SelectionDAGNodes.h revision 1cff05c7c216eea0e9173738c2a60b70c2b3c013
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37
38/// ISD namespace - This namespace contains an enum which represents all of the
39/// SelectionDAG node types and value types.
40///
41namespace ISD {
42  //===--------------------------------------------------------------------===//
43  /// ISD::NodeType enum - This enum defines all of the operators valid in a
44  /// SelectionDAG.
45  ///
46  enum NodeType {
47    // EntryToken - This is the marker used to indicate the start of the region.
48    EntryToken,
49
50    // Token factor - This node is takes multiple tokens as input and produces a
51    // single token result.  This is used to represent the fact that the operand
52    // operators are independent of each other.
53    TokenFactor,
54
55    // Various leaf nodes.
56    Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
57    BasicBlock, ExternalSymbol,
58
59    // CopyToReg - This node has chain and child nodes, and an associated
60    // register number.  The instruction selector must guarantee that the value
61    // of the value node is available in the register stored in the RegSDNode
62    // object.
63    CopyToReg,
64
65    // CopyFromReg - This node indicates that the input value is a virtual or
66    // physical register that is defined outside of the scope of this
67    // SelectionDAG.  The register is available from the RegSDNode object.
68    CopyFromReg,
69
70    // ImplicitDef - This node indicates that the specified register is
71    // implicitly defined by some operation (e.g. its a live-in argument).  This
72    // register is indicated in the RegSDNode object.  The only operand to this
73    // is the token chain coming in, the only result is the token chain going
74    // out.
75    ImplicitDef,
76
77    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
78    // a Constant, which is required to be operand #1), element of the aggregate
79    // value specified as operand #0.  This is only for use before legalization,
80    // for values that will be broken into multiple registers.
81    EXTRACT_ELEMENT,
82
83    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
84    // two values of the same integer value type, this produces a value twice as
85    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
86    BUILD_PAIR,
87
88
89    // Simple binary arithmetic operators.
90    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
91
92    // Bitwise operators.
93    AND, OR, XOR, SHL, SRA, SRL,
94
95    // Select operator.
96    SELECT,
97
98    // SetCC operator - This evaluates to a boolean (i1) true value if the
99    // condition is true.  These nodes are instances of the
100    // SetCCSDNode class, which contains the condition code as extra
101    // state.
102    SETCC,
103
104    // addc - Three input, two output operator: (X, Y, C) -> (X+Y+C,
105    // Cout).  X,Y are integer inputs of agreeing size, C is a one bit
106    // value, and two values are produced: the sum and a carry out.
107    ADDC, SUBB,
108
109    // Conversion operators.  These are all single input single output
110    // operations.  For all of these, the result type must be strictly
111    // wider or narrower (depending on the operation) than the source
112    // type.
113
114    // SIGN_EXTEND - Used for integer types, replicating the sign bit
115    // into new bits.
116    SIGN_EXTEND,
117
118    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
119    ZERO_EXTEND,
120
121    // TRUNCATE - Completely drop the high bits.
122    TRUNCATE,
123
124    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
125    // depends on the first letter) to floating point.
126    SINT_TO_FP,
127    UINT_TO_FP,
128
129    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
130    // integer.
131    FP_TO_SINT,
132    FP_TO_UINT,
133
134    // FP_ROUND - Perform a rounding operation from the current
135    // precision down to the specified precision.
136    FP_ROUND,
137
138    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
139    FP_EXTEND,
140
141    // Other operators.  LOAD and STORE have token chains as their first
142    // operand, then the same operands as an LLVM load/store instruction.
143    LOAD, STORE,
144
145    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators are instances of the
146    // MVTSDNode.  All of these load a value from memory and extend them to a
147    // larger value (e.g. load a byte into a word register).  All three of these
148    // have two operands, a chain and a pointer to load from.  The extra value
149    // type is the source type being loaded.
150    //
151    // SEXTLOAD loads the integer operand and sign extends it to a larger
152    //          integer result type.
153    // ZEXTLOAD loads the integer operand and zero extends it to a larger
154    //          integer result type.
155    // EXTLOAD  is used for two things: floating point extending loads, and
156    //          integer extending loads where it doesn't matter what the high
157    //          bits are set to.  The code generator is allowed to codegen this
158    //          into whichever operation is more efficient.
159    EXTLOAD, SEXTLOAD, ZEXTLOAD,
160
161    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
162    // value and stores it to memory in one operation.  This can be used for
163    // either integer or floating point operands, and the stored type
164    // represented as the 'extra' value type in the MVTSDNode representing the
165    // operator.  This node has the same three operands as a standard store.
166    TRUNCSTORE,
167
168    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
169    // to a specified boundary.  The first operand is the token chain, the
170    // second is the number of bytes to allocate, and the third is the alignment
171    // boundary.
172    DYNAMIC_STACKALLOC,
173
174    // Control flow instructions.  These all have token chains.
175
176    // BR - Unconditional branch.  The first operand is the chain
177    // operand, the second is the MBB to branch to.
178    BR,
179
180    // BRCOND - Conditional branch.  The first operand is the chain,
181    // the second is the condition, the third is the block to branch
182    // to if the condition is true.
183    BRCOND,
184
185    // RET - Return from function.  The first operand is the chain,
186    // and any subsequent operands are the return values for the
187    // function.  This operation can have variable number of operands.
188    RET,
189
190    // CALL - Call to a function pointer.  The first operand is the chain, the
191    // second is the destination function pointer (a GlobalAddress for a direct
192    // call).  Arguments have already been lowered to explicit DAGs according to
193    // the calling convention in effect here.
194    CALL,
195
196    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
197    // correspond to the operands of the LLVM intrinsic functions.  The only
198    // result is a token chain.  The alignment argument is guaranteed to be a
199    // Constant node.
200    MEMSET,
201    MEMMOVE,
202    MEMCPY,
203
204    // ADJCALLSTACKDOWN/ADJCALLSTACKUP - These operators mark the beginning and
205    // end of a call sequence and indicate how much the stack pointer needs to
206    // be adjusted for that particular call.  The first operand is a chain, the
207    // second is a ConstantSDNode of intptr type.
208    ADJCALLSTACKDOWN,  // Beginning of a call sequence
209    ADJCALLSTACKUP,    // End of a call sequence
210
211
212    // BUILTIN_OP_END - This must be the last enum value in this list.
213    BUILTIN_OP_END,
214  };
215
216  //===--------------------------------------------------------------------===//
217  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
218  /// below work out, when considering SETFALSE (something that never exists
219  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
220  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
221  /// to.  If the "N" column is 1, the result of the comparison is undefined if
222  /// the input is a NAN.
223  ///
224  /// All of these (except for the 'always folded ops') should be handled for
225  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
226  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
227  ///
228  /// Note that these are laid out in a specific order to allow bit-twiddling
229  /// to transform conditions.
230  enum CondCode {
231    // Opcode          N U L G E       Intuitive operation
232    SETFALSE,      //    0 0 0 0       Always false (always folded)
233    SETOEQ,        //    0 0 0 1       True if ordered and equal
234    SETOGT,        //    0 0 1 0       True if ordered and greater than
235    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
236    SETOLT,        //    0 1 0 0       True if ordered and less than
237    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
238    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
239    SETO,          //    0 1 1 1       True if ordered (no nans)
240    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
241    SETUEQ,        //    1 0 0 1       True if unordered or equal
242    SETUGT,        //    1 0 1 0       True if unordered or greater than
243    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
244    SETULT,        //    1 1 0 0       True if unordered or less than
245    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
246    SETUNE,        //    1 1 1 0       True if unordered or not equal
247    SETTRUE,       //    1 1 1 1       Always true (always folded)
248    // Don't care operations: undefined if the input is a nan.
249    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
250    SETEQ,         //  1 X 0 0 1       True if equal
251    SETGT,         //  1 X 0 1 0       True if greater than
252    SETGE,         //  1 X 0 1 1       True if greater than or equal
253    SETLT,         //  1 X 1 0 0       True if less than
254    SETLE,         //  1 X 1 0 1       True if less than or equal
255    SETNE,         //  1 X 1 1 0       True if not equal
256    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
257
258    SETCC_INVALID,      // Marker value.
259  };
260
261  /// isSignedIntSetCC - Return true if this is a setcc instruction that
262  /// performs a signed comparison when used with integer operands.
263  inline bool isSignedIntSetCC(CondCode Code) {
264    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
265  }
266
267  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
268  /// performs an unsigned comparison when used with integer operands.
269  inline bool isUnsignedIntSetCC(CondCode Code) {
270    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
271  }
272
273  /// isTrueWhenEqual - Return true if the specified condition returns true if
274  /// the two operands to the condition are equal.  Note that if one of the two
275  /// operands is a NaN, this value is meaningless.
276  inline bool isTrueWhenEqual(CondCode Cond) {
277    return ((int)Cond & 1) != 0;
278  }
279
280  /// getUnorderedFlavor - This function returns 0 if the condition is always
281  /// false if an operand is a NaN, 1 if the condition is always true if the
282  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
283  /// NaN.
284  inline unsigned getUnorderedFlavor(CondCode Cond) {
285    return ((int)Cond >> 3) & 3;
286  }
287
288  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
289  /// 'op' is a valid SetCC operation.
290  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
291
292  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
293  /// when given the operation for (X op Y).
294  CondCode getSetCCSwappedOperands(CondCode Operation);
295
296  /// getSetCCOrOperation - Return the result of a logical OR between different
297  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
298  /// function returns SETCC_INVALID if it is not possible to represent the
299  /// resultant comparison.
300  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
301
302  /// getSetCCAndOperation - Return the result of a logical AND between
303  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
304  /// function returns SETCC_INVALID if it is not possible to represent the
305  /// resultant comparison.
306  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
307}  // end llvm::ISD namespace
308
309
310//===----------------------------------------------------------------------===//
311/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
312/// values as the result of a computation.  Many nodes return multiple values,
313/// from loads (which define a token and a return value) to ADDC (which returns
314/// a result and a carry value), to calls (which may return an arbitrary number
315/// of values).
316///
317/// As such, each use of a SelectionDAG computation must indicate the node that
318/// computes it as well as which return value to use from that node.  This pair
319/// of information is represented with the SDOperand value type.
320///
321class SDOperand {
322public:
323  SDNode *Val;        // The node defining the value we are using.
324  unsigned ResNo;     // Which return value of the node we are using.
325
326  SDOperand() : Val(0) {}
327  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
328
329  bool operator==(const SDOperand &O) const {
330    return Val == O.Val && ResNo == O.ResNo;
331  }
332  bool operator!=(const SDOperand &O) const {
333    return !operator==(O);
334  }
335  bool operator<(const SDOperand &O) const {
336    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
337  }
338
339  SDOperand getValue(unsigned R) const {
340    return SDOperand(Val, R);
341  }
342
343  /// getValueType - Return the ValueType of the referenced return value.
344  ///
345  inline MVT::ValueType getValueType() const;
346
347  // Forwarding methods - These forward to the corresponding methods in SDNode.
348  inline unsigned getOpcode() const;
349  inline unsigned getNumOperands() const;
350  inline const SDOperand &getOperand(unsigned i) const;
351
352  /// hasOneUse - Return true if there is exactly one operation using this
353  /// result value of the defining operator.
354  inline bool hasOneUse() const;
355};
356
357
358/// simplify_type specializations - Allow casting operators to work directly on
359/// SDOperands as if they were SDNode*'s.
360template<> struct simplify_type<SDOperand> {
361  typedef SDNode* SimpleType;
362  static SimpleType getSimplifiedValue(const SDOperand &Val) {
363    return static_cast<SimpleType>(Val.Val);
364  }
365};
366template<> struct simplify_type<const SDOperand> {
367  typedef SDNode* SimpleType;
368  static SimpleType getSimplifiedValue(const SDOperand &Val) {
369    return static_cast<SimpleType>(Val.Val);
370  }
371};
372
373
374/// SDNode - Represents one node in the SelectionDAG.
375///
376class SDNode {
377  unsigned NodeType;
378  std::vector<SDOperand> Operands;
379
380  /// Values - The types of the values this node defines.  SDNode's may define
381  /// multiple values simultaneously.
382  std::vector<MVT::ValueType> Values;
383
384  /// Uses - These are all of the SDNode's that use a value produced by this
385  /// node.
386  std::vector<SDNode*> Uses;
387public:
388
389  //===--------------------------------------------------------------------===//
390  //  Accessors
391  //
392  unsigned getOpcode()  const { return NodeType; }
393
394  size_t use_size() const { return Uses.size(); }
395  bool use_empty() const { return Uses.empty(); }
396  bool hasOneUse() const { return Uses.size() == 1; }
397
398  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
399  /// indicated value.  This method ignores uses of other values defined by this
400  /// operation.
401  bool hasNUsesOfValue(unsigned NUses, unsigned Value);
402
403  /// getNumOperands - Return the number of values used by this operation.
404  ///
405  unsigned getNumOperands() const { return Operands.size(); }
406
407  const SDOperand &getOperand(unsigned Num) {
408    assert(Num < Operands.size() && "Invalid child # of SDNode!");
409    return Operands[Num];
410  }
411
412  const SDOperand &getOperand(unsigned Num) const {
413    assert(Num < Operands.size() && "Invalid child # of SDNode!");
414    return Operands[Num];
415  }
416
417  /// getNumValues - Return the number of values defined/returned by this
418  /// operator.
419  ///
420  unsigned getNumValues() const { return Values.size(); }
421
422  /// getValueType - Return the type of a specified result.
423  ///
424  MVT::ValueType getValueType(unsigned ResNo) const {
425    assert(ResNo < Values.size() && "Illegal result number!");
426    return Values[ResNo];
427  }
428
429  /// getOperationName - Return the opcode of this operation for printing.
430  ///
431  const char* getOperationName() const;
432  void dump() const;
433
434  static bool classof(const SDNode *) { return true; }
435
436protected:
437  friend class SelectionDAG;
438
439  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT) {
440    Values.reserve(1);
441    Values.push_back(VT);
442  }
443
444  SDNode(unsigned NT, SDOperand Op)
445    : NodeType(NT) {
446    Operands.reserve(1); Operands.push_back(Op);
447    Op.Val->Uses.push_back(this);
448  }
449  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
450    : NodeType(NT) {
451    Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
452    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
453  }
454  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
455    : NodeType(NT) {
456    Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
457    Operands.push_back(N3);
458    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
459    N3.Val->Uses.push_back(this);
460  }
461  SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
462    Operands.swap(Nodes);
463    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
464      Operands[i].Val->Uses.push_back(this);
465  }
466
467  virtual ~SDNode() {
468    // FIXME: Drop uses.
469  }
470
471  void setValueTypes(MVT::ValueType VT) {
472    Values.reserve(1);
473    Values.push_back(VT);
474  }
475  void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
476    Values.reserve(2);
477    Values.push_back(VT1);
478    Values.push_back(VT2);
479  }
480  /// Note: this method destroys the vector passed in.
481  void setValueTypes(std::vector<MVT::ValueType> &VTs) {
482    std::swap(Values, VTs);
483  }
484
485  void removeUser(SDNode *User) {
486    // Remove this user from the operand's use list.
487    for (unsigned i = Uses.size(); ; --i) {
488      assert(i != 0 && "Didn't find user!");
489      if (Uses[i-1] == User) {
490        Uses.erase(Uses.begin()+i-1);
491        break;
492      }
493    }
494  }
495};
496
497
498// Define inline functions from the SDOperand class.
499
500inline unsigned SDOperand::getOpcode() const {
501  return Val->getOpcode();
502}
503inline MVT::ValueType SDOperand::getValueType() const {
504  return Val->getValueType(ResNo);
505}
506inline unsigned SDOperand::getNumOperands() const {
507  return Val->getNumOperands();
508}
509inline const SDOperand &SDOperand::getOperand(unsigned i) const {
510  return Val->getOperand(i);
511}
512inline bool SDOperand::hasOneUse() const {
513  return Val->hasNUsesOfValue(1, ResNo);
514}
515
516
517class ConstantSDNode : public SDNode {
518  uint64_t Value;
519protected:
520  friend class SelectionDAG;
521  ConstantSDNode(uint64_t val, MVT::ValueType VT)
522    : SDNode(ISD::Constant, VT), Value(val) {
523  }
524public:
525
526  uint64_t getValue() const { return Value; }
527
528  int64_t getSignExtended() const {
529    unsigned Bits = MVT::getSizeInBits(getValueType(0));
530    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
531  }
532
533  bool isNullValue() const { return Value == 0; }
534  bool isAllOnesValue() const {
535    return Value == (1ULL << MVT::getSizeInBits(getValueType(0)))-1;
536  }
537
538  static bool classof(const ConstantSDNode *) { return true; }
539  static bool classof(const SDNode *N) {
540    return N->getOpcode() == ISD::Constant;
541  }
542};
543
544class ConstantFPSDNode : public SDNode {
545  double Value;
546protected:
547  friend class SelectionDAG;
548  ConstantFPSDNode(double val, MVT::ValueType VT)
549    : SDNode(ISD::ConstantFP, VT), Value(val) {
550  }
551public:
552
553  double getValue() const { return Value; }
554
555  /// isExactlyValue - We don't rely on operator== working on double values, as
556  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
557  /// As such, this method can be used to do an exact bit-for-bit comparison of
558  /// two floating point values.
559  bool isExactlyValue(double V) const {
560    union {
561      double V;
562      uint64_t I;
563    } T1;
564    T1.V = Value;
565    union {
566      double V;
567      uint64_t I;
568    } T2;
569    T2.V = V;
570    return T1.I == T2.I;
571  }
572
573  static bool classof(const ConstantFPSDNode *) { return true; }
574  static bool classof(const SDNode *N) {
575    return N->getOpcode() == ISD::ConstantFP;
576  }
577};
578
579class GlobalAddressSDNode : public SDNode {
580  GlobalValue *TheGlobal;
581protected:
582  friend class SelectionDAG;
583  GlobalAddressSDNode(const GlobalValue *GA, MVT::ValueType VT)
584    : SDNode(ISD::GlobalAddress, VT) {
585    TheGlobal = const_cast<GlobalValue*>(GA);
586  }
587public:
588
589  GlobalValue *getGlobal() const { return TheGlobal; }
590
591  static bool classof(const GlobalAddressSDNode *) { return true; }
592  static bool classof(const SDNode *N) {
593    return N->getOpcode() == ISD::GlobalAddress;
594  }
595};
596
597
598class FrameIndexSDNode : public SDNode {
599  int FI;
600protected:
601  friend class SelectionDAG;
602  FrameIndexSDNode(int fi, MVT::ValueType VT)
603    : SDNode(ISD::FrameIndex, VT), FI(fi) {}
604public:
605
606  int getIndex() const { return FI; }
607
608  static bool classof(const FrameIndexSDNode *) { return true; }
609  static bool classof(const SDNode *N) {
610    return N->getOpcode() == ISD::FrameIndex;
611  }
612};
613
614class ConstantPoolSDNode : public SDNode {
615  unsigned CPI;
616protected:
617  friend class SelectionDAG;
618  ConstantPoolSDNode(unsigned cpi, MVT::ValueType VT)
619    : SDNode(ISD::ConstantPool, VT), CPI(cpi) {}
620public:
621
622  unsigned getIndex() const { return CPI; }
623
624  static bool classof(const ConstantPoolSDNode *) { return true; }
625  static bool classof(const SDNode *N) {
626    return N->getOpcode() == ISD::ConstantPool;
627  }
628};
629
630class BasicBlockSDNode : public SDNode {
631  MachineBasicBlock *MBB;
632protected:
633  friend class SelectionDAG;
634  BasicBlockSDNode(MachineBasicBlock *mbb)
635    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
636public:
637
638  MachineBasicBlock *getBasicBlock() const { return MBB; }
639
640  static bool classof(const BasicBlockSDNode *) { return true; }
641  static bool classof(const SDNode *N) {
642    return N->getOpcode() == ISD::BasicBlock;
643  }
644};
645
646
647class RegSDNode : public SDNode {
648  unsigned Reg;
649protected:
650  friend class SelectionDAG;
651  RegSDNode(unsigned Opc, MVT::ValueType VT, SDOperand Chain,
652            SDOperand Src, unsigned reg)
653    : SDNode(Opc, Chain, Src), Reg(reg) {
654    setValueTypes(VT);
655  }
656  RegSDNode(unsigned Opc, MVT::ValueType VT, SDOperand Chain,
657            unsigned reg)
658    : SDNode(Opc, Chain), Reg(reg) {
659    setValueTypes(VT);
660  }
661  RegSDNode(unsigned Opc, MVT::ValueType VT, unsigned reg)
662    : SDNode(Opc, VT), Reg(reg) {
663  }
664public:
665
666  unsigned getReg() const { return Reg; }
667
668  static bool classof(const RegSDNode *) { return true; }
669  static bool classof(const SDNode *N) {
670    return N->getOpcode() == ISD::CopyToReg ||
671           N->getOpcode() == ISD::CopyFromReg ||
672           N->getOpcode() == ISD::ImplicitDef;
673  }
674};
675
676class ExternalSymbolSDNode : public SDNode {
677  const char *Symbol;
678protected:
679  friend class SelectionDAG;
680  ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
681    : SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
682    }
683public:
684
685  const char *getSymbol() const { return Symbol; }
686
687  static bool classof(const ExternalSymbolSDNode *) { return true; }
688  static bool classof(const SDNode *N) {
689    return N->getOpcode() == ISD::ExternalSymbol;
690  }
691};
692
693class SetCCSDNode : public SDNode {
694  ISD::CondCode Condition;
695protected:
696  friend class SelectionDAG;
697  SetCCSDNode(ISD::CondCode Cond, SDOperand LHS, SDOperand RHS)
698    : SDNode(ISD::SETCC, LHS, RHS), Condition(Cond) {
699    setValueTypes(MVT::i1);
700  }
701public:
702
703  ISD::CondCode getCondition() const { return Condition; }
704
705  static bool classof(const SetCCSDNode *) { return true; }
706  static bool classof(const SDNode *N) {
707    return N->getOpcode() == ISD::SETCC;
708  }
709};
710
711/// MVTSDNode - This class is used for operators that require an extra
712/// value-type to be kept with the node.
713class MVTSDNode : public SDNode {
714  MVT::ValueType ExtraValueType;
715protected:
716  friend class SelectionDAG;
717  MVTSDNode(unsigned Opc, MVT::ValueType VT,
718            SDOperand Op0, SDOperand Op1, MVT::ValueType EVT)
719    : SDNode(Opc, Op0, Op1), ExtraValueType(EVT) {
720    setValueTypes(VT);
721  }
722  MVTSDNode(unsigned Opc, MVT::ValueType VT,
723            SDOperand Op0, SDOperand Op1, SDOperand Op2, MVT::ValueType EVT)
724    : SDNode(Opc, Op0, Op1, Op2), ExtraValueType(EVT) {
725    setValueTypes(VT);
726  }
727public:
728
729  MVT::ValueType getExtraValueType() const { return ExtraValueType; }
730
731  static bool classof(const MVTSDNode *) { return true; }
732  static bool classof(const SDNode *N) {
733    return
734      N->getOpcode() == ISD::EXTLOAD  ||
735      N->getOpcode() == ISD::SEXTLOAD ||
736      N->getOpcode() == ISD::ZEXTLOAD ||
737      N->getOpcode() == ISD::TRUNCSTORE;
738  }
739};
740
741class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
742  SDNode *Node;
743  unsigned Operand;
744
745  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
746public:
747  bool operator==(const SDNodeIterator& x) const {
748    return Operand == x.Operand;
749  }
750  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
751
752  const SDNodeIterator &operator=(const SDNodeIterator &I) {
753    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
754    Operand = I.Operand;
755    return *this;
756  }
757
758  pointer operator*() const {
759    return Node->getOperand(Operand).Val;
760  }
761  pointer operator->() const { return operator*(); }
762
763  SDNodeIterator& operator++() {                // Preincrement
764    ++Operand;
765    return *this;
766  }
767  SDNodeIterator operator++(int) { // Postincrement
768    SDNodeIterator tmp = *this; ++*this; return tmp;
769  }
770
771  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
772  static SDNodeIterator end  (SDNode *N) {
773    return SDNodeIterator(N, N->getNumOperands());
774  }
775
776  unsigned getOperand() const { return Operand; }
777  const SDNode *getNode() const { return Node; }
778};
779
780template <> struct GraphTraits<SDNode*> {
781  typedef SDNode NodeType;
782  typedef SDNodeIterator ChildIteratorType;
783  static inline NodeType *getEntryNode(SDNode *N) { return N; }
784  static inline ChildIteratorType child_begin(NodeType *N) {
785    return SDNodeIterator::begin(N);
786  }
787  static inline ChildIteratorType child_end(NodeType *N) {
788    return SDNodeIterator::end(N);
789  }
790};
791
792
793
794
795} // end llvm namespace
796
797#endif
798