SelectionDAGNodes.h revision 1867054643c20c3027421ab7711664b4d55fe4c6
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37
38/// ISD namespace - This namespace contains an enum which represents all of the
39/// SelectionDAG node types and value types.
40///
41namespace ISD {
42  //===--------------------------------------------------------------------===//
43  /// ISD::NodeType enum - This enum defines all of the operators valid in a
44  /// SelectionDAG.
45  ///
46  enum NodeType {
47    // EntryToken - This is the marker used to indicate the start of the region.
48    EntryToken,
49
50    // Token factor - This node is takes multiple tokens as input and produces a
51    // single token result.  This is used to represent the fact that the operand
52    // operators are independent of each other.
53    TokenFactor,
54
55    // Various leaf nodes.
56    Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
57    BasicBlock, ExternalSymbol,
58
59    // CopyToReg - This node has chain and child nodes, and an associated
60    // register number.  The instruction selector must guarantee that the value
61    // of the value node is available in the register stored in the RegSDNode
62    // object.
63    CopyToReg,
64
65    // CopyFromReg - This node indicates that the input value is a virtual or
66    // physical register that is defined outside of the scope of this
67    // SelectionDAG.  The register is available from the RegSDNode object.
68    CopyFromReg,
69
70    // ImplicitDef - This node indicates that the specified register is
71    // implicitly defined by some operation (e.g. its a live-in argument).  This
72    // register is indicated in the RegSDNode object.  The only operand to this
73    // is the token chain coming in, the only result is the token chain going
74    // out.
75    ImplicitDef,
76
77    // UNDEF - An undefined node
78    UNDEF,
79
80    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
81    // a Constant, which is required to be operand #1), element of the aggregate
82    // value specified as operand #0.  This is only for use before legalization,
83    // for values that will be broken into multiple registers.
84    EXTRACT_ELEMENT,
85
86    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
87    // two values of the same integer value type, this produces a value twice as
88    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
89    BUILD_PAIR,
90
91
92    // Simple binary arithmetic operators.
93    ADD, SUB, MUL, MULHU, MULHS, SDIV, UDIV, SREM, UREM,
94
95    // Bitwise operators.
96    AND, OR, XOR, SHL, SRA, SRL,
97
98    // Select operator.
99    SELECT,
100
101    // SetCC operator - This evaluates to a boolean (i1) true value if the
102    // condition is true.  These nodes are instances of the
103    // SetCCSDNode class, which contains the condition code as extra
104    // state.
105    SETCC,
106
107    // ADD_PARTS/SUB_PARTS - These operators take two logical operands which are
108    // broken into a multiple pieces each, and return the resulting pieces of
109    // doing an atomic add/sub operation.  This is used to handle add/sub of
110    // expanded types.  The operation ordering is:
111    //       [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS]
112    ADD_PARTS, SUB_PARTS,
113
114    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
115    // integer shift operations, just like ADD/SUB_PARTS.  The operation
116    // ordering is:
117    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
118    SHL_PARTS, SRA_PARTS, SRL_PARTS,
119
120    // Conversion operators.  These are all single input single output
121    // operations.  For all of these, the result type must be strictly
122    // wider or narrower (depending on the operation) than the source
123    // type.
124
125    // SIGN_EXTEND - Used for integer types, replicating the sign bit
126    // into new bits.
127    SIGN_EXTEND,
128
129    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
130    ZERO_EXTEND,
131
132    // TRUNCATE - Completely drop the high bits.
133    TRUNCATE,
134
135    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
136    // depends on the first letter) to floating point.
137    SINT_TO_FP,
138    UINT_TO_FP,
139
140    // SIGN_EXTEND_INREG/ZERO_EXTEND_INREG - These operators atomically performs
141    // a SHL/(SRA|SHL) pair to (sign|zero) extend a small value in a large
142    // integer register (e.g. sign extending the low 8 bits of a 32-bit register
143    // to fill the top 24 bits with the 7th bit).  The size of the smaller type
144    // is indicated by the ExtraValueType in the MVTSDNode for the operator.
145    SIGN_EXTEND_INREG,
146    ZERO_EXTEND_INREG,
147
148    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
149    // integer.
150    FP_TO_SINT,
151    FP_TO_UINT,
152
153    // FP_ROUND - Perform a rounding operation from the current
154    // precision down to the specified precision (currently always 64->32).
155    FP_ROUND,
156
157    // FP_ROUND_INREG - This operator takes a floating point register, and
158    // rounds it to a floating point value.  It then promotes it and returns it
159    // in a register of the same size.  This operation effectively just discards
160    // excess precision.  The type to round down to is specified by the
161    // ExtraValueType in the MVTSDNode (currently always 64->32->64).
162    FP_ROUND_INREG,
163
164    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
165    FP_EXTEND,
166
167    // FNEG, FABS - Perform unary floating point negation and absolute value
168    // operations.
169    FNEG, FABS,
170
171    // Other operators.  LOAD and STORE have token chains as their first
172    // operand, then the same operands as an LLVM load/store instruction.
173    LOAD, STORE,
174
175    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators are instances of the
176    // MVTSDNode.  All of these load a value from memory and extend them to a
177    // larger value (e.g. load a byte into a word register).  All three of these
178    // have two operands, a chain and a pointer to load from.  The extra value
179    // type is the source type being loaded.
180    //
181    // SEXTLOAD loads the integer operand and sign extends it to a larger
182    //          integer result type.
183    // ZEXTLOAD loads the integer operand and zero extends it to a larger
184    //          integer result type.
185    // EXTLOAD  is used for two things: floating point extending loads, and
186    //          integer extending loads where it doesn't matter what the high
187    //          bits are set to.  The code generator is allowed to codegen this
188    //          into whichever operation is more efficient.
189    EXTLOAD, SEXTLOAD, ZEXTLOAD,
190
191    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
192    // value and stores it to memory in one operation.  This can be used for
193    // either integer or floating point operands, and the stored type
194    // represented as the 'extra' value type in the MVTSDNode representing the
195    // operator.  This node has the same three operands as a standard store.
196    TRUNCSTORE,
197
198    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
199    // to a specified boundary.  The first operand is the token chain, the
200    // second is the number of bytes to allocate, and the third is the alignment
201    // boundary.
202    DYNAMIC_STACKALLOC,
203
204    // Control flow instructions.  These all have token chains.
205
206    // BR - Unconditional branch.  The first operand is the chain
207    // operand, the second is the MBB to branch to.
208    BR,
209
210    // BRCOND - Conditional branch.  The first operand is the chain,
211    // the second is the condition, the third is the block to branch
212    // to if the condition is true.
213    BRCOND,
214
215    // RET - Return from function.  The first operand is the chain,
216    // and any subsequent operands are the return values for the
217    // function.  This operation can have variable number of operands.
218    RET,
219
220    // CALL - Call to a function pointer.  The first operand is the chain, the
221    // second is the destination function pointer (a GlobalAddress for a direct
222    // call).  Arguments have already been lowered to explicit DAGs according to
223    // the calling convention in effect here.
224    CALL,
225
226    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
227    // correspond to the operands of the LLVM intrinsic functions.  The only
228    // result is a token chain.  The alignment argument is guaranteed to be a
229    // Constant node.
230    MEMSET,
231    MEMMOVE,
232    MEMCPY,
233
234    // ADJCALLSTACKDOWN/ADJCALLSTACKUP - These operators mark the beginning and
235    // end of a call sequence and indicate how much the stack pointer needs to
236    // be adjusted for that particular call.  The first operand is a chain, the
237    // second is a ConstantSDNode of intptr type.
238    ADJCALLSTACKDOWN,  // Beginning of a call sequence
239    ADJCALLSTACKUP,    // End of a call sequence
240
241    // PCMARKER - This corresponds to the pcmarker intrinsic.
242    PCMARKER,
243
244    // BUILTIN_OP_END - This must be the last enum value in this list.
245    BUILTIN_OP_END,
246  };
247
248  //===--------------------------------------------------------------------===//
249  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
250  /// below work out, when considering SETFALSE (something that never exists
251  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
252  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
253  /// to.  If the "N" column is 1, the result of the comparison is undefined if
254  /// the input is a NAN.
255  ///
256  /// All of these (except for the 'always folded ops') should be handled for
257  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
258  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
259  ///
260  /// Note that these are laid out in a specific order to allow bit-twiddling
261  /// to transform conditions.
262  enum CondCode {
263    // Opcode          N U L G E       Intuitive operation
264    SETFALSE,      //    0 0 0 0       Always false (always folded)
265    SETOEQ,        //    0 0 0 1       True if ordered and equal
266    SETOGT,        //    0 0 1 0       True if ordered and greater than
267    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
268    SETOLT,        //    0 1 0 0       True if ordered and less than
269    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
270    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
271    SETO,          //    0 1 1 1       True if ordered (no nans)
272    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
273    SETUEQ,        //    1 0 0 1       True if unordered or equal
274    SETUGT,        //    1 0 1 0       True if unordered or greater than
275    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
276    SETULT,        //    1 1 0 0       True if unordered or less than
277    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
278    SETUNE,        //    1 1 1 0       True if unordered or not equal
279    SETTRUE,       //    1 1 1 1       Always true (always folded)
280    // Don't care operations: undefined if the input is a nan.
281    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
282    SETEQ,         //  1 X 0 0 1       True if equal
283    SETGT,         //  1 X 0 1 0       True if greater than
284    SETGE,         //  1 X 0 1 1       True if greater than or equal
285    SETLT,         //  1 X 1 0 0       True if less than
286    SETLE,         //  1 X 1 0 1       True if less than or equal
287    SETNE,         //  1 X 1 1 0       True if not equal
288    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
289
290    SETCC_INVALID,      // Marker value.
291  };
292
293  /// isSignedIntSetCC - Return true if this is a setcc instruction that
294  /// performs a signed comparison when used with integer operands.
295  inline bool isSignedIntSetCC(CondCode Code) {
296    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
297  }
298
299  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
300  /// performs an unsigned comparison when used with integer operands.
301  inline bool isUnsignedIntSetCC(CondCode Code) {
302    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
303  }
304
305  /// isTrueWhenEqual - Return true if the specified condition returns true if
306  /// the two operands to the condition are equal.  Note that if one of the two
307  /// operands is a NaN, this value is meaningless.
308  inline bool isTrueWhenEqual(CondCode Cond) {
309    return ((int)Cond & 1) != 0;
310  }
311
312  /// getUnorderedFlavor - This function returns 0 if the condition is always
313  /// false if an operand is a NaN, 1 if the condition is always true if the
314  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
315  /// NaN.
316  inline unsigned getUnorderedFlavor(CondCode Cond) {
317    return ((int)Cond >> 3) & 3;
318  }
319
320  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
321  /// 'op' is a valid SetCC operation.
322  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
323
324  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
325  /// when given the operation for (X op Y).
326  CondCode getSetCCSwappedOperands(CondCode Operation);
327
328  /// getSetCCOrOperation - Return the result of a logical OR between different
329  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
330  /// function returns SETCC_INVALID if it is not possible to represent the
331  /// resultant comparison.
332  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
333
334  /// getSetCCAndOperation - Return the result of a logical AND between
335  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
336  /// function returns SETCC_INVALID if it is not possible to represent the
337  /// resultant comparison.
338  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
339}  // end llvm::ISD namespace
340
341
342//===----------------------------------------------------------------------===//
343/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
344/// values as the result of a computation.  Many nodes return multiple values,
345/// from loads (which define a token and a return value) to ADDC (which returns
346/// a result and a carry value), to calls (which may return an arbitrary number
347/// of values).
348///
349/// As such, each use of a SelectionDAG computation must indicate the node that
350/// computes it as well as which return value to use from that node.  This pair
351/// of information is represented with the SDOperand value type.
352///
353class SDOperand {
354public:
355  SDNode *Val;        // The node defining the value we are using.
356  unsigned ResNo;     // Which return value of the node we are using.
357
358  SDOperand() : Val(0) {}
359  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
360
361  bool operator==(const SDOperand &O) const {
362    return Val == O.Val && ResNo == O.ResNo;
363  }
364  bool operator!=(const SDOperand &O) const {
365    return !operator==(O);
366  }
367  bool operator<(const SDOperand &O) const {
368    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
369  }
370
371  SDOperand getValue(unsigned R) const {
372    return SDOperand(Val, R);
373  }
374
375  /// getValueType - Return the ValueType of the referenced return value.
376  ///
377  inline MVT::ValueType getValueType() const;
378
379  // Forwarding methods - These forward to the corresponding methods in SDNode.
380  inline unsigned getOpcode() const;
381  inline unsigned getNodeDepth() const;
382  inline unsigned getNumOperands() const;
383  inline const SDOperand &getOperand(unsigned i) const;
384
385  /// hasOneUse - Return true if there is exactly one operation using this
386  /// result value of the defining operator.
387  inline bool hasOneUse() const;
388};
389
390
391/// simplify_type specializations - Allow casting operators to work directly on
392/// SDOperands as if they were SDNode*'s.
393template<> struct simplify_type<SDOperand> {
394  typedef SDNode* SimpleType;
395  static SimpleType getSimplifiedValue(const SDOperand &Val) {
396    return static_cast<SimpleType>(Val.Val);
397  }
398};
399template<> struct simplify_type<const SDOperand> {
400  typedef SDNode* SimpleType;
401  static SimpleType getSimplifiedValue(const SDOperand &Val) {
402    return static_cast<SimpleType>(Val.Val);
403  }
404};
405
406
407/// SDNode - Represents one node in the SelectionDAG.
408///
409class SDNode {
410  /// NodeType - The operation that this node performs.
411  ///
412  unsigned short NodeType;
413
414  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
415  /// means that leaves have a depth of 1, things that use only leaves have a
416  /// depth of 2, etc.
417  unsigned short NodeDepth;
418
419  /// Operands - The values that are used by this operation.
420  ///
421  std::vector<SDOperand> Operands;
422
423  /// Values - The types of the values this node defines.  SDNode's may define
424  /// multiple values simultaneously.
425  std::vector<MVT::ValueType> Values;
426
427  /// Uses - These are all of the SDNode's that use a value produced by this
428  /// node.
429  std::vector<SDNode*> Uses;
430public:
431
432  //===--------------------------------------------------------------------===//
433  //  Accessors
434  //
435  unsigned getOpcode()  const { return NodeType; }
436
437  size_t use_size() const { return Uses.size(); }
438  bool use_empty() const { return Uses.empty(); }
439  bool hasOneUse() const { return Uses.size() == 1; }
440
441  /// getNodeDepth - Return the distance from this node to the leaves in the
442  /// graph.  The leaves have a depth of 1.
443  unsigned getNodeDepth() const { return NodeDepth; }
444
445  typedef std::vector<SDNode*>::const_iterator use_iterator;
446  use_iterator use_begin() const { return Uses.begin(); }
447  use_iterator use_end() const { return Uses.end(); }
448
449  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
450  /// indicated value.  This method ignores uses of other values defined by this
451  /// operation.
452  bool hasNUsesOfValue(unsigned NUses, unsigned Value);
453
454  /// getNumOperands - Return the number of values used by this operation.
455  ///
456  unsigned getNumOperands() const { return Operands.size(); }
457
458  const SDOperand &getOperand(unsigned Num) {
459    assert(Num < Operands.size() && "Invalid child # of SDNode!");
460    return Operands[Num];
461  }
462
463  const SDOperand &getOperand(unsigned Num) const {
464    assert(Num < Operands.size() && "Invalid child # of SDNode!");
465    return Operands[Num];
466  }
467
468  /// getNumValues - Return the number of values defined/returned by this
469  /// operator.
470  ///
471  unsigned getNumValues() const { return Values.size(); }
472
473  /// getValueType - Return the type of a specified result.
474  ///
475  MVT::ValueType getValueType(unsigned ResNo) const {
476    assert(ResNo < Values.size() && "Illegal result number!");
477    return Values[ResNo];
478  }
479
480  /// getOperationName - Return the opcode of this operation for printing.
481  ///
482  const char* getOperationName() const;
483  void dump() const;
484
485  static bool classof(const SDNode *) { return true; }
486
487protected:
488  friend class SelectionDAG;
489
490  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
491    Values.reserve(1);
492    Values.push_back(VT);
493  }
494  SDNode(unsigned NT, SDOperand Op)
495    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
496    Operands.reserve(1); Operands.push_back(Op);
497    Op.Val->Uses.push_back(this);
498  }
499  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
500    : NodeType(NT) {
501    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
502      NodeDepth = N1.Val->getNodeDepth()+1;
503    else
504      NodeDepth = N2.Val->getNodeDepth()+1;
505    Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
506    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
507  }
508  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
509    : NodeType(NT) {
510    unsigned ND = N1.Val->getNodeDepth();
511    if (ND < N2.Val->getNodeDepth())
512      ND = N2.Val->getNodeDepth();
513    if (ND < N3.Val->getNodeDepth())
514      ND = N3.Val->getNodeDepth();
515    NodeDepth = ND+1;
516
517    Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
518    Operands.push_back(N3);
519    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
520    N3.Val->Uses.push_back(this);
521  }
522  SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
523    Operands.swap(Nodes);
524    unsigned ND = 0;
525    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
526      Operands[i].Val->Uses.push_back(this);
527      if (ND < Operands[i].Val->getNodeDepth())
528        ND = Operands[i].Val->getNodeDepth();
529    }
530    NodeDepth = ND+1;
531  }
532
533  virtual ~SDNode() {
534    // FIXME: Drop uses.
535  }
536
537  void setValueTypes(MVT::ValueType VT) {
538    Values.reserve(1);
539    Values.push_back(VT);
540  }
541  void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
542    Values.reserve(2);
543    Values.push_back(VT1);
544    Values.push_back(VT2);
545  }
546  /// Note: this method destroys the vector passed in.
547  void setValueTypes(std::vector<MVT::ValueType> &VTs) {
548    std::swap(Values, VTs);
549  }
550
551  void removeUser(SDNode *User) {
552    // Remove this user from the operand's use list.
553    for (unsigned i = Uses.size(); ; --i) {
554      assert(i != 0 && "Didn't find user!");
555      if (Uses[i-1] == User) {
556        Uses.erase(Uses.begin()+i-1);
557        break;
558      }
559    }
560  }
561};
562
563
564// Define inline functions from the SDOperand class.
565
566inline unsigned SDOperand::getOpcode() const {
567  return Val->getOpcode();
568}
569inline unsigned SDOperand::getNodeDepth() const {
570  return Val->getNodeDepth();
571}
572inline MVT::ValueType SDOperand::getValueType() const {
573  return Val->getValueType(ResNo);
574}
575inline unsigned SDOperand::getNumOperands() const {
576  return Val->getNumOperands();
577}
578inline const SDOperand &SDOperand::getOperand(unsigned i) const {
579  return Val->getOperand(i);
580}
581inline bool SDOperand::hasOneUse() const {
582  return Val->hasNUsesOfValue(1, ResNo);
583}
584
585
586class ConstantSDNode : public SDNode {
587  uint64_t Value;
588protected:
589  friend class SelectionDAG;
590  ConstantSDNode(uint64_t val, MVT::ValueType VT)
591    : SDNode(ISD::Constant, VT), Value(val) {
592  }
593public:
594
595  uint64_t getValue() const { return Value; }
596
597  int64_t getSignExtended() const {
598    unsigned Bits = MVT::getSizeInBits(getValueType(0));
599    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
600  }
601
602  bool isNullValue() const { return Value == 0; }
603  bool isAllOnesValue() const {
604    return Value == (1ULL << MVT::getSizeInBits(getValueType(0)))-1;
605  }
606
607  static bool classof(const ConstantSDNode *) { return true; }
608  static bool classof(const SDNode *N) {
609    return N->getOpcode() == ISD::Constant;
610  }
611};
612
613class ConstantFPSDNode : public SDNode {
614  double Value;
615protected:
616  friend class SelectionDAG;
617  ConstantFPSDNode(double val, MVT::ValueType VT)
618    : SDNode(ISD::ConstantFP, VT), Value(val) {
619  }
620public:
621
622  double getValue() const { return Value; }
623
624  /// isExactlyValue - We don't rely on operator== working on double values, as
625  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
626  /// As such, this method can be used to do an exact bit-for-bit comparison of
627  /// two floating point values.
628  bool isExactlyValue(double V) const {
629    union {
630      double V;
631      uint64_t I;
632    } T1;
633    T1.V = Value;
634    union {
635      double V;
636      uint64_t I;
637    } T2;
638    T2.V = V;
639    return T1.I == T2.I;
640  }
641
642  static bool classof(const ConstantFPSDNode *) { return true; }
643  static bool classof(const SDNode *N) {
644    return N->getOpcode() == ISD::ConstantFP;
645  }
646};
647
648class GlobalAddressSDNode : public SDNode {
649  GlobalValue *TheGlobal;
650protected:
651  friend class SelectionDAG;
652  GlobalAddressSDNode(const GlobalValue *GA, MVT::ValueType VT)
653    : SDNode(ISD::GlobalAddress, VT) {
654    TheGlobal = const_cast<GlobalValue*>(GA);
655  }
656public:
657
658  GlobalValue *getGlobal() const { return TheGlobal; }
659
660  static bool classof(const GlobalAddressSDNode *) { return true; }
661  static bool classof(const SDNode *N) {
662    return N->getOpcode() == ISD::GlobalAddress;
663  }
664};
665
666
667class FrameIndexSDNode : public SDNode {
668  int FI;
669protected:
670  friend class SelectionDAG;
671  FrameIndexSDNode(int fi, MVT::ValueType VT)
672    : SDNode(ISD::FrameIndex, VT), FI(fi) {}
673public:
674
675  int getIndex() const { return FI; }
676
677  static bool classof(const FrameIndexSDNode *) { return true; }
678  static bool classof(const SDNode *N) {
679    return N->getOpcode() == ISD::FrameIndex;
680  }
681};
682
683class ConstantPoolSDNode : public SDNode {
684  unsigned CPI;
685protected:
686  friend class SelectionDAG;
687  ConstantPoolSDNode(unsigned cpi, MVT::ValueType VT)
688    : SDNode(ISD::ConstantPool, VT), CPI(cpi) {}
689public:
690
691  unsigned getIndex() const { return CPI; }
692
693  static bool classof(const ConstantPoolSDNode *) { return true; }
694  static bool classof(const SDNode *N) {
695    return N->getOpcode() == ISD::ConstantPool;
696  }
697};
698
699class BasicBlockSDNode : public SDNode {
700  MachineBasicBlock *MBB;
701protected:
702  friend class SelectionDAG;
703  BasicBlockSDNode(MachineBasicBlock *mbb)
704    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
705public:
706
707  MachineBasicBlock *getBasicBlock() const { return MBB; }
708
709  static bool classof(const BasicBlockSDNode *) { return true; }
710  static bool classof(const SDNode *N) {
711    return N->getOpcode() == ISD::BasicBlock;
712  }
713};
714
715
716class RegSDNode : public SDNode {
717  unsigned Reg;
718protected:
719  friend class SelectionDAG;
720  RegSDNode(unsigned Opc, SDOperand Chain, SDOperand Src, unsigned reg)
721    : SDNode(Opc, Chain, Src), Reg(reg) {
722  }
723  RegSDNode(unsigned Opc, SDOperand Chain, unsigned reg)
724    : SDNode(Opc, Chain), Reg(reg) {}
725public:
726
727  unsigned getReg() const { return Reg; }
728
729  static bool classof(const RegSDNode *) { return true; }
730  static bool classof(const SDNode *N) {
731    return N->getOpcode() == ISD::CopyToReg ||
732           N->getOpcode() == ISD::CopyFromReg ||
733           N->getOpcode() == ISD::ImplicitDef;
734  }
735};
736
737class ExternalSymbolSDNode : public SDNode {
738  const char *Symbol;
739protected:
740  friend class SelectionDAG;
741  ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
742    : SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
743    }
744public:
745
746  const char *getSymbol() const { return Symbol; }
747
748  static bool classof(const ExternalSymbolSDNode *) { return true; }
749  static bool classof(const SDNode *N) {
750    return N->getOpcode() == ISD::ExternalSymbol;
751  }
752};
753
754class SetCCSDNode : public SDNode {
755  ISD::CondCode Condition;
756protected:
757  friend class SelectionDAG;
758  SetCCSDNode(ISD::CondCode Cond, SDOperand LHS, SDOperand RHS)
759    : SDNode(ISD::SETCC, LHS, RHS), Condition(Cond) {
760  }
761public:
762
763  ISD::CondCode getCondition() const { return Condition; }
764
765  static bool classof(const SetCCSDNode *) { return true; }
766  static bool classof(const SDNode *N) {
767    return N->getOpcode() == ISD::SETCC;
768  }
769};
770
771/// MVTSDNode - This class is used for operators that require an extra
772/// value-type to be kept with the node.
773class MVTSDNode : public SDNode {
774  MVT::ValueType ExtraValueType;
775protected:
776  friend class SelectionDAG;
777  MVTSDNode(unsigned Opc, MVT::ValueType VT1, SDOperand Op0, MVT::ValueType EVT)
778    : SDNode(Opc, Op0), ExtraValueType(EVT) {
779    setValueTypes(VT1);
780  }
781  MVTSDNode(unsigned Opc, MVT::ValueType VT1, MVT::ValueType VT2,
782            SDOperand Op0, SDOperand Op1, MVT::ValueType EVT)
783    : SDNode(Opc, Op0, Op1), ExtraValueType(EVT) {
784    setValueTypes(VT1, VT2);
785  }
786  MVTSDNode(unsigned Opc, MVT::ValueType VT,
787            SDOperand Op0, SDOperand Op1, SDOperand Op2, MVT::ValueType EVT)
788    : SDNode(Opc, Op0, Op1, Op2), ExtraValueType(EVT) {
789    setValueTypes(VT);
790  }
791public:
792
793  MVT::ValueType getExtraValueType() const { return ExtraValueType; }
794
795  static bool classof(const MVTSDNode *) { return true; }
796  static bool classof(const SDNode *N) {
797    return
798      N->getOpcode() == ISD::SIGN_EXTEND_INREG ||
799      N->getOpcode() == ISD::ZERO_EXTEND_INREG ||
800      N->getOpcode() == ISD::FP_ROUND_INREG ||
801      N->getOpcode() == ISD::EXTLOAD  ||
802      N->getOpcode() == ISD::SEXTLOAD ||
803      N->getOpcode() == ISD::ZEXTLOAD ||
804      N->getOpcode() == ISD::TRUNCSTORE;
805  }
806};
807
808class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
809  SDNode *Node;
810  unsigned Operand;
811
812  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
813public:
814  bool operator==(const SDNodeIterator& x) const {
815    return Operand == x.Operand;
816  }
817  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
818
819  const SDNodeIterator &operator=(const SDNodeIterator &I) {
820    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
821    Operand = I.Operand;
822    return *this;
823  }
824
825  pointer operator*() const {
826    return Node->getOperand(Operand).Val;
827  }
828  pointer operator->() const { return operator*(); }
829
830  SDNodeIterator& operator++() {                // Preincrement
831    ++Operand;
832    return *this;
833  }
834  SDNodeIterator operator++(int) { // Postincrement
835    SDNodeIterator tmp = *this; ++*this; return tmp;
836  }
837
838  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
839  static SDNodeIterator end  (SDNode *N) {
840    return SDNodeIterator(N, N->getNumOperands());
841  }
842
843  unsigned getOperand() const { return Operand; }
844  const SDNode *getNode() const { return Node; }
845};
846
847template <> struct GraphTraits<SDNode*> {
848  typedef SDNode NodeType;
849  typedef SDNodeIterator ChildIteratorType;
850  static inline NodeType *getEntryNode(SDNode *N) { return N; }
851  static inline ChildIteratorType child_begin(NodeType *N) {
852    return SDNodeIterator::begin(N);
853  }
854  static inline ChildIteratorType child_end(NodeType *N) {
855    return SDNodeIterator::end(N);
856  }
857};
858
859
860
861
862} // end llvm namespace
863
864#endif
865