stack alignment.
477    DYNAMIC_STACKALLOC,
478
479    // Control flow instructions.  These all have token chains.
480
481    // BR - Unconditional branch.  The first operand is the chain
482    // operand, the second is the MBB to branch to.
483    BR,
484
485    // BRIND - Indirect branch.  The first operand is the chain, the second
486    // is the value to branch to, which must be of the same type as the target's
487    // pointer type.
488    BRIND,
489
490    // BR_JT - Jumptable branch. The first operand is the chain, the second
491    // is the jumptable index, the last one is the jumptable entry index.
492    BR_JT,
493
494    // BRCOND - Conditional branch.  The first operand is the chain, the
495    // second is the condition, the third is the block to branch to if the
496    // condition is true.  If the type of the condition is not i1, then the
497    // high bits must conform to getBooleanContents.
498    BRCOND,
499
500    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
501    // that the condition is represented as condition code, and two nodes to
502    // compare, rather than as a combined SetCC node.  The operands in order are
503    // chain, cc, lhs, rhs, block to branch to if condition is true.
504    BR_CC,
505
506    // RET - Return from function.  The first operand is the chain,
507    // and any subsequent operands are pairs of return value and return value
508    // attributes (see CALL for description of attributes) for the function.
509    // This operation can have variable number of operands.
510    RET,
511
512    // INLINEASM - Represents an inline asm block.  This node always has two
513    // return values: a chain and a flag result.  The inputs are as follows:
514    //   Operand #0   : Input chain.
515    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
516    //   Operand #2n+2: A RegisterNode.
517    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
518    //   Operand #last: Optional, an incoming flag.
519    INLINEASM,
520
521    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
522    // locations needed for debug and exception handling tables.  These nodes
523    // take a chain as input and return a chain.
524    DBG_LABEL,
525    EH_LABEL,
526
527    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
528    // local variable declarations for debugging information. First operand is
529    // a chain, while the next two operands are first two arguments (address
530    // and variable) of a llvm.dbg.declare instruction.
531    DECLARE,
532
533    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
534    // value, the same type as the pointer type for the system, and an output
535    // chain.
536    STACKSAVE,
537
538    // STACKRESTORE has two operands, an input chain and a pointer to restore to
539    // it returns an output chain.
540    STACKRESTORE,
541
542    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
543    // a call sequence, and carry arbitrary information that target might want
544    // to know.  The first operand is a chain, the rest are specified by the
545    // target and not touched by the DAG optimizers.
546    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
547    CALLSEQ_START,  // Beginning of a call sequence
548    CALLSEQ_END,    // End of a call sequence
549
550    // VAARG - VAARG has three operands: an input chain, a pointer, and a
551    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
552    VAARG,
553
554    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
555    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
556    // source.
557    VACOPY,
558
559    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
560    // pointer, and a SRCVALUE.
561    VAEND, VASTART,
562
563    // SRCVALUE - This is a node type that holds a Value* that is used to
564    // make reference to a value in the LLVM IR.
565    SRCVALUE,
566
567    // MEMOPERAND - This is a node that contains a MachineMemOperand which
568    // records information about a memory reference. This is used to make
569    // AliasAnalysis queries from the backend.
570    MEMOPERAND,
571
572    // PCMARKER - This corresponds to the pcmarker intrinsic.
573    PCMARKER,
574
575    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
576    // The only operand is a chain and a value and a chain are produced.  The
577    // value is the contents of the architecture specific cycle counter like
578    // register (or other high accuracy low latency clock source)
579    READCYCLECOUNTER,
580
581    // HANDLENODE node - Used as a handle for various purposes.
582    HANDLENODE,
583
584    // DBG_STOPPOINT - This node is used to represent a source location for
585    // debug info.  It takes token chain as input, and carries a line number,
586    // column number, and a pointer to a CompileUnitDesc object identifying
587    // the containing compilation unit.  It produces a token chain as output.
588    DBG_STOPPOINT,
589
590    // DEBUG_LOC - This node is used to represent source line information
591    // embedded in the code.  It takes a token chain as input, then a line
592    // number, then a column then a file id (provided by MachineModuleInfo.) It
593    // produces a token chain as output.
594    DEBUG_LOC,
595
596    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
597    // It takes as input a token chain, the pointer to the trampoline,
598    // the pointer to the nested function, the pointer to pass for the
599    // 'nest' parameter, a SRCVALUE for the trampoline and another for
600    // the nested function (allowing targets to access the original
601    // Function*).  It produces the result of the intrinsic and a token
602    // chain as output.
603    TRAMPOLINE,
604
605    // TRAP - Trapping instruction
606    TRAP,
607
608    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
609    // their first operand. The other operands are the address to prefetch,
610    // read / write specifier, and locality specifier.
611    PREFETCH,
612
613    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
614    //                       store-store, device)
615    // This corresponds to the memory.barrier intrinsic.
616    // it takes an input chain, 4 operands to specify the type of barrier, an
617    // operand specifying if the barrier applies to device and uncached memory
618    // and produces an output chain.
619    MEMBARRIER,
620
621    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
622    // this corresponds to the atomic.lcs intrinsic.
623    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
624    // the return is always the original value in *ptr
625    ATOMIC_CMP_SWAP_8,
626    ATOMIC_CMP_SWAP_16,
627    ATOMIC_CMP_SWAP_32,
628    ATOMIC_CMP_SWAP_64,
629
630    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
631    // this corresponds to the atomic.swap intrinsic.
632    // amt is stored to *ptr atomically.
633    // the return is always the original value in *ptr
634    ATOMIC_SWAP_8,
635    ATOMIC_SWAP_16,
636    ATOMIC_SWAP_32,
637    ATOMIC_SWAP_64,
638
639    // Val, OUTCHAIN = ATOMIC_L[OpName]S(INCHAIN, ptr, amt)
640    // this corresponds to the atomic.[OpName] intrinsic.
641    // op(*ptr, amt) is stored to *ptr atomically.
642    // the return is always the original value in *ptr
643    ATOMIC_LOAD_ADD_8,
644    ATOMIC_LOAD_SUB_8,
645    ATOMIC_LOAD_AND_8,
646    ATOMIC_LOAD_OR_8,
647    ATOMIC_LOAD_XOR_8,
648    ATOMIC_LOAD_NAND_8,
649    ATOMIC_LOAD_MIN_8,
650    ATOMIC_LOAD_MAX_8,
651    ATOMIC_LOAD_UMIN_8,
652    ATOMIC_LOAD_UMAX_8,
653    ATOMIC_LOAD_ADD_16,
654    ATOMIC_LOAD_SUB_16,
655    ATOMIC_LOAD_AND_16,
656    ATOMIC_LOAD_OR_16,
657    ATOMIC_LOAD_XOR_16,
658    ATOMIC_LOAD_NAND_16,
659    ATOMIC_LOAD_MIN_16,
660    ATOMIC_LOAD_MAX_16,
661    ATOMIC_LOAD_UMIN_16,
662    ATOMIC_LOAD_UMAX_16,
663    ATOMIC_LOAD_ADD_32,
664    ATOMIC_LOAD_SUB_32,
665    ATOMIC_LOAD_AND_32,
666    ATOMIC_LOAD_OR_32,
667    ATOMIC_LOAD_XOR_32,
668    ATOMIC_LOAD_NAND_32,
669    ATOMIC_LOAD_MIN_32,
670    ATOMIC_LOAD_MAX_32,
671    ATOMIC_LOAD_UMIN_32,
672    ATOMIC_LOAD_UMAX_32,
673    ATOMIC_LOAD_ADD_64,
674    ATOMIC_LOAD_SUB_64,
675    ATOMIC_LOAD_AND_64,
676    ATOMIC_LOAD_OR_64,
677    ATOMIC_LOAD_XOR_64,
678    ATOMIC_LOAD_NAND_64,
679    ATOMIC_LOAD_MIN_64,
680    ATOMIC_LOAD_MAX_64,
681    ATOMIC_LOAD_UMIN_64,
682    ATOMIC_LOAD_UMAX_64,
683
684    // BUILTIN_OP_END - This must be the last enum value in this list.
685    BUILTIN_OP_END
686  };
687
688  /// Node predicates
689
690  /// isBuildVectorAllOnes - Return true if the specified node is a
691  /// BUILD_VECTOR where all of the elements are ~0 or undef.
692  bool isBuildVectorAllOnes(const SDNode *N);
693
694  /// isBuildVectorAllZeros - Return true if the specified node is a
695  /// BUILD_VECTOR where all of the elements are 0 or undef.
696  bool isBuildVectorAllZeros(const SDNode *N);
697
698  /// isScalarToVector - Return true if the specified node is a
699  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
700  /// element is not an undef.
701  bool isScalarToVector(const SDNode *N);
702
703  /// isDebugLabel - Return true if the specified node represents a debug
704  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
705  bool isDebugLabel(const SDNode *N);
706
707  //===--------------------------------------------------------------------===//
708  /// MemIndexedMode enum - This enum defines the load / store indexed
709  /// addressing modes.
710  ///
711  /// UNINDEXED    "Normal" load / store. The effective address is already
712  ///              computed and is available in the base pointer. The offset
713  ///              operand is always undefined. In addition to producing a
714  ///              chain, an unindexed load produces one value (result of the
715  ///              load); an unindexed store does not produce a value.
716  ///
717  /// PRE_INC      Similar to the unindexed mode where the effective address is
718  /// PRE_DEC      the value of the base pointer add / subtract the offset.
719  ///              It considers the computation as being folded into the load /
720  ///              store operation (i.e. the load / store does the address
721  ///              computation as well as performing the memory transaction).
722  ///              The base operand is always undefined. In addition to
723  ///              producing a chain, pre-indexed load produces two values
724  ///              (result of the load and the result of the address
725  ///              computation); a pre-indexed store produces one value (result
726  ///              of the address computation).
727  ///
728  /// POST_INC     The effective address is the value of the base pointer. The
729  /// POST_DEC     value of the offset operand is then added to / subtracted
730  ///              from the base after memory transaction. In addition to
731  ///              producing a chain, post-indexed load produces two values
732  ///              (the result of the load and the result of the base +/- offset
733  ///              computation); a post-indexed store produces one value (the
734  ///              the result of the base +/- offset computation).
735  ///
736  enum MemIndexedMode {
737    UNINDEXED = 0,
738    PRE_INC,
739    PRE_DEC,
740    POST_INC,
741    POST_DEC,
742    LAST_INDEXED_MODE
743  };
744
745  //===--------------------------------------------------------------------===//
746  /// LoadExtType enum - This enum defines the three variants of LOADEXT
747  /// (load with extension).
748  ///
749  /// SEXTLOAD loads the integer operand and sign extends it to a larger
750  ///          integer result type.
751  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
752  ///          integer result type.
753  /// EXTLOAD  is used for three things: floating point extending loads,
754  ///          integer extending loads [the top bits are undefined], and vector
755  ///          extending loads [load into low elt].
756  ///
757  enum LoadExtType {
758    NON_EXTLOAD = 0,
759    EXTLOAD,
760    SEXTLOAD,
761    ZEXTLOAD,
762    LAST_LOADEXT_TYPE
763  };
764
765  //===--------------------------------------------------------------------===//
766  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
767  /// below work out, when considering SETFALSE (something that never exists
768  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
769  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
770  /// to.  If the "N" column is 1, the result of the comparison is undefined if
771  /// the input is a NAN.
772  ///
773  /// All of these (except for the 'always folded ops') should be handled for
774  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
775  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
776  ///
777  /// Note that these are laid out in a specific order to allow bit-twiddling
778  /// to transform conditions.
779  enum CondCode {
780    // Opcode          N U L G E       Intuitive operation
781    SETFALSE,      //    0 0 0 0       Always false (always folded)
782    SETOEQ,        //    0 0 0 1       True if ordered and equal
783    SETOGT,        //    0 0 1 0       True if ordered and greater than
784    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
785    SETOLT,        //    0 1 0 0       True if ordered and less than
786    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
787    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
788    SETO,          //    0 1 1 1       True if ordered (no nans)
789    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
790    SETUEQ,        //    1 0 0 1       True if unordered or equal
791    SETUGT,        //    1 0 1 0       True if unordered or greater than
792    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
793    SETULT,        //    1 1 0 0       True if unordered or less than
794    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
795    SETUNE,        //    1 1 1 0       True if unordered or not equal
796    SETTRUE,       //    1 1 1 1       Always true (always folded)
797    // Don't care operations: undefined if the input is a nan.
798    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
799    SETEQ,         //  1 X 0 0 1       True if equal
800    SETGT,         //  1 X 0 1 0       True if greater than
801    SETGE,         //  1 X 0 1 1       True if greater than or equal
802    SETLT,         //  1 X 1 0 0       True if less than
803    SETLE,         //  1 X 1 0 1       True if less than or equal
804    SETNE,         //  1 X 1 1 0       True if not equal
805    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
806
807    SETCC_INVALID       // Marker value.
808  };
809
810  /// isSignedIntSetCC - Return true if this is a setcc instruction that
811  /// performs a signed comparison when used with integer operands.
812  inline bool isSignedIntSetCC(CondCode Code) {
813    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
814  }
815
816  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
817  /// performs an unsigned comparison when used with integer operands.
818  inline bool isUnsignedIntSetCC(CondCode Code) {
819    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
820  }
821
822  /// isTrueWhenEqual - Return true if the specified condition returns true if
823  /// the two operands to the condition are equal.  Note that if one of the two
824  /// operands is a NaN, this value is meaningless.
825  inline bool isTrueWhenEqual(CondCode Cond) {
826    return ((int)Cond & 1) != 0;
827  }
828
829  /// getUnorderedFlavor - This function returns 0 if the condition is always
830  /// false if an operand is a NaN, 1 if the condition is always true if the
831  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
832  /// NaN.
833  inline unsigned getUnorderedFlavor(CondCode Cond) {
834    return ((int)Cond >> 3) & 3;
835  }
836
837  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
838  /// 'op' is a valid SetCC operation.
839  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
840
841  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
842  /// when given the operation for (X op Y).
843  CondCode getSetCCSwappedOperands(CondCode Operation);
844
845  /// getSetCCOrOperation - Return the result of a logical OR between different
846  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
847  /// function returns SETCC_INVALID if it is not possible to represent the
848  /// resultant comparison.
849  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
850
851  /// getSetCCAndOperation - Return the result of a logical AND between
852  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
853  /// function returns SETCC_INVALID if it is not possible to represent the
854  /// resultant comparison.
855  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
856
857  //===--------------------------------------------------------------------===//
858  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
859  /// supports.
860  enum CvtCode {
861    CVT_FF,     // Float from Float
862    CVT_FS,     // Float from Signed
863    CVT_FU,     // Float from Unsigned
864    CVT_SF,     // Signed from Float
865    CVT_UF,     // Unsigned from Float
866    CVT_SS,     // Signed from Signed
867    CVT_SU,     // Signed from Unsigned
868    CVT_US,     // Unsigned from Signed
869    CVT_UU,     // Unsigned from Unsigned
870    CVT_INVALID // Marker - Invalid opcode
871  };
872}  // end llvm::ISD namespace
873
874
875//===----------------------------------------------------------------------===//
876/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
877/// values as the result of a computation.  Many nodes return multiple values,
878/// from loads (which define a token and a return value) to ADDC (which returns
879/// a result and a carry value), to calls (which may return an arbitrary number
880/// of values).
881///
882/// As such, each use of a SelectionDAG computation must indicate the node that
883/// computes it as well as which return value to use from that node.  This pair
884/// of information is represented with the SDValue value type.
885///
886class SDValue {
887  SDNode *Node;       // The node defining the value we are using.
888  unsigned ResNo;     // Which return value of the node we are using.
889public:
890  SDValue() : Node(0), ResNo(0) {}
891  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
892
893  /// get the index which selects a specific result in the SDNode
894  unsigned getResNo() const { return ResNo; }
895
896  /// get the SDNode which holds the desired result
897  SDNode *getNode() const { return Node; }
898
899  /// set the SDNode
900  void setNode(SDNode *N) { Node = N; }
901
902  bool operator==(const SDValue &O) const {
903    return Node == O.Node && ResNo == O.ResNo;
904  }
905  bool operator!=(const SDValue &O) const {
906    return !operator==(O);
907  }
908  bool operator<(const SDValue &O) const {
909    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
910  }
911
912  SDValue getValue(unsigned R) const {
913    return SDValue(Node, R);
914  }
915
916  // isOperandOf - Return true if this node is an operand of N.
917  bool isOperandOf(SDNode *N) const;
918
919  /// getValueType - Return the ValueType of the referenced return value.
920  ///
921  inline MVT getValueType() const;
922
923  /// getValueSizeInBits - Returns the size of the value in bits.
924  ///
925  unsigned getValueSizeInBits() const {
926    return getValueType().getSizeInBits();
927  }
928
929  // Forwarding methods - These forward to the corresponding methods in SDNode.
930  inline unsigned getOpcode() const;
931  inline unsigned getNumOperands() const;
932  inline const SDValue &getOperand(unsigned i) const;
933  inline uint64_t getConstantOperandVal(unsigned i) const;
934  inline bool isTargetOpcode() const;
935  inline bool isMachineOpcode() const;
936  inline unsigned getMachineOpcode() const;
937
938
939  /// reachesChainWithoutSideEffects - Return true if this operand (which must
940  /// be a chain) reaches the specified operand without crossing any
941  /// side-effecting instructions.  In practice, this looks through token
942  /// factors and non-volatile loads.  In order to remain efficient, this only
943  /// looks a couple of nodes in, it does not do an exhaustive search.
944  bool reachesChainWithoutSideEffects(SDValue Dest,
945                                      unsigned Depth = 2) const;
946
947  /// use_empty - Return true if there are no nodes using value ResNo
948  /// of Node.
949  ///
950  inline bool use_empty() const;
951
952  /// hasOneUse - Return true if there is exactly one node using value
953  /// ResNo of Node.
954  ///
955  inline bool hasOneUse() const;
956};
957
958
959template<> struct DenseMapInfo<SDValue> {
960  static inline SDValue getEmptyKey() {
961    return SDValue((SDNode*)-1, -1U);
962  }
963  static inline SDValue getTombstoneKey() {
964    return SDValue((SDNode*)-1, 0);
965  }
966  static unsigned getHashValue(const SDValue &Val) {
967    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
968            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
969  }
970  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
971    return LHS == RHS;
972  }
973  static bool isPod() { return true; }
974};
975
976/// simplify_type specializations - Allow casting operators to work directly on
977/// SDValues as if they were SDNode*'s.
978template<> struct simplify_type<SDValue> {
979  typedef SDNode* SimpleType;
980  static SimpleType getSimplifiedValue(const SDValue &Val) {
981    return static_cast<SimpleType>(Val.getNode());
982  }
983};
984template<> struct simplify_type<const SDValue> {
985  typedef SDNode* SimpleType;
986  static SimpleType getSimplifiedValue(const SDValue &Val) {
987    return static_cast<SimpleType>(Val.getNode());
988  }
989};
990
991/// SDUse - Represents a use of the SDNode referred by
992/// the SDValue.
993class SDUse {
994  SDValue Operand;
995  /// User - Parent node of this operand.
996  SDNode    *User;
997  /// Prev, next - Pointers to the uses list of the SDNode referred by
998  /// this operand.
999  SDUse **Prev, *Next;
1000public:
1001  friend class SDNode;
1002  SDUse(): Operand(), User(NULL), Prev(NULL), Next(NULL) {}
1003
1004  SDUse(SDNode *val, unsigned resno) :
1005    Operand(val,resno), User(NULL), Prev(NULL), Next(NULL) {}
1006
1007  SDUse& operator= (const SDValue& Op) {
1008      Operand = Op;
1009      Next = NULL;
1010      Prev = NULL;
1011      return *this;
1012  }
1013
1014  SDUse& operator= (const SDUse& Op) {
1015      Operand = Op;
1016      Next = NULL;
1017      Prev = NULL;
1018      return *this;
1019  }
1020
1021  SDUse *getNext() { return Next; }
1022
1023  SDNode *getUser() { return User; }
1024
1025  void setUser(SDNode *p) { User = p; }
1026
1027  operator SDValue() const { return Operand; }
1028
1029  const SDValue& getSDValue() const { return Operand; }
1030
1031  SDValue &getSDValue() { return Operand; }
1032  SDNode *getVal() { return Operand.getNode(); }
1033  SDNode *getVal() const { return Operand.getNode(); } // FIXME: const correct?
1034
1035  bool operator==(const SDValue &O) const {
1036    return Operand == O;
1037  }
1038
1039  bool operator!=(const SDValue &O) const {
1040    return !(Operand == O);
1041  }
1042
1043  bool operator<(const SDValue &O) const {
1044    return Operand < O;
1045  }
1046
1047protected:
1048  void addToList(SDUse **List) {
1049    Next = *List;
1050    if (Next) Next->Prev = &Next;
1051    Prev = List;
1052    *List = this;
1053  }
1054
1055  void removeFromList() {
1056    *Prev = Next;
1057    if (Next) Next->Prev = Prev;
1058  }
1059};
1060
1061
1062/// simplify_type specializations - Allow casting operators to work directly on
1063/// SDValues as if they were SDNode*'s.
1064template<> struct simplify_type<SDUse> {
1065  typedef SDNode* SimpleType;
1066  static SimpleType getSimplifiedValue(const SDUse &Val) {
1067    return static_cast<SimpleType>(Val.getVal());
1068  }
1069};
1070template<> struct simplify_type<const SDUse> {
1071  typedef SDNode* SimpleType;
1072  static SimpleType getSimplifiedValue(const SDUse &Val) {
1073    return static_cast<SimpleType>(Val.getVal());
1074  }
1075};
1076
1077
1078/// SDOperandPtr - A helper SDValue pointer class, that can handle
1079/// arrays of SDUse and arrays of SDValue objects. This is required
1080/// in many places inside the SelectionDAG.
1081///
1082class SDOperandPtr {
1083  const SDValue *ptr; // The pointer to the SDValue object
1084  int object_size;      // The size of the object containg the SDValue
1085public:
1086  SDOperandPtr() : ptr(0), object_size(0) {}
1087
1088  SDOperandPtr(SDUse * use_ptr) {
1089    ptr = &use_ptr->getSDValue();
1090    object_size = (int)sizeof(SDUse);
1091  }
1092
1093  SDOperandPtr(const SDValue * op_ptr) {
1094    ptr = op_ptr;
1095    object_size = (int)sizeof(SDValue);
1096  }
1097
1098  const SDValue operator *() { return *ptr; }
1099  const SDValue *operator ->() { return ptr; }
1100  SDOperandPtr operator ++ () {
1101    ptr = (SDValue*)((char *)ptr + object_size);
1102    return *this;
1103  }
1104
1105  SDOperandPtr operator ++ (int) {
1106    SDOperandPtr tmp = *this;
1107    ptr = (SDValue*)((char *)ptr + object_size);
1108    return tmp;
1109  }
1110
1111  SDValue operator[] (int idx) const {
1112    return *(SDValue*)((char*) ptr + object_size * idx);
1113  }
1114};
1115
1116/// SDNode - Represents one node in the SelectionDAG.
1117///
1118class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1119private:
1120  /// NodeType - The operation that this node performs.
1121  ///
1122  short NodeType;
1123
1124  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1125  /// then they will be delete[]'d when the node is destroyed.
1126  unsigned short OperandsNeedDelete : 1;
1127
1128protected:
1129  /// SubclassData - This member is defined by this class, but is not used for
1130  /// anything.  Subclasses can use it to hold whatever state they find useful.
1131  /// This field is initialized to zero by the ctor.
1132  unsigned short SubclassData : 15;
1133
1134private:
1135  /// NodeId - Unique id per SDNode in the DAG.
1136  int NodeId;
1137
1138  /// OperandList - The values that are used by this operation.
1139  ///
1140  SDUse *OperandList;
1141
1142  /// ValueList - The types of the values this node defines.  SDNode's may
1143  /// define multiple values simultaneously.
1144  const MVT *ValueList;
1145
1146  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1147  unsigned short NumOperands, NumValues;
1148
1149  /// Uses - List of uses for this SDNode.
1150  SDUse *Uses;
1151
1152  /// addUse - add SDUse to the list of uses.
1153  void addUse(SDUse &U) { U.addToList(&Uses); }
1154
1155  // Out-of-line virtual method to give class a home.
1156  virtual void ANCHOR();
1157public:
1158  virtual ~SDNode() {
1159    assert(NumOperands == 0 && "Operand list not cleared before deletion");
1160    NodeType = ISD::DELETED_NODE;
1161  }
1162
1163  //===--------------------------------------------------------------------===//
1164  //  Accessors
1165  //
1166
1167  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1168  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1169  /// are the opcode values in the ISD and <target>ISD namespaces. For
1170  /// post-isel opcodes, see getMachineOpcode.
1171  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1172
1173  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1174  /// <target>ISD namespace).
1175  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1176
1177  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1178  /// corresponding to a MachineInstr opcode.
1179  bool isMachineOpcode() const { return NodeType < 0; }
1180
1181  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1182  /// true. It returns the MachineInstr opcode value that the node's opcode
1183  /// corresponds to.
1184  unsigned getMachineOpcode() const {
1185    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1186    return ~NodeType;
1187  }
1188
1189  /// use_empty - Return true if there are no uses of this node.
1190  ///
1191  bool use_empty() const { return Uses == NULL; }
1192
1193  /// hasOneUse - Return true if there is exactly one use of this node.
1194  ///
1195  bool hasOneUse() const {
1196    return !use_empty() && next(use_begin()) == use_end();
1197  }
1198
1199  /// use_size - Return the number of uses of this node. This method takes
1200  /// time proportional to the number of uses.
1201  ///
1202  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1203
1204  /// getNodeId - Return the unique node id.
1205  ///
1206  int getNodeId() const { return NodeId; }
1207
1208  /// setNodeId - Set unique node id.
1209  void setNodeId(int Id) { NodeId = Id; }
1210
1211  /// use_iterator - This class provides iterator support for SDUse
1212  /// operands that use a specific SDNode.
1213  class use_iterator
1214    : public forward_iterator<SDUse, ptrdiff_t> {
1215    SDUse *Op;
1216    explicit use_iterator(SDUse *op) : Op(op) {
1217    }
1218    friend class SDNode;
1219  public:
1220    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1221    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1222
1223    use_iterator(const use_iterator &I) : Op(I.Op) {}
1224    use_iterator() : Op(0) {}
1225
1226    bool operator==(const use_iterator &x) const {
1227      return Op == x.Op;
1228    }
1229    bool operator!=(const use_iterator &x) const {
1230      return !operator==(x);
1231    }
1232
1233    /// atEnd - return true if this iterator is at the end of uses list.
1234    bool atEnd() const { return Op == 0; }
1235
1236    // Iterator traversal: forward iteration only.
1237    use_iterator &operator++() {          // Preincrement
1238      assert(Op && "Cannot increment end iterator!");
1239      Op = Op->getNext();
1240      return *this;
1241    }
1242
1243    use_iterator operator++(int) {        // Postincrement
1244      use_iterator tmp = *this; ++*this; return tmp;
1245    }
1246
1247    /// Retrieve a pointer to the current user node.
1248    SDNode *operator*() const {
1249      assert(Op && "Cannot dereference end iterator!");
1250      return Op->getUser();
1251    }
1252
1253    SDNode *operator->() const { return operator*(); }
1254
1255    SDUse &getUse() const { return *Op; }
1256
1257    /// getOperandNo - Retrieve the operand # of this use in its user.
1258    ///
1259    unsigned getOperandNo() const {
1260      assert(Op && "Cannot dereference end iterator!");
1261      return (unsigned)(Op - Op->getUser()->OperandList);
1262    }
1263  };
1264
1265  /// use_begin/use_end - Provide iteration support to walk over all uses
1266  /// of an SDNode.
1267
1268  use_iterator use_begin() const {
1269    return use_iterator(Uses);
1270  }
1271
1272  static use_iterator use_end() { return use_iterator(0); }
1273
1274
1275  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1276  /// indicated value.  This method ignores uses of other values defined by this
1277  /// operation.
1278  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1279
1280  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1281  /// value. This method ignores uses of other values defined by this operation.
1282  bool hasAnyUseOfValue(unsigned Value) const;
1283
1284  /// isOnlyUserOf - Return true if this node is the only use of N.
1285  ///
1286  bool isOnlyUserOf(SDNode *N) const;
1287
1288  /// isOperandOf - Return true if this node is an operand of N.
1289  ///
1290  bool isOperandOf(SDNode *N) const;
1291
1292  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1293  /// node is either an operand of N or it can be reached by recursively
1294  /// traversing up the operands.
1295  /// NOTE: this is an expensive method. Use it carefully.
1296  bool isPredecessorOf(SDNode *N) const;
1297
1298  /// getNumOperands - Return the number of values used by this operation.
1299  ///
1300  unsigned getNumOperands() const { return NumOperands; }
1301
1302  /// getConstantOperandVal - Helper method returns the integer value of a
1303  /// ConstantSDNode operand.
1304  uint64_t getConstantOperandVal(unsigned Num) const;
1305
1306  const SDValue &getOperand(unsigned Num) const {
1307    assert(Num < NumOperands && "Invalid child # of SDNode!");
1308    return OperandList[Num].getSDValue();
1309  }
1310
1311  typedef SDUse* op_iterator;
1312  op_iterator op_begin() const { return OperandList; }
1313  op_iterator op_end() const { return OperandList+NumOperands; }
1314
1315
1316  SDVTList getVTList() const {
1317    SDVTList X = { ValueList, NumValues };
1318    return X;
1319  };
1320
1321  /// getFlaggedNode - If this node has a flag operand, return the node
1322  /// to which the flag operand points. Otherwise return NULL.
1323  SDNode *getFlaggedNode() const {
1324    if (getNumOperands() != 0 &&
1325        getOperand(getNumOperands()-1).getValueType() == MVT::Flag)
1326      return getOperand(getNumOperands()-1).getNode();
1327    return 0;
1328  }
1329
1330  /// getNumValues - Return the number of values defined/returned by this
1331  /// operator.
1332  ///
1333  unsigned getNumValues() const { return NumValues; }
1334
1335  /// getValueType - Return the type of a specified result.
1336  ///
1337  MVT getValueType(unsigned ResNo) const {
1338    assert(ResNo < NumValues && "Illegal result number!");
1339    return ValueList[ResNo];
1340  }
1341
1342  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1343  ///
1344  unsigned getValueSizeInBits(unsigned ResNo) const {
1345    return getValueType(ResNo).getSizeInBits();
1346  }
1347
1348  typedef const MVT* value_iterator;
1349  value_iterator value_begin() const { return ValueList; }
1350  value_iterator value_end() const { return ValueList+NumValues; }
1351
1352  /// getOperationName - Return the opcode of this operation for printing.
1353  ///
1354  std::string getOperationName(const SelectionDAG *G = 0) const;
1355  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1356  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1357  void dump() const;
1358  void dump(const SelectionDAG *G) const;
1359
1360  static bool classof(const SDNode *) { return true; }
1361
1362  /// Profile - Gather unique data for the node.
1363  ///
1364  void Profile(FoldingSetNodeID &ID) const;
1365
1366protected:
1367  friend class SelectionDAG;
1368  friend struct ilist_traits<SDNode>;
1369
1370  /// getValueTypeList - Return a pointer to the specified value type.
1371  ///
1372  static const MVT *getValueTypeList(MVT VT);
1373  static SDVTList getSDVTList(MVT VT) {
1374    SDVTList Ret = { getValueTypeList(VT), 1 };
1375    return Ret;
1376  }
1377
1378  SDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps)
1379    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1380      NodeId(-1), Uses(NULL) {
1381    NumOperands = NumOps;
1382    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1383
1384    for (unsigned i = 0; i != NumOps; ++i) {
1385      OperandList[i] = Ops[i];
1386      OperandList[i].setUser(this);
1387      Ops[i].getNode()->addUse(OperandList[i]);
1388    }
1389
1390    ValueList = VTs.VTs;
1391    NumValues = VTs.NumVTs;
1392  }
1393
1394  SDNode(unsigned Opc, SDVTList VTs, const SDUse *Ops, unsigned NumOps)
1395    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1396      NodeId(-1), Uses(NULL) {
1397    OperandsNeedDelete = true;
1398    NumOperands = NumOps;
1399    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1400
1401    for (unsigned i = 0; i != NumOps; ++i) {
1402      OperandList[i] = Ops[i];
1403      OperandList[i].setUser(this);
1404      Ops[i].getVal()->addUse(OperandList[i]);
1405    }
1406
1407    ValueList = VTs.VTs;
1408    NumValues = VTs.NumVTs;
1409  }
1410
1411  /// This constructor adds no operands itself; operands can be
1412  /// set later with InitOperands.
1413  SDNode(unsigned Opc, SDVTList VTs)
1414    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1415      NodeId(-1), Uses(NULL) {
1416    NumOperands = 0;
1417    OperandList = 0;
1418    ValueList = VTs.VTs;
1419    NumValues = VTs.NumVTs;
1420  }
1421
1422  /// InitOperands - Initialize the operands list of this node with the
1423  /// specified values, which are part of the node (thus they don't need to be
1424  /// copied in or allocated).
1425  void InitOperands(SDUse *Ops, unsigned NumOps) {
1426    assert(OperandList == 0 && "Operands already set!");
1427    NumOperands = NumOps;
1428    OperandList = Ops;
1429    Uses = NULL;
1430
1431    for (unsigned i = 0; i != NumOps; ++i) {
1432      OperandList[i].setUser(this);
1433      Ops[i].getVal()->addUse(OperandList[i]);
1434    }
1435  }
1436
1437  /// DropOperands - Release the operands and set this node to have
1438  /// zero operands.
1439  void DropOperands();
1440
1441  void addUser(unsigned i, SDNode *User) {
1442    assert(User->OperandList[i].getUser() && "Node without parent");
1443    addUse(User->OperandList[i]);
1444  }
1445
1446  void removeUser(unsigned i, SDNode *User) {
1447    assert(User->OperandList[i].getUser() && "Node without parent");
1448    SDUse &Op = User->OperandList[i];
1449    Op.removeFromList();
1450  }
1451};
1452
1453
1454// Define inline functions from the SDValue class.
1455
1456inline unsigned SDValue::getOpcode() const {
1457  return Node->getOpcode();
1458}
1459inline MVT SDValue::getValueType() const {
1460  return Node->getValueType(ResNo);
1461}
1462inline unsigned SDValue::getNumOperands() const {
1463  return Node->getNumOperands();
1464}
1465inline const SDValue &SDValue::getOperand(unsigned i) const {
1466  return Node->getOperand(i);
1467}
1468inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1469  return Node->getConstantOperandVal(i);
1470}
1471inline bool SDValue::isTargetOpcode() const {
1472  return Node->isTargetOpcode();
1473}
1474inline bool SDValue::isMachineOpcode() const {
1475  return Node->isMachineOpcode();
1476}
1477inline unsigned SDValue::getMachineOpcode() const {
1478  return Node->getMachineOpcode();
1479}
1480inline bool SDValue::use_empty() const {
1481  return !Node->hasAnyUseOfValue(ResNo);
1482}
1483inline bool SDValue::hasOneUse() const {
1484  return Node->hasNUsesOfValue(1, ResNo);
1485}
1486
1487/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1488/// to allow co-allocation of node operands with the node itself.
1489class UnarySDNode : public SDNode {
1490  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1491  SDUse Op;
1492public:
1493  UnarySDNode(unsigned Opc, SDVTList VTs, SDValue X)
1494    : SDNode(Opc, VTs) {
1495    Op = X;
1496    InitOperands(&Op, 1);
1497  }
1498};
1499
1500/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1501/// to allow co-allocation of node operands with the node itself.
1502class BinarySDNode : public SDNode {
1503  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1504  SDUse Ops[2];
1505public:
1506  BinarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y)
1507    : SDNode(Opc, VTs) {
1508    Ops[0] = X;
1509    Ops[1] = Y;
1510    InitOperands(Ops, 2);
1511  }
1512};
1513
1514/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1515/// to allow co-allocation of node operands with the node itself.
1516class TernarySDNode : public SDNode {
1517  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1518  SDUse Ops[3];
1519public:
1520  TernarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y,
1521                SDValue Z)
1522    : SDNode(Opc, VTs) {
1523    Ops[0] = X;
1524    Ops[1] = Y;
1525    Ops[2] = Z;
1526    InitOperands(Ops, 3);
1527  }
1528};
1529
1530
1531/// HandleSDNode - This class is used to form a handle around another node that
1532/// is persistant and is updated across invocations of replaceAllUsesWith on its
1533/// operand.  This node should be directly created by end-users and not added to
1534/// the AllNodes list.
1535class HandleSDNode : public SDNode {
1536  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1537  SDUse Op;
1538public:
1539  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1540  // fixed.
1541#ifdef __GNUC__
1542  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1543#else
1544  explicit HandleSDNode(SDValue X)
1545#endif
1546    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
1547    Op = X;
1548    InitOperands(&Op, 1);
1549  }
1550  ~HandleSDNode();
1551  const SDValue &getValue() const { return Op.getSDValue(); }
1552};
1553
1554/// Abstact virtual class for operations for memory operations
1555class MemSDNode : public SDNode {
1556  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1557
1558private:
1559  // MemoryVT - VT of in-memory value.
1560  MVT MemoryVT;
1561
1562  //! SrcValue - Memory location for alias analysis.
1563  const Value *SrcValue;
1564
1565  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1566  int SVOffset;
1567
1568  /// Flags - the low bit indicates whether this is a volatile reference;
1569  /// the remainder is a log2 encoding of the alignment in bytes.
1570  unsigned Flags;
1571
1572public:
1573  MemSDNode(unsigned Opc, SDVTList VTs, MVT MemoryVT,
1574            const Value *srcValue, int SVOff,
1575            unsigned alignment, bool isvolatile);
1576
1577  MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps,
1578            MVT MemoryVT, const Value *srcValue, int SVOff,
1579            unsigned alignment, bool isvolatile);
1580
1581  /// Returns alignment and volatility of the memory access
1582  unsigned getAlignment() const { return (1u << (Flags >> 1)) >> 1; }
1583  bool isVolatile() const { return Flags & 1; }
1584
1585  /// Returns the SrcValue and offset that describes the location of the access
1586  const Value *getSrcValue() const { return SrcValue; }
1587  int getSrcValueOffset() const { return SVOffset; }
1588
1589  /// getMemoryVT - Return the type of the in-memory value.
1590  MVT getMemoryVT() const { return MemoryVT; }
1591
1592  /// getMemOperand - Return a MachineMemOperand object describing the memory
1593  /// reference performed by operation.
1594  MachineMemOperand getMemOperand() const;
1595
1596  const SDValue &getChain() const { return getOperand(0); }
1597  const SDValue &getBasePtr() const {
1598    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1599  }
1600
1601  /// getRawFlags - Represent the flags as a bunch of bits.
1602  ///
1603  unsigned getRawFlags() const { return Flags; }
1604
1605  // Methods to support isa and dyn_cast
1606  static bool classof(const MemSDNode *) { return true; }
1607  static bool classof(const SDNode *N) {
1608    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1609    // with either an intrinsic or a target opcode.
1610    return N->getOpcode() == ISD::LOAD                ||
1611           N->getOpcode() == ISD::STORE               ||
1612           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_8   ||
1613           N->getOpcode() == ISD::ATOMIC_SWAP_8       ||
1614           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_8   ||
1615           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_8   ||
1616           N->getOpcode() == ISD::ATOMIC_LOAD_AND_8   ||
1617           N->getOpcode() == ISD::ATOMIC_LOAD_OR_8    ||
1618           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_8   ||
1619           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_8  ||
1620           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_8   ||
1621           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_8   ||
1622           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_8  ||
1623           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_8  ||
1624
1625           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_16  ||
1626           N->getOpcode() == ISD::ATOMIC_SWAP_16      ||
1627           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_16  ||
1628           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_16  ||
1629           N->getOpcode() == ISD::ATOMIC_LOAD_AND_16  ||
1630           N->getOpcode() == ISD::ATOMIC_LOAD_OR_16   ||
1631           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_16  ||
1632           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_16 ||
1633           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_16  ||
1634           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_16  ||
1635           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_16 ||
1636           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_16 ||
1637
1638           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_32  ||
1639           N->getOpcode() == ISD::ATOMIC_SWAP_32      ||
1640           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_32  ||
1641           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_32  ||
1642           N->getOpcode() == ISD::ATOMIC_LOAD_AND_32  ||
1643           N->getOpcode() == ISD::ATOMIC_LOAD_OR_32   ||
1644           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_32  ||
1645           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_32 ||
1646           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_32  ||
1647           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_32  ||
1648           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_32 ||
1649           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_32 ||
1650
1651           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_64  ||
1652           N->getOpcode() == ISD::ATOMIC_SWAP_64      ||
1653           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_64  ||
1654           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_64  ||
1655           N->getOpcode() == ISD::ATOMIC_LOAD_AND_64  ||
1656           N->getOpcode() == ISD::ATOMIC_LOAD_OR_64   ||
1657           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_64  ||
1658           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_64 ||
1659           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_64  ||
1660           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_64  ||
1661           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_64 ||
1662           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_64 ||
1663
1664           N->getOpcode() == ISD::INTRINSIC_W_CHAIN   ||
1665           N->getOpcode() == ISD::INTRINSIC_VOID      ||
1666           N->isTargetOpcode();
1667  }
1668};
1669
1670/// AtomicSDNode - A SDNode reprenting atomic operations.
1671///
1672class AtomicSDNode : public MemSDNode {
1673  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1674  SDUse Ops[4];
1675
1676 public:
1677  // Opc:   opcode for atomic
1678  // VTL:    value type list
1679  // Chain:  memory chain for operaand
1680  // Ptr:    address to update as a SDValue
1681  // Cmp:    compare value
1682  // Swp:    swap value
1683  // SrcVal: address to update as a Value (used for MemOperand)
1684  // Align:  alignment of memory
1685  AtomicSDNode(unsigned Opc, SDVTList VTL, SDValue Chain, SDValue Ptr,
1686               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1687               unsigned Align=0)
1688    : MemSDNode(Opc, VTL, Cmp.getValueType(), SrcVal, /*SVOffset=*/0,
1689                Align, /*isVolatile=*/true) {
1690    Ops[0] = Chain;
1691    Ops[1] = Ptr;
1692    Ops[2] = Cmp;
1693    Ops[3] = Swp;
1694    InitOperands(Ops, 4);
1695  }
1696  AtomicSDNode(unsigned Opc, SDVTList VTL, SDValue Chain, SDValue Ptr,
1697               SDValue Val, const Value* SrcVal, unsigned Align=0)
1698    : MemSDNode(Opc, VTL, Val.getValueType(), SrcVal, /*SVOffset=*/0,
1699                Align, /*isVolatile=*/true) {
1700    Ops[0] = Chain;
1701    Ops[1] = Ptr;
1702    Ops[2] = Val;
1703    InitOperands(Ops, 3);
1704  }
1705
1706  const SDValue &getBasePtr() const { return getOperand(1); }
1707  const SDValue &getVal() const { return getOperand(2); }
1708
1709  bool isCompareAndSwap() const {
1710    unsigned Op = getOpcode();
1711    return Op == ISD::ATOMIC_CMP_SWAP_8 ||
1712           Op == ISD::ATOMIC_CMP_SWAP_16 ||
1713           Op == ISD::ATOMIC_CMP_SWAP_32 ||
1714           Op == ISD::ATOMIC_CMP_SWAP_64;
1715  }
1716
1717  // Methods to support isa and dyn_cast
1718  static bool classof(const AtomicSDNode *) { return true; }
1719  static bool classof(const SDNode *N) {
1720    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP_8   ||
1721           N->getOpcode() == ISD::ATOMIC_SWAP_8       ||
1722           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_8   ||
1723           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_8   ||
1724           N->getOpcode() == ISD::ATOMIC_LOAD_AND_8   ||
1725           N->getOpcode() == ISD::ATOMIC_LOAD_OR_8    ||
1726           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_8   ||
1727           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_8  ||
1728           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_8   ||
1729           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_8   ||
1730           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_8  ||
1731           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_8  ||
1732           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_16  ||
1733           N->getOpcode() == ISD::ATOMIC_SWAP_16      ||
1734           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_16  ||
1735           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_16  ||
1736           N->getOpcode() == ISD::ATOMIC_LOAD_AND_16  ||
1737           N->getOpcode() == ISD::ATOMIC_LOAD_OR_16   ||
1738           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_16  ||
1739           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_16 ||
1740           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_16  ||
1741           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_16  ||
1742           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_16 ||
1743           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_16 ||
1744           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_32  ||
1745           N->getOpcode() == ISD::ATOMIC_SWAP_32      ||
1746           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_32  ||
1747           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_32  ||
1748           N->getOpcode() == ISD::ATOMIC_LOAD_AND_32  ||
1749           N->getOpcode() == ISD::ATOMIC_LOAD_OR_32   ||
1750           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_32  ||
1751           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_32 ||
1752           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_32  ||
1753           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_32  ||
1754           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_32 ||
1755           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_32 ||
1756           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_64  ||
1757           N->getOpcode() == ISD::ATOMIC_SWAP_64      ||
1758           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_64  ||
1759           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_64  ||
1760           N->getOpcode() == ISD::ATOMIC_LOAD_AND_64  ||
1761           N->getOpcode() == ISD::ATOMIC_LOAD_OR_64   ||
1762           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_64  ||
1763           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_64 ||
1764           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_64  ||
1765           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_64  ||
1766           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_64 ||
1767           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_64;
1768  }
1769};
1770
1771/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
1772/// memory and need an associated memory operand.
1773///
1774class MemIntrinsicSDNode : public MemSDNode {
1775  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1776  bool ReadMem;  // Intrinsic reads memory
1777  bool WriteMem; // Intrinsic writes memory
1778public:
1779  MemIntrinsicSDNode(unsigned Opc, SDVTList VTs,
1780                     const SDValue *Ops, unsigned NumOps,
1781                     MVT MemoryVT, const Value *srcValue, int SVO,
1782                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1783    : MemSDNode(Opc, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1784      ReadMem(ReadMem), WriteMem(WriteMem) {
1785  }
1786
1787  bool readMem() const { return ReadMem; }
1788  bool writeMem() const { return WriteMem; }
1789
1790  // Methods to support isa and dyn_cast
1791  static bool classof(const MemIntrinsicSDNode *) { return true; }
1792  static bool classof(const SDNode *N) {
1793    // We lower some target intrinsics to their target opcode
1794    // early a node with a target opcode can be of this class
1795    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1796           N->getOpcode() == ISD::INTRINSIC_VOID ||
1797           N->isTargetOpcode();
1798  }
1799};
1800
1801class ConstantSDNode : public SDNode {
1802  const ConstantInt *Value;
1803  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1804protected:
1805  friend class SelectionDAG;
1806  ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
1807    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1808      Value(val) {
1809  }
1810public:
1811
1812  const ConstantInt *getConstantIntValue() const { return Value; }
1813  const APInt &getAPIntValue() const { return Value->getValue(); }
1814  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1815  int64_t getSExtValue() const { return Value->getSExtValue(); }
1816
1817  bool isNullValue() const { return Value->isNullValue(); }
1818  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1819
1820  static bool classof(const ConstantSDNode *) { return true; }
1821  static bool classof(const SDNode *N) {
1822    return N->getOpcode() == ISD::Constant ||
1823           N->getOpcode() == ISD::TargetConstant;
1824  }
1825};
1826
1827class ConstantFPSDNode : public SDNode {
1828  const ConstantFP *Value;
1829  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1830protected:
1831  friend class SelectionDAG;
1832  ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
1833    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1834             getSDVTList(VT)), Value(val) {
1835  }
1836public:
1837
1838  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1839  const ConstantFP *getConstantFPValue() const { return Value; }
1840
1841  /// isExactlyValue - We don't rely on operator== working on double values, as
1842  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1843  /// As such, this method can be used to do an exact bit-for-bit comparison of
1844  /// two floating point values.
1845
1846  /// We leave the version with the double argument here because it's just so
1847  /// convenient to write "2.0" and the like.  Without this function we'd
1848  /// have to duplicate its logic everywhere it's called.
1849  bool isExactlyValue(double V) const {
1850    bool ignored;
1851    // convert is not supported on this type
1852    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1853      return false;
1854    APFloat Tmp(V);
1855    Tmp.convert(Value->getValueAPF().getSemantics(),
1856                APFloat::rmNearestTiesToEven, &ignored);
1857    return isExactlyValue(Tmp);
1858  }
1859  bool isExactlyValue(const APFloat& V) const;
1860
1861  bool isValueValidForType(MVT VT, const APFloat& Val);
1862
1863  static bool classof(const ConstantFPSDNode *) { return true; }
1864  static bool classof(const SDNode *N) {
1865    return N->getOpcode() == ISD::ConstantFP ||
1866           N->getOpcode() == ISD::TargetConstantFP;
1867  }
1868};
1869
1870class GlobalAddressSDNode : public SDNode {
1871  GlobalValue *TheGlobal;
1872  int64_t Offset;
1873  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1874protected:
1875  friend class SelectionDAG;
1876  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT,
1877                      int64_t o = 0);
1878public:
1879
1880  GlobalValue *getGlobal() const { return TheGlobal; }
1881  int64_t getOffset() const { return Offset; }
1882
1883  static bool classof(const GlobalAddressSDNode *) { return true; }
1884  static bool classof(const SDNode *N) {
1885    return N->getOpcode() == ISD::GlobalAddress ||
1886           N->getOpcode() == ISD::TargetGlobalAddress ||
1887           N->getOpcode() == ISD::GlobalTLSAddress ||
1888           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1889  }
1890};
1891
1892class FrameIndexSDNode : public SDNode {
1893  int FI;
1894  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1895protected:
1896  friend class SelectionDAG;
1897  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1898    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1899      FI(fi) {
1900  }
1901public:
1902
1903  int getIndex() const { return FI; }
1904
1905  static bool classof(const FrameIndexSDNode *) { return true; }
1906  static bool classof(const SDNode *N) {
1907    return N->getOpcode() == ISD::FrameIndex ||
1908           N->getOpcode() == ISD::TargetFrameIndex;
1909  }
1910};
1911
1912class JumpTableSDNode : public SDNode {
1913  int JTI;
1914  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1915protected:
1916  friend class SelectionDAG;
1917  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1918    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1919      JTI(jti) {
1920  }
1921public:
1922
1923  int getIndex() const { return JTI; }
1924
1925  static bool classof(const JumpTableSDNode *) { return true; }
1926  static bool classof(const SDNode *N) {
1927    return N->getOpcode() == ISD::JumpTable ||
1928           N->getOpcode() == ISD::TargetJumpTable;
1929  }
1930};
1931
1932class ConstantPoolSDNode : public SDNode {
1933  union {
1934    Constant *ConstVal;
1935    MachineConstantPoolValue *MachineCPVal;
1936  } Val;
1937  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1938  unsigned Alignment;
1939  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1940protected:
1941  friend class SelectionDAG;
1942  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1943    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1944             getSDVTList(VT)), Offset(o), Alignment(0) {
1945    assert((int)Offset >= 0 && "Offset is too large");
1946    Val.ConstVal = c;
1947  }
1948  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1949    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1950             getSDVTList(VT)), Offset(o), Alignment(Align) {
1951    assert((int)Offset >= 0 && "Offset is too large");
1952    Val.ConstVal = c;
1953  }
1954  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1955                     MVT VT, int o=0)
1956    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1957             getSDVTList(VT)), Offset(o), Alignment(0) {
1958    assert((int)Offset >= 0 && "Offset is too large");
1959    Val.MachineCPVal = v;
1960    Offset |= 1 << (sizeof(unsigned)*8-1);
1961  }
1962  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1963                     MVT VT, int o, unsigned Align)
1964    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1965             getSDVTList(VT)), Offset(o), Alignment(Align) {
1966    assert((int)Offset >= 0 && "Offset is too large");
1967    Val.MachineCPVal = v;
1968    Offset |= 1 << (sizeof(unsigned)*8-1);
1969  }
1970public:
1971
1972  bool isMachineConstantPoolEntry() const {
1973    return (int)Offset < 0;
1974  }
1975
1976  Constant *getConstVal() const {
1977    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1978    return Val.ConstVal;
1979  }
1980
1981  MachineConstantPoolValue *getMachineCPVal() const {
1982    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1983    return Val.MachineCPVal;
1984  }
1985
1986  int getOffset() const {
1987    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1988  }
1989
1990  // Return the alignment of this constant pool object, which is either 0 (for
1991  // default alignment) or log2 of the desired value.
1992  unsigned getAlignment() const { return Alignment; }
1993
1994  const Type *getType() const;
1995
1996  static bool classof(const ConstantPoolSDNode *) { return true; }
1997  static bool classof(const SDNode *N) {
1998    return N->getOpcode() == ISD::ConstantPool ||
1999           N->getOpcode() == ISD::TargetConstantPool;
2000  }
2001};
2002
2003class BasicBlockSDNode : public SDNode {
2004  MachineBasicBlock *MBB;
2005  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2006protected:
2007  friend class SelectionDAG;
2008  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
2009    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
2010  }
2011public:
2012
2013  MachineBasicBlock *getBasicBlock() const { return MBB; }
2014
2015  static bool classof(const BasicBlockSDNode *) { return true; }
2016  static bool classof(const SDNode *N) {
2017    return N->getOpcode() == ISD::BasicBlock;
2018  }
2019};
2020
2021/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
2022/// used when the SelectionDAG needs to make a simple reference to something
2023/// in the LLVM IR representation.
2024///
2025/// Note that this is not used for carrying alias information; that is done
2026/// with MemOperandSDNode, which includes a Value which is required to be a
2027/// pointer, and several other fields specific to memory references.
2028///
2029class SrcValueSDNode : public SDNode {
2030  const Value *V;
2031  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2032protected:
2033  friend class SelectionDAG;
2034  /// Create a SrcValue for a general value.
2035  explicit SrcValueSDNode(const Value *v)
2036    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
2037
2038public:
2039  /// getValue - return the contained Value.
2040  const Value *getValue() const { return V; }
2041
2042  static bool classof(const SrcValueSDNode *) { return true; }
2043  static bool classof(const SDNode *N) {
2044    return N->getOpcode() == ISD::SRCVALUE;
2045  }
2046};
2047
2048
2049/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
2050/// used to represent a reference to memory after ISD::LOAD
2051/// and ISD::STORE have been lowered.
2052///
2053class MemOperandSDNode : public SDNode {
2054  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2055protected:
2056  friend class SelectionDAG;
2057  /// Create a MachineMemOperand node
2058  explicit MemOperandSDNode(const MachineMemOperand &mo)
2059    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
2060
2061public:
2062  /// MO - The contained MachineMemOperand.
2063  const MachineMemOperand MO;
2064
2065  static bool classof(const MemOperandSDNode *) { return true; }
2066  static bool classof(const SDNode *N) {
2067    return N->getOpcode() == ISD::MEMOPERAND;
2068  }
2069};
2070
2071
2072class RegisterSDNode : public SDNode {
2073  unsigned Reg;
2074  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2075protected:
2076  friend class SelectionDAG;
2077  RegisterSDNode(unsigned reg, MVT VT)
2078    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
2079  }
2080public:
2081
2082  unsigned getReg() const { return Reg; }
2083
2084  static bool classof(const RegisterSDNode *) { return true; }
2085  static bool classof(const SDNode *N) {
2086    return N->getOpcode() == ISD::Register;
2087  }
2088};
2089
2090class DbgStopPointSDNode : public SDNode {
2091  SDUse Chain;
2092  unsigned Line;
2093  unsigned Column;
2094  const CompileUnitDesc *CU;
2095  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2096protected:
2097  friend class SelectionDAG;
2098  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2099                     const CompileUnitDesc *cu)
2100    : SDNode(ISD::DBG_STOPPOINT, getSDVTList(MVT::Other)),
2101      Line(l), Column(c), CU(cu) {
2102    Chain = ch;
2103    InitOperands(&Chain, 1);
2104  }
2105public:
2106  unsigned getLine() const { return Line; }
2107  unsigned getColumn() const { return Column; }
2108  const CompileUnitDesc *getCompileUnit() const { return CU; }
2109
2110  static bool classof(const DbgStopPointSDNode *) { return true; }
2111  static bool classof(const SDNode *N) {
2112    return N->getOpcode() == ISD::DBG_STOPPOINT;
2113  }
2114};
2115
2116class LabelSDNode : public SDNode {
2117  SDUse Chain;
2118  unsigned LabelID;
2119  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2120protected:
2121  friend class SelectionDAG;
2122  LabelSDNode(unsigned NodeTy, SDValue ch, unsigned id)
2123    : SDNode(NodeTy, getSDVTList(MVT::Other)), LabelID(id) {
2124    Chain = ch;
2125    InitOperands(&Chain, 1);
2126  }
2127public:
2128  unsigned getLabelID() const { return LabelID; }
2129
2130  static bool classof(const LabelSDNode *) { return true; }
2131  static bool classof(const SDNode *N) {
2132    return N->getOpcode() == ISD::DBG_LABEL ||
2133           N->getOpcode() == ISD::EH_LABEL;
2134  }
2135};
2136
2137class ExternalSymbolSDNode : public SDNode {
2138  const char *Symbol;
2139  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2140protected:
2141  friend class SelectionDAG;
2142  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
2143    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2144             getSDVTList(VT)), Symbol(Sym) {
2145  }
2146public:
2147
2148  const char *getSymbol() const { return Symbol; }
2149
2150  static bool classof(const ExternalSymbolSDNode *) { return true; }
2151  static bool classof(const SDNode *N) {
2152    return N->getOpcode() == ISD::ExternalSymbol ||
2153           N->getOpcode() == ISD::TargetExternalSymbol;
2154  }
2155};
2156
2157class CondCodeSDNode : public SDNode {
2158  ISD::CondCode Condition;
2159  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2160protected:
2161  friend class SelectionDAG;
2162  explicit CondCodeSDNode(ISD::CondCode Cond)
2163    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
2164  }
2165public:
2166
2167  ISD::CondCode get() const { return Condition; }
2168
2169  static bool classof(const CondCodeSDNode *) { return true; }
2170  static bool classof(const SDNode *N) {
2171    return N->getOpcode() == ISD::CONDCODE;
2172  }
2173};
2174
2175/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2176/// future and most targets don't support it.
2177class CvtRndSatSDNode : public SDNode {
2178  ISD::CvtCode CvtCode;
2179  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2180protected:
2181  friend class SelectionDAG;
2182  explicit CvtRndSatSDNode(MVT VT, const SDValue *Ops, unsigned NumOps,
2183                           ISD::CvtCode Code)
2184    : SDNode(ISD::CONVERT_RNDSAT, getSDVTList(VT), Ops, NumOps), CvtCode(Code) {
2185    assert(NumOps == 5 && "wrong number of operations");
2186  }
2187public:
2188  ISD::CvtCode getCvtCode() const { return CvtCode; }
2189
2190  static bool classof(const CvtRndSatSDNode *) { return true; }
2191  static bool classof(const SDNode *N) {
2192    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2193  }
2194};
2195
2196namespace ISD {
2197  struct ArgFlagsTy {
2198  private:
2199    static const uint64_t NoFlagSet      = 0ULL;
2200    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2201    static const uint64_t ZExtOffs       = 0;
2202    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2203    static const uint64_t SExtOffs       = 1;
2204    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2205    static const uint64_t InRegOffs      = 2;
2206    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2207    static const uint64_t SRetOffs       = 3;
2208    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2209    static const uint64_t ByValOffs      = 4;
2210    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2211    static const uint64_t NestOffs       = 5;
2212    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2213    static const uint64_t ByValAlignOffs = 6;
2214    static const uint64_t Split          = 1ULL << 10;
2215    static const uint64_t SplitOffs      = 10;
2216    static const uint64_t OrigAlign      = 0x1FULL<<27;
2217    static const uint64_t OrigAlignOffs  = 27;
2218    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2219    static const uint64_t ByValSizeOffs  = 32;
2220
2221    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2222
2223    uint64_t Flags;
2224  public:
2225    ArgFlagsTy() : Flags(0) { }
2226
2227    bool isZExt()   const { return Flags & ZExt; }
2228    void setZExt()  { Flags |= One << ZExtOffs; }
2229
2230    bool isSExt()   const { return Flags & SExt; }
2231    void setSExt()  { Flags |= One << SExtOffs; }
2232
2233    bool isInReg()  const { return Flags & InReg; }
2234    void setInReg() { Flags |= One << InRegOffs; }
2235
2236    bool isSRet()   const { return Flags & SRet; }
2237    void setSRet()  { Flags |= One << SRetOffs; }
2238
2239    bool isByVal()  const { return Flags & ByVal; }
2240    void setByVal() { Flags |= One << ByValOffs; }
2241
2242    bool isNest()   const { return Flags & Nest; }
2243    void setNest()  { Flags |= One << NestOffs; }
2244
2245    unsigned getByValAlign() const {
2246      return (unsigned)
2247        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2248    }
2249    void setByValAlign(unsigned A) {
2250      Flags = (Flags & ~ByValAlign) |
2251        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2252    }
2253
2254    bool isSplit()   const { return Flags & Split; }
2255    void setSplit()  { Flags |= One << SplitOffs; }
2256
2257    unsigned getOrigAlign() const {
2258      return (unsigned)
2259        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2260    }
2261    void setOrigAlign(unsigned A) {
2262      Flags = (Flags & ~OrigAlign) |
2263        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2264    }
2265
2266    unsigned getByValSize() const {
2267      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2268    }
2269    void setByValSize(unsigned S) {
2270      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2271    }
2272
2273    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2274    std::string getArgFlagsString();
2275
2276    /// getRawBits - Represent the flags as a bunch of bits.
2277    uint64_t getRawBits() const { return Flags; }
2278  };
2279}
2280
2281/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2282class ARG_FLAGSSDNode : public SDNode {
2283  ISD::ArgFlagsTy TheFlags;
2284  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2285protected:
2286  friend class SelectionDAG;
2287  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2288    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
2289  }
2290public:
2291  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2292
2293  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2294  static bool classof(const SDNode *N) {
2295    return N->getOpcode() == ISD::ARG_FLAGS;
2296  }
2297};
2298
2299/// CallSDNode - Node for calls -- ISD::CALL.
2300class CallSDNode : public SDNode {
2301  unsigned CallingConv;
2302  bool IsVarArg;
2303  bool IsTailCall;
2304  // We might eventually want a full-blown Attributes for the result; that
2305  // will expand the size of the representation.  At the moment we only
2306  // need Inreg.
2307  bool Inreg;
2308  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2309protected:
2310  friend class SelectionDAG;
2311  CallSDNode(unsigned cc, bool isvararg, bool istailcall, bool isinreg,
2312             SDVTList VTs, const SDValue *Operands, unsigned numOperands)
2313    : SDNode(ISD::CALL, VTs, Operands, numOperands),
2314      CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
2315      Inreg(isinreg) {}
2316public:
2317  unsigned getCallingConv() const { return CallingConv; }
2318  unsigned isVarArg() const { return IsVarArg; }
2319  unsigned isTailCall() const { return IsTailCall; }
2320  unsigned isInreg() const { return Inreg; }
2321
2322  /// Set this call to not be marked as a tail call. Normally setter
2323  /// methods in SDNodes are unsafe because it breaks the CSE map,
2324  /// but we don't include the tail call flag for calls so it's ok
2325  /// in this case.
2326  void setNotTailCall() { IsTailCall = false; }
2327
2328  SDValue getChain() const { return getOperand(0); }
2329  SDValue getCallee() const { return getOperand(1); }
2330
2331  unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
2332  SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
2333  SDValue getArgFlagsVal(unsigned i) const {
2334    return getOperand(3+2*i);
2335  }
2336  ISD::ArgFlagsTy getArgFlags(unsigned i) const {
2337    return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
2338  }
2339
2340  unsigned getNumRetVals() const { return getNumValues() - 1; }
2341  MVT getRetValType(unsigned i) const { return getValueType(i); }
2342
2343  static bool classof(const CallSDNode *) { return true; }
2344  static bool classof(const SDNode *N) {
2345    return N->getOpcode() == ISD::CALL;
2346  }
2347};
2348
2349/// VTSDNode - This class is used to represent MVT's, which are used
2350/// to parameterize some operations.
2351class VTSDNode : public SDNode {
2352  MVT ValueType;
2353  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2354protected:
2355  friend class SelectionDAG;
2356  explicit VTSDNode(MVT VT)
2357    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
2358  }
2359public:
2360
2361  MVT getVT() const { return ValueType; }
2362
2363  static bool classof(const VTSDNode *) { return true; }
2364  static bool classof(const SDNode *N) {
2365    return N->getOpcode() == ISD::VALUETYPE;
2366  }
2367};
2368
2369/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2370///
2371class LSBaseSDNode : public MemSDNode {
2372protected:
2373  //! Operand array for load and store
2374  /*!
2375    \note Moving this array to the base class captures more
2376    common functionality shared between LoadSDNode and
2377    StoreSDNode
2378   */
2379  SDUse Ops[4];
2380public:
2381  LSBaseSDNode(ISD::NodeType NodeTy, SDValue *Operands, unsigned numOperands,
2382               SDVTList VTs, ISD::MemIndexedMode AM, MVT VT,
2383               const Value *SV, int SVO, unsigned Align, bool Vol)
2384    : MemSDNode(NodeTy, VTs, VT, SV, SVO, Align, Vol) {
2385    SubclassData = AM;
2386    for (unsigned i = 0; i != numOperands; ++i)
2387      Ops[i] = Operands[i];
2388    InitOperands(Ops, numOperands);
2389    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2390    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2391           "Only indexed loads and stores have a non-undef offset operand");
2392  }
2393
2394  const SDValue &getOffset() const {
2395    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2396  }
2397
2398  /// getAddressingMode - Return the addressing mode for this load or store:
2399  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2400  ISD::MemIndexedMode getAddressingMode() const {
2401    return ISD::MemIndexedMode(SubclassData & 7);
2402  }
2403
2404  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2405  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2406
2407  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2408  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2409
2410  static bool classof(const LSBaseSDNode *) { return true; }
2411  static bool classof(const SDNode *N) {
2412    return N->getOpcode() == ISD::LOAD ||
2413           N->getOpcode() == ISD::STORE;
2414  }
2415};
2416
2417/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2418///
2419class LoadSDNode : public LSBaseSDNode {
2420  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2421protected:
2422  friend class SelectionDAG;
2423  LoadSDNode(SDValue *ChainPtrOff, SDVTList VTs,
2424             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2425             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2426    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
2427                   VTs, AM, LVT, SV, O, Align, Vol) {
2428    SubclassData |= (unsigned short)ETy << 3;
2429  }
2430public:
2431
2432  /// getExtensionType - Return whether this is a plain node,
2433  /// or one of the varieties of value-extending loads.
2434  ISD::LoadExtType getExtensionType() const {
2435    return ISD::LoadExtType((SubclassData >> 3) & 3);
2436  }
2437
2438  const SDValue &getBasePtr() const { return getOperand(1); }
2439  const SDValue &getOffset() const { return getOperand(2); }
2440
2441  static bool classof(const LoadSDNode *) { return true; }
2442  static bool classof(const SDNode *N) {
2443    return N->getOpcode() == ISD::LOAD;
2444  }
2445};
2446
2447/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2448///
2449class StoreSDNode : public LSBaseSDNode {
2450  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2451protected:
2452  friend class SelectionDAG;
2453  StoreSDNode(SDValue *ChainValuePtrOff, SDVTList VTs,
2454              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2455              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2456    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
2457                   VTs, AM, SVT, SV, O, Align, Vol) {
2458    SubclassData |= (unsigned short)isTrunc << 3;
2459  }
2460public:
2461
2462  /// isTruncatingStore - Return true if the op does a truncation before store.
2463  /// For integers this is the same as doing a TRUNCATE and storing the result.
2464  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2465  bool isTruncatingStore() const { return (SubclassData >> 3) & 1; }
2466
2467  const SDValue &getValue() const { return getOperand(1); }
2468  const SDValue &getBasePtr() const { return getOperand(2); }
2469  const SDValue &getOffset() const { return getOperand(3); }
2470
2471  static bool classof(const StoreSDNode *) { return true; }
2472  static bool classof(const SDNode *N) {
2473    return N->getOpcode() == ISD::STORE;
2474  }
2475};
2476
2477
2478class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2479  SDNode *Node;
2480  unsigned Operand;
2481
2482  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2483public:
2484  bool operator==(const SDNodeIterator& x) const {
2485    return Operand == x.Operand;
2486  }
2487  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2488
2489  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2490    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2491    Operand = I.Operand;
2492    return *this;
2493  }
2494
2495  pointer operator*() const {
2496    return Node->getOperand(Operand).getNode();
2497  }
2498  pointer operator->() const { return operator*(); }
2499
2500  SDNodeIterator& operator++() {                // Preincrement
2501    ++Operand;
2502    return *this;
2503  }
2504  SDNodeIterator operator++(int) { // Postincrement
2505    SDNodeIterator tmp = *this; ++*this; return tmp;
2506  }
2507
2508  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2509  static SDNodeIterator end  (SDNode *N) {
2510    return SDNodeIterator(N, N->getNumOperands());
2511  }
2512
2513  unsigned getOperand() const { return Operand; }
2514  const SDNode *getNode() const { return Node; }
2515};
2516
2517template <> struct GraphTraits<SDNode*> {
2518  typedef SDNode NodeType;
2519  typedef SDNodeIterator ChildIteratorType;
2520  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2521  static inline ChildIteratorType child_begin(NodeType *N) {
2522    return SDNodeIterator::begin(N);
2523  }
2524  static inline ChildIteratorType child_end(NodeType *N) {
2525    return SDNodeIterator::end(N);
2526  }
2527};
2528
2529/// LargestSDNode - The largest SDNode class.
2530///
2531typedef LoadSDNode LargestSDNode;
2532
2533/// MostAlignedSDNode - The SDNode class with the greatest alignment
2534/// requirement.
2535///
2536typedef ARG_FLAGSSDNode MostAlignedSDNode;
2537
2538namespace ISD {
2539  /// isNormalLoad - Returns true if the specified node is a non-extending
2540  /// and unindexed load.
2541  inline bool isNormalLoad(const SDNode *N) {
2542    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2543    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2544      Ld->getAddressingMode() == ISD::UNINDEXED;
2545  }
2546
2547  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2548  /// load.
2549  inline bool isNON_EXTLoad(const SDNode *N) {
2550    return isa<LoadSDNode>(N) &&
2551      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2552  }
2553
2554  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2555  ///
2556  inline bool isEXTLoad(const SDNode *N) {
2557    return isa<LoadSDNode>(N) &&
2558      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2559  }
2560
2561  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2562  ///
2563  inline bool isSEXTLoad(const SDNode *N) {
2564    return isa<LoadSDNode>(N) &&
2565      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2566  }
2567
2568  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2569  ///
2570  inline bool isZEXTLoad(const SDNode *N) {
2571    return isa<LoadSDNode>(N) &&
2572      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2573  }
2574
2575  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2576  ///
2577  inline bool isUNINDEXEDLoad(const SDNode *N) {
2578    return isa<LoadSDNode>(N) &&
2579      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2580  }
2581
2582  /// isNormalStore - Returns true if the specified node is a non-truncating
2583  /// and unindexed store.
2584  inline bool isNormalStore(const SDNode *N) {
2585    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2586    return St && !St->isTruncatingStore() &&
2587      St->getAddressingMode() == ISD::UNINDEXED;
2588  }
2589
2590  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2591  /// store.
2592  inline bool isNON_TRUNCStore(const SDNode *N) {
2593    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2594  }
2595
2596  /// isTRUNCStore - Returns true if the specified node is a truncating
2597  /// store.
2598  inline bool isTRUNCStore(const SDNode *N) {
2599    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2600  }
2601
2602  /// isUNINDEXEDStore - Returns true if the specified node is an
2603  /// unindexed store.
2604  inline bool isUNINDEXEDStore(const SDNode *N) {
2605    return isa<StoreSDNode>(N) &&
2606      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2607  }
2608}
2609
2610
2611} // end llvm namespace
2612
2613#endif
2614