SelectionDAGNodes.h revision 2e49f090f9656af7d5ed4d5c4e9fa26af59c7233
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/iterator"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/Support/DataTypes.h"
28#include <cassert>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class MachineConstantPoolValue;
36class SDNode;
37template <typename T> struct simplify_type;
38template <typename T> struct ilist_traits;
39template<typename NodeTy, typename Traits> class iplist;
40template<typename NodeTy> class ilist_iterator;
41
42/// SDVTList - This represents a list of ValueType's that has been intern'd by
43/// a SelectionDAG.  Instances of this simple value class are returned by
44/// SelectionDAG::getVTList(...).
45///
46struct SDVTList {
47  const MVT::ValueType *VTs;
48  unsigned short NumVTs;
49};
50
51
52/// ISD namespace - This namespace contains an enum which represents all of the
53/// SelectionDAG node types and value types.
54///
55namespace ISD {
56  //===--------------------------------------------------------------------===//
57  /// ISD::NodeType enum - This enum defines all of the operators valid in a
58  /// SelectionDAG.
59  ///
60  enum NodeType {
61    // DELETED_NODE - This is an illegal flag value that is used to catch
62    // errors.  This opcode is not a legal opcode for any node.
63    DELETED_NODE,
64
65    // EntryToken - This is the marker used to indicate the start of the region.
66    EntryToken,
67
68    // Token factor - This node takes multiple tokens as input and produces a
69    // single token result.  This is used to represent the fact that the operand
70    // operators are independent of each other.
71    TokenFactor,
72
73    // AssertSext, AssertZext - These nodes record if a register contains a
74    // value that has already been zero or sign extended from a narrower type.
75    // These nodes take two operands.  The first is the node that has already
76    // been extended, and the second is a value type node indicating the width
77    // of the extension
78    AssertSext, AssertZext,
79
80    // Various leaf nodes.
81    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
82    Constant, ConstantFP,
83    GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
84
85    // The address of the GOT
86    GLOBAL_OFFSET_TABLE,
87
88    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
89    // simplification of the constant.
90    TargetConstant,
91    TargetConstantFP,
92
93    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
94    // anything else with this node, and this is valid in the target-specific
95    // dag, turning into a GlobalAddress operand.
96    TargetGlobalAddress,
97    TargetFrameIndex,
98    TargetJumpTable,
99    TargetConstantPool,
100    TargetExternalSymbol,
101
102    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
103    /// This node represents a target intrinsic function with no side effects.
104    /// The first operand is the ID number of the intrinsic from the
105    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
106    /// node has returns the result of the intrinsic.
107    INTRINSIC_WO_CHAIN,
108
109    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
110    /// This node represents a target intrinsic function with side effects that
111    /// returns a result.  The first operand is a chain pointer.  The second is
112    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
113    /// operands to the intrinsic follow.  The node has two results, the result
114    /// of the intrinsic and an output chain.
115    INTRINSIC_W_CHAIN,
116
117    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
118    /// This node represents a target intrinsic function with side effects that
119    /// does not return a result.  The first operand is a chain pointer.  The
120    /// second is the ID number of the intrinsic from the llvm::Intrinsic
121    /// namespace.  The operands to the intrinsic follow.
122    INTRINSIC_VOID,
123
124    // CopyToReg - This node has three operands: a chain, a register number to
125    // set to this value, and a value.
126    CopyToReg,
127
128    // CopyFromReg - This node indicates that the input value is a virtual or
129    // physical register that is defined outside of the scope of this
130    // SelectionDAG.  The register is available from the RegSDNode object.
131    CopyFromReg,
132
133    // UNDEF - An undefined node
134    UNDEF,
135
136    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG) - This node represents the formal
137    /// arguments for a function.  CC# is a Constant value indicating the
138    /// calling convention of the function, and ISVARARG is a flag that
139    /// indicates whether the function is varargs or not.  This node has one
140    /// result value for each incoming argument, plus one for the output chain.
141    /// It must be custom legalized.
142    ///
143    FORMAL_ARGUMENTS,
144
145    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
146    ///                              ARG0, SIGN0, ARG1, SIGN1, ... ARGn, SIGNn)
147    /// This node represents a fully general function call, before the legalizer
148    /// runs.  This has one result value for each argument / signness pair, plus
149    /// a chain result. It must be custom legalized.
150    CALL,
151
152    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
153    // a Constant, which is required to be operand #1), element of the aggregate
154    // value specified as operand #0.  This is only for use before legalization,
155    // for values that will be broken into multiple registers.
156    EXTRACT_ELEMENT,
157
158    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
159    // two values of the same integer value type, this produces a value twice as
160    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
161    BUILD_PAIR,
162
163    // MERGE_VALUES - This node takes multiple discrete operands and returns
164    // them all as its individual results.  This nodes has exactly the same
165    // number of inputs and outputs, and is only valid before legalization.
166    // This node is useful for some pieces of the code generator that want to
167    // think about a single node with multiple results, not multiple nodes.
168    MERGE_VALUES,
169
170    // Simple integer binary arithmetic operators.
171    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
172
173    // Carry-setting nodes for multiple precision addition and subtraction.
174    // These nodes take two operands of the same value type, and produce two
175    // results.  The first result is the normal add or sub result, the second
176    // result is the carry flag result.
177    ADDC, SUBC,
178
179    // Carry-using nodes for multiple precision addition and subtraction.  These
180    // nodes take three operands: The first two are the normal lhs and rhs to
181    // the add or sub, and the third is the input carry flag.  These nodes
182    // produce two results; the normal result of the add or sub, and the output
183    // carry flag.  These nodes both read and write a carry flag to allow them
184    // to them to be chained together for add and sub of arbitrarily large
185    // values.
186    ADDE, SUBE,
187
188    // Simple binary floating point operators.
189    FADD, FSUB, FMUL, FDIV, FREM,
190
191    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
192    // DAG node does not require that X and Y have the same type, just that they
193    // are both floating point.  X and the result must have the same type.
194    // FCOPYSIGN(f32, f64) is allowed.
195    FCOPYSIGN,
196
197    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
198    /// with the specified, possibly variable, elements.  The number of elements
199    /// is required to be a power of two.
200    VBUILD_VECTOR,
201
202    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
203    /// with the specified, possibly variable, elements.  The number of elements
204    /// is required to be a power of two.
205    BUILD_VECTOR,
206
207    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
208    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
209    /// return an vector with the specified element of VECTOR replaced with VAL.
210    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
211    VINSERT_VECTOR_ELT,
212
213    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
214    /// type) with the element at IDX replaced with VAL.
215    INSERT_VECTOR_ELT,
216
217    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
218    /// (an MVT::Vector value) identified by the (potentially variable) element
219    /// number IDX.
220    VEXTRACT_VECTOR_ELT,
221
222    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
223    /// (a legal packed type vector) identified by the (potentially variable)
224    /// element number IDX.
225    EXTRACT_VECTOR_ELT,
226
227    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
228    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
229    /// constant int values that indicate which value each result element will
230    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
231    /// similar to the Altivec 'vperm' instruction, except that the indices must
232    /// be constants and are in terms of the element size of VEC1/VEC2, not in
233    /// terms of bytes.
234    VVECTOR_SHUFFLE,
235
236    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
237    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
238    /// (regardless of whether its datatype is legal or not) that indicate
239    /// which value each result element will get.  The elements of VEC1/VEC2 are
240    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
241    /// instruction, except that the indices must be constants and are in terms
242    /// of the element size of VEC1/VEC2, not in terms of bytes.
243    VECTOR_SHUFFLE,
244
245    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
246    /// represents a conversion from or to an ISD::Vector type.
247    ///
248    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
249    /// The input and output are required to have the same size and at least one
250    /// is required to be a vector (if neither is a vector, just use
251    /// BIT_CONVERT).
252    ///
253    /// If the result is a vector, this takes three operands (like any other
254    /// vector producer) which indicate the size and type of the vector result.
255    /// Otherwise it takes one input.
256    VBIT_CONVERT,
257
258    /// BINOP(LHS, RHS,  COUNT,TYPE)
259    /// Simple abstract vector operators.  Unlike the integer and floating point
260    /// binary operators, these nodes also take two additional operands:
261    /// a constant element count, and a value type node indicating the type of
262    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
263    /// including VLOAD and VConstant must currently have count and type as
264    /// their last two operands.
265    VADD, VSUB, VMUL, VSDIV, VUDIV,
266    VAND, VOR, VXOR,
267
268    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
269    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
270    /// COND is false.
271    VSELECT,
272
273    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
274    /// scalar value into the low element of the resultant vector type.  The top
275    /// elements of the vector are undefined.
276    SCALAR_TO_VECTOR,
277
278    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
279    // an unsigned/signed value of type i[2*n], then return the top part.
280    MULHU, MULHS,
281
282    // Bitwise operators - logical and, logical or, logical xor, shift left,
283    // shift right algebraic (shift in sign bits), shift right logical (shift in
284    // zeroes), rotate left, rotate right, and byteswap.
285    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
286
287    // Counting operators
288    CTTZ, CTLZ, CTPOP,
289
290    // Select(COND, TRUEVAL, FALSEVAL)
291    SELECT,
292
293    // Select with condition operator - This selects between a true value and
294    // a false value (ops #2 and #3) based on the boolean result of comparing
295    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
296    // condition code in op #4, a CondCodeSDNode.
297    SELECT_CC,
298
299    // SetCC operator - This evaluates to a boolean (i1) true value if the
300    // condition is true.  The operands to this are the left and right operands
301    // to compare (ops #0, and #1) and the condition code to compare them with
302    // (op #2) as a CondCodeSDNode.
303    SETCC,
304
305    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
306    // integer shift operations, just like ADD/SUB_PARTS.  The operation
307    // ordering is:
308    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
309    SHL_PARTS, SRA_PARTS, SRL_PARTS,
310
311    // Conversion operators.  These are all single input single output
312    // operations.  For all of these, the result type must be strictly
313    // wider or narrower (depending on the operation) than the source
314    // type.
315
316    // SIGN_EXTEND - Used for integer types, replicating the sign bit
317    // into new bits.
318    SIGN_EXTEND,
319
320    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
321    ZERO_EXTEND,
322
323    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
324    ANY_EXTEND,
325
326    // TRUNCATE - Completely drop the high bits.
327    TRUNCATE,
328
329    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
330    // depends on the first letter) to floating point.
331    SINT_TO_FP,
332    UINT_TO_FP,
333
334    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
335    // sign extend a small value in a large integer register (e.g. sign
336    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
337    // with the 7th bit).  The size of the smaller type is indicated by the 1th
338    // operand, a ValueType node.
339    SIGN_EXTEND_INREG,
340
341    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
342    // integer.
343    FP_TO_SINT,
344    FP_TO_UINT,
345
346    // FP_ROUND - Perform a rounding operation from the current
347    // precision down to the specified precision (currently always 64->32).
348    FP_ROUND,
349
350    // FP_ROUND_INREG - This operator takes a floating point register, and
351    // rounds it to a floating point value.  It then promotes it and returns it
352    // in a register of the same size.  This operation effectively just discards
353    // excess precision.  The type to round down to is specified by the 1th
354    // operation, a VTSDNode (currently always 64->32->64).
355    FP_ROUND_INREG,
356
357    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
358    FP_EXTEND,
359
360    // BIT_CONVERT - Theis operator converts between integer and FP values, as
361    // if one was stored to memory as integer and the other was loaded from the
362    // same address (or equivalently for vector format conversions, etc).  The
363    // source and result are required to have the same bit size (e.g.
364    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
365    // conversions, but that is a noop, deleted by getNode().
366    BIT_CONVERT,
367
368    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI - Perform unary floating point
369    // negation, absolute value, square root, sine and cosine, and powi
370    // operations.
371    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI,
372
373    // Other operators.  LOAD and STORE have token chains as their first
374    // operand, then the same operands as an LLVM load/store instruction, then a
375    // SRCVALUE node that provides alias analysis information.
376    LOAD, STORE,
377
378    // Abstract vector version of LOAD.  VLOAD has a constant element count as
379    // the first operand, followed by a value type node indicating the type of
380    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
381    VLOAD,
382
383    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
384    // value and stores it to memory in one operation.  This can be used for
385    // either integer or floating point operands.  The first four operands of
386    // this are the same as a standard store.  The fifth is the ValueType to
387    // store it as (which will be smaller than the source value).
388    TRUNCSTORE,
389
390    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
391    // to a specified boundary.  The first operand is the token chain, the
392    // second is the number of bytes to allocate, and the third is the alignment
393    // boundary.  The size is guaranteed to be a multiple of the stack
394    // alignment, and the alignment is guaranteed to be bigger than the stack
395    // alignment (if required) or 0 to get standard stack alignment.
396    DYNAMIC_STACKALLOC,
397
398    // Control flow instructions.  These all have token chains.
399
400    // BR - Unconditional branch.  The first operand is the chain
401    // operand, the second is the MBB to branch to.
402    BR,
403
404    // BRIND - Indirect branch.  The first operand is the chain, the second
405    // is the value to branch to, which must be of the same type as the target's
406    // pointer type.
407    BRIND,
408
409    // BRCOND - Conditional branch.  The first operand is the chain,
410    // the second is the condition, the third is the block to branch
411    // to if the condition is true.
412    BRCOND,
413
414    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
415    // that the condition is represented as condition code, and two nodes to
416    // compare, rather than as a combined SetCC node.  The operands in order are
417    // chain, cc, lhs, rhs, block to branch to if condition is true.
418    BR_CC,
419
420    // RET - Return from function.  The first operand is the chain,
421    // and any subsequent operands are pairs of return value and return value
422    // signness for the function.  This operation can have variable number of
423    // operands.
424    RET,
425
426    // INLINEASM - Represents an inline asm block.  This node always has two
427    // return values: a chain and a flag result.  The inputs are as follows:
428    //   Operand #0   : Input chain.
429    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
430    //   Operand #2n+2: A RegisterNode.
431    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
432    //   Operand #last: Optional, an incoming flag.
433    INLINEASM,
434
435    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
436    // value, the same type as the pointer type for the system, and an output
437    // chain.
438    STACKSAVE,
439
440    // STACKRESTORE has two operands, an input chain and a pointer to restore to
441    // it returns an output chain.
442    STACKRESTORE,
443
444    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
445    // correspond to the operands of the LLVM intrinsic functions.  The only
446    // result is a token chain.  The alignment argument is guaranteed to be a
447    // Constant node.
448    MEMSET,
449    MEMMOVE,
450    MEMCPY,
451
452    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
453    // a call sequence, and carry arbitrary information that target might want
454    // to know.  The first operand is a chain, the rest are specified by the
455    // target and not touched by the DAG optimizers.
456    CALLSEQ_START,  // Beginning of a call sequence
457    CALLSEQ_END,    // End of a call sequence
458
459    // VAARG - VAARG has three operands: an input chain, a pointer, and a
460    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
461    VAARG,
462
463    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
464    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
465    // source.
466    VACOPY,
467
468    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
469    // pointer, and a SRCVALUE.
470    VAEND, VASTART,
471
472    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
473    // locations with their value.  This allows one use alias analysis
474    // information in the backend.
475    SRCVALUE,
476
477    // PCMARKER - This corresponds to the pcmarker intrinsic.
478    PCMARKER,
479
480    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
481    // The only operand is a chain and a value and a chain are produced.  The
482    // value is the contents of the architecture specific cycle counter like
483    // register (or other high accuracy low latency clock source)
484    READCYCLECOUNTER,
485
486    // HANDLENODE node - Used as a handle for various purposes.
487    HANDLENODE,
488
489    // LOCATION - This node is used to represent a source location for debug
490    // info.  It takes token chain as input, then a line number, then a column
491    // number, then a filename, then a working dir.  It produces a token chain
492    // as output.
493    LOCATION,
494
495    // DEBUG_LOC - This node is used to represent source line information
496    // embedded in the code.  It takes a token chain as input, then a line
497    // number, then a column then a file id (provided by MachineDebugInfo.) It
498    // produces a token chain as output.
499    DEBUG_LOC,
500
501    // DEBUG_LABEL - This node is used to mark a location in the code where a
502    // label should be generated for use by the debug information.  It takes a
503    // token chain as input and then a unique id (provided by MachineDebugInfo.)
504    // It produces a token chain as output.
505    DEBUG_LABEL,
506
507    // BUILTIN_OP_END - This must be the last enum value in this list.
508    BUILTIN_OP_END
509  };
510
511  /// Node predicates
512
513  /// isBuildVectorAllOnes - Return true if the specified node is a
514  /// BUILD_VECTOR where all of the elements are ~0 or undef.
515  bool isBuildVectorAllOnes(const SDNode *N);
516
517  /// isBuildVectorAllZeros - Return true if the specified node is a
518  /// BUILD_VECTOR where all of the elements are 0 or undef.
519  bool isBuildVectorAllZeros(const SDNode *N);
520
521  //===--------------------------------------------------------------------===//
522  /// MemOpAddrMode enum - This enum defines the three load / store addressing
523  /// modes.
524  ///
525  /// UNINDEXED    "Normal" load / store. The effective address is already
526  ///              computed and is available in the base pointer. The offset
527  ///              operand is always undefined. In addition to producing a
528  ///              chain, an unindexed load produces one value (result of the
529  ///              load); an unindexed store does not produces a value.
530  ///
531  /// PRE_INDEXED  Similar to the unindexed mode where the effective address is
532  ///              the result of computation of the base pointer. However, it
533  ///              considers the computation as being folded into the load /
534  ///              store operation (i.e. the load / store does the address
535  ///              computation as well as performing the memory transaction).
536  ///              The base operand is always undefined. In addition to
537  ///              producing a chain, pre-indexed load produces two values
538  ///              (result of the load and the result of the address
539  ///              computation); a pre-indexed store produces one value (result
540  ///              of the address computation).
541  ///
542  /// POST_INDEXED The effective address is the value of the base pointer. The
543  ///              value of the offset operand is then added to the base after
544  ///              memory transaction. In addition to producing a chain,
545  ///              post-indexed load produces two values (the result of the load
546  ///              and the result of the base + offset computation); a
547  ///              post-indexed store produces one value (the the result of the
548  ///              base + offset computation).
549  ///
550  enum MemOpAddrMode {
551    UNINDEXED = 0,
552    PRE_INDEXED,
553    POST_INDEXED
554  };
555
556  //===--------------------------------------------------------------------===//
557  /// LoadExtType enum - This enum defines the three variants of LOADEXT
558  /// (load with extension).
559  ///
560  /// SEXTLOAD loads the integer operand and sign extends it to a larger
561  ///          integer result type.
562  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
563  ///          integer result type.
564  /// EXTLOAD  is used for three things: floating point extending loads,
565  ///          integer extending loads [the top bits are undefined], and vector
566  ///          extending loads [load into low elt].
567  ///
568  enum LoadExtType {
569    NON_EXTLOAD = 0,
570    EXTLOAD,
571    SEXTLOAD,
572    ZEXTLOAD,
573    LAST_LOADX_TYPE
574  };
575
576  //===--------------------------------------------------------------------===//
577  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
578  /// below work out, when considering SETFALSE (something that never exists
579  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
580  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
581  /// to.  If the "N" column is 1, the result of the comparison is undefined if
582  /// the input is a NAN.
583  ///
584  /// All of these (except for the 'always folded ops') should be handled for
585  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
586  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
587  ///
588  /// Note that these are laid out in a specific order to allow bit-twiddling
589  /// to transform conditions.
590  enum CondCode {
591    // Opcode          N U L G E       Intuitive operation
592    SETFALSE,      //    0 0 0 0       Always false (always folded)
593    SETOEQ,        //    0 0 0 1       True if ordered and equal
594    SETOGT,        //    0 0 1 0       True if ordered and greater than
595    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
596    SETOLT,        //    0 1 0 0       True if ordered and less than
597    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
598    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
599    SETO,          //    0 1 1 1       True if ordered (no nans)
600    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
601    SETUEQ,        //    1 0 0 1       True if unordered or equal
602    SETUGT,        //    1 0 1 0       True if unordered or greater than
603    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
604    SETULT,        //    1 1 0 0       True if unordered or less than
605    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
606    SETUNE,        //    1 1 1 0       True if unordered or not equal
607    SETTRUE,       //    1 1 1 1       Always true (always folded)
608    // Don't care operations: undefined if the input is a nan.
609    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
610    SETEQ,         //  1 X 0 0 1       True if equal
611    SETGT,         //  1 X 0 1 0       True if greater than
612    SETGE,         //  1 X 0 1 1       True if greater than or equal
613    SETLT,         //  1 X 1 0 0       True if less than
614    SETLE,         //  1 X 1 0 1       True if less than or equal
615    SETNE,         //  1 X 1 1 0       True if not equal
616    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
617
618    SETCC_INVALID       // Marker value.
619  };
620
621  /// isSignedIntSetCC - Return true if this is a setcc instruction that
622  /// performs a signed comparison when used with integer operands.
623  inline bool isSignedIntSetCC(CondCode Code) {
624    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
625  }
626
627  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
628  /// performs an unsigned comparison when used with integer operands.
629  inline bool isUnsignedIntSetCC(CondCode Code) {
630    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
631  }
632
633  /// isTrueWhenEqual - Return true if the specified condition returns true if
634  /// the two operands to the condition are equal.  Note that if one of the two
635  /// operands is a NaN, this value is meaningless.
636  inline bool isTrueWhenEqual(CondCode Cond) {
637    return ((int)Cond & 1) != 0;
638  }
639
640  /// getUnorderedFlavor - This function returns 0 if the condition is always
641  /// false if an operand is a NaN, 1 if the condition is always true if the
642  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
643  /// NaN.
644  inline unsigned getUnorderedFlavor(CondCode Cond) {
645    return ((int)Cond >> 3) & 3;
646  }
647
648  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
649  /// 'op' is a valid SetCC operation.
650  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
651
652  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
653  /// when given the operation for (X op Y).
654  CondCode getSetCCSwappedOperands(CondCode Operation);
655
656  /// getSetCCOrOperation - Return the result of a logical OR between different
657  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
658  /// function returns SETCC_INVALID if it is not possible to represent the
659  /// resultant comparison.
660  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
661
662  /// getSetCCAndOperation - Return the result of a logical AND between
663  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
664  /// function returns SETCC_INVALID if it is not possible to represent the
665  /// resultant comparison.
666  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
667}  // end llvm::ISD namespace
668
669
670//===----------------------------------------------------------------------===//
671/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
672/// values as the result of a computation.  Many nodes return multiple values,
673/// from loads (which define a token and a return value) to ADDC (which returns
674/// a result and a carry value), to calls (which may return an arbitrary number
675/// of values).
676///
677/// As such, each use of a SelectionDAG computation must indicate the node that
678/// computes it as well as which return value to use from that node.  This pair
679/// of information is represented with the SDOperand value type.
680///
681class SDOperand {
682public:
683  SDNode *Val;        // The node defining the value we are using.
684  unsigned ResNo;     // Which return value of the node we are using.
685
686  SDOperand() : Val(0), ResNo(0) {}
687  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
688
689  bool operator==(const SDOperand &O) const {
690    return Val == O.Val && ResNo == O.ResNo;
691  }
692  bool operator!=(const SDOperand &O) const {
693    return !operator==(O);
694  }
695  bool operator<(const SDOperand &O) const {
696    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
697  }
698
699  SDOperand getValue(unsigned R) const {
700    return SDOperand(Val, R);
701  }
702
703  // isOperand - Return true if this node is an operand of N.
704  bool isOperand(SDNode *N) const;
705
706  /// getValueType - Return the ValueType of the referenced return value.
707  ///
708  inline MVT::ValueType getValueType() const;
709
710  // Forwarding methods - These forward to the corresponding methods in SDNode.
711  inline unsigned getOpcode() const;
712  inline unsigned getNumOperands() const;
713  inline const SDOperand &getOperand(unsigned i) const;
714  inline uint64_t getConstantOperandVal(unsigned i) const;
715  inline bool isTargetOpcode() const;
716  inline unsigned getTargetOpcode() const;
717
718  /// hasOneUse - Return true if there is exactly one operation using this
719  /// result value of the defining operator.
720  inline bool hasOneUse() const;
721};
722
723
724/// simplify_type specializations - Allow casting operators to work directly on
725/// SDOperands as if they were SDNode*'s.
726template<> struct simplify_type<SDOperand> {
727  typedef SDNode* SimpleType;
728  static SimpleType getSimplifiedValue(const SDOperand &Val) {
729    return static_cast<SimpleType>(Val.Val);
730  }
731};
732template<> struct simplify_type<const SDOperand> {
733  typedef SDNode* SimpleType;
734  static SimpleType getSimplifiedValue(const SDOperand &Val) {
735    return static_cast<SimpleType>(Val.Val);
736  }
737};
738
739
740/// SDNode - Represents one node in the SelectionDAG.
741///
742class SDNode {
743  /// NodeType - The operation that this node performs.
744  ///
745  unsigned short NodeType;
746
747  /// NodeId - Unique id per SDNode in the DAG.
748  int NodeId;
749
750  /// OperandList - The values that are used by this operation.
751  ///
752  SDOperand *OperandList;
753
754  /// ValueList - The types of the values this node defines.  SDNode's may
755  /// define multiple values simultaneously.
756  const MVT::ValueType *ValueList;
757
758  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
759  unsigned short NumOperands, NumValues;
760
761  /// Prev/Next pointers - These pointers form the linked list of of the
762  /// AllNodes list in the current DAG.
763  SDNode *Prev, *Next;
764  friend struct ilist_traits<SDNode>;
765
766  /// NextInBucket - This is used by the SelectionDAGCSEMap.
767  void *NextInBucket;
768
769  /// Uses - These are all of the SDNode's that use a value produced by this
770  /// node.
771  SmallVector<SDNode*,3> Uses;
772
773  // Out-of-line virtual method to give class a home.
774  virtual void ANCHOR();
775public:
776  virtual ~SDNode() {
777    assert(NumOperands == 0 && "Operand list not cleared before deletion");
778    assert(NextInBucket == 0 && "Still in CSEMap?");
779    NodeType = ISD::DELETED_NODE;
780  }
781
782  //===--------------------------------------------------------------------===//
783  //  Accessors
784  //
785  unsigned getOpcode()  const { return NodeType; }
786  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
787  unsigned getTargetOpcode() const {
788    assert(isTargetOpcode() && "Not a target opcode!");
789    return NodeType - ISD::BUILTIN_OP_END;
790  }
791
792  size_t use_size() const { return Uses.size(); }
793  bool use_empty() const { return Uses.empty(); }
794  bool hasOneUse() const { return Uses.size() == 1; }
795
796  /// getNodeId - Return the unique node id.
797  ///
798  int getNodeId() const { return NodeId; }
799
800  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
801  use_iterator use_begin() const { return Uses.begin(); }
802  use_iterator use_end() const { return Uses.end(); }
803
804  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
805  /// indicated value.  This method ignores uses of other values defined by this
806  /// operation.
807  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
808
809  // isOnlyUse - Return true if this node is the only use of N.
810  bool isOnlyUse(SDNode *N) const;
811
812  // isOperand - Return true if this node is an operand of N.
813  bool isOperand(SDNode *N) const;
814
815  /// getNumOperands - Return the number of values used by this operation.
816  ///
817  unsigned getNumOperands() const { return NumOperands; }
818
819  /// getConstantOperandVal - Helper method returns the integer value of a
820  /// ConstantSDNode operand.
821  uint64_t getConstantOperandVal(unsigned Num) const;
822
823  const SDOperand &getOperand(unsigned Num) const {
824    assert(Num < NumOperands && "Invalid child # of SDNode!");
825    return OperandList[Num];
826  }
827
828  typedef const SDOperand* op_iterator;
829  op_iterator op_begin() const { return OperandList; }
830  op_iterator op_end() const { return OperandList+NumOperands; }
831
832
833  SDVTList getVTList() const {
834    SDVTList X = { ValueList, NumValues };
835    return X;
836  };
837
838  /// getNumValues - Return the number of values defined/returned by this
839  /// operator.
840  ///
841  unsigned getNumValues() const { return NumValues; }
842
843  /// getValueType - Return the type of a specified result.
844  ///
845  MVT::ValueType getValueType(unsigned ResNo) const {
846    assert(ResNo < NumValues && "Illegal result number!");
847    return ValueList[ResNo];
848  }
849
850  typedef const MVT::ValueType* value_iterator;
851  value_iterator value_begin() const { return ValueList; }
852  value_iterator value_end() const { return ValueList+NumValues; }
853
854  /// getOperationName - Return the opcode of this operation for printing.
855  ///
856  const char* getOperationName(const SelectionDAG *G = 0) const;
857  void dump() const;
858  void dump(const SelectionDAG *G) const;
859
860  static bool classof(const SDNode *) { return true; }
861
862
863  /// NextInBucket accessors, these are private to SelectionDAGCSEMap.
864  void *getNextInBucket() const { return NextInBucket; }
865  void SetNextInBucket(void *N) { NextInBucket = N; }
866
867protected:
868  friend class SelectionDAG;
869
870  /// getValueTypeList - Return a pointer to the specified value type.
871  ///
872  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
873
874  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeId(-1) {
875    OperandList = 0; NumOperands = 0;
876    ValueList = getValueTypeList(VT);
877    NumValues = 1;
878    Prev = 0; Next = 0;
879    NextInBucket = 0;
880  }
881  SDNode(unsigned NT, SDOperand Op)
882    : NodeType(NT), NodeId(-1) {
883    OperandList = new SDOperand[1];
884    OperandList[0] = Op;
885    NumOperands = 1;
886    Op.Val->Uses.push_back(this);
887    ValueList = 0;
888    NumValues = 0;
889    Prev = 0; Next = 0;
890    NextInBucket = 0;
891  }
892  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
893    : NodeType(NT), NodeId(-1) {
894    OperandList = new SDOperand[2];
895    OperandList[0] = N1;
896    OperandList[1] = N2;
897    NumOperands = 2;
898    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
899    ValueList = 0;
900    NumValues = 0;
901    Prev = 0; Next = 0;
902    NextInBucket = 0;
903  }
904  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
905    : NodeType(NT), NodeId(-1) {
906    OperandList = new SDOperand[3];
907    OperandList[0] = N1;
908    OperandList[1] = N2;
909    OperandList[2] = N3;
910    NumOperands = 3;
911
912    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
913    N3.Val->Uses.push_back(this);
914    ValueList = 0;
915    NumValues = 0;
916    Prev = 0; Next = 0;
917    NextInBucket = 0;
918  }
919  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
920    : NodeType(NT), NodeId(-1) {
921    OperandList = new SDOperand[4];
922    OperandList[0] = N1;
923    OperandList[1] = N2;
924    OperandList[2] = N3;
925    OperandList[3] = N4;
926    NumOperands = 4;
927
928    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
929    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
930    ValueList = 0;
931    NumValues = 0;
932    Prev = 0; Next = 0;
933    NextInBucket = 0;
934  }
935  SDNode(unsigned Opc, const SDOperand *Ops, unsigned NumOps)
936    : NodeType(Opc), NodeId(-1) {
937    NumOperands = NumOps;
938    OperandList = new SDOperand[NumOperands];
939
940    for (unsigned i = 0, e = NumOps; i != e; ++i) {
941      OperandList[i] = Ops[i];
942      SDNode *N = OperandList[i].Val;
943      N->Uses.push_back(this);
944    }
945    ValueList = 0;
946    NumValues = 0;
947    Prev = 0; Next = 0;
948    NextInBucket = 0;
949  }
950
951  /// MorphNodeTo - This clears the return value and operands list, and sets the
952  /// opcode of the node to the specified value.  This should only be used by
953  /// the SelectionDAG class.
954  void MorphNodeTo(unsigned Opc) {
955    NodeType = Opc;
956    ValueList = 0;
957    NumValues = 0;
958
959    // Clear the operands list, updating used nodes to remove this from their
960    // use list.
961    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
962      I->Val->removeUser(this);
963    delete [] OperandList;
964    OperandList = 0;
965    NumOperands = 0;
966  }
967
968  void setValueTypes(SDVTList L) {
969    assert(NumValues == 0 && "Should not have values yet!");
970    ValueList = L.VTs;
971    NumValues = L.NumVTs;
972  }
973
974  void setOperands(SDOperand Op0) {
975    assert(NumOperands == 0 && "Should not have operands yet!");
976    OperandList = new SDOperand[1];
977    OperandList[0] = Op0;
978    NumOperands = 1;
979    Op0.Val->Uses.push_back(this);
980  }
981  void setOperands(SDOperand Op0, SDOperand Op1) {
982    assert(NumOperands == 0 && "Should not have operands yet!");
983    OperandList = new SDOperand[2];
984    OperandList[0] = Op0;
985    OperandList[1] = Op1;
986    NumOperands = 2;
987    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
988  }
989  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
990    assert(NumOperands == 0 && "Should not have operands yet!");
991    OperandList = new SDOperand[3];
992    OperandList[0] = Op0;
993    OperandList[1] = Op1;
994    OperandList[2] = Op2;
995    NumOperands = 3;
996    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
997    Op2.Val->Uses.push_back(this);
998  }
999  void setOperands(const SDOperand *Ops, unsigned NumOps) {
1000    assert(NumOperands == 0 && "Should not have operands yet!");
1001    NumOperands = NumOps;
1002    OperandList = new SDOperand[NumOperands];
1003
1004    for (unsigned i = 0, e = NumOps; i != e; ++i) {
1005      OperandList[i] = Ops[i];
1006      SDNode *N = OperandList[i].Val;
1007      N->Uses.push_back(this);
1008    }
1009  }
1010
1011  void addUser(SDNode *User) {
1012    Uses.push_back(User);
1013  }
1014  void removeUser(SDNode *User) {
1015    // Remove this user from the operand's use list.
1016    for (unsigned i = Uses.size(); ; --i) {
1017      assert(i != 0 && "Didn't find user!");
1018      if (Uses[i-1] == User) {
1019        Uses[i-1] = Uses.back();
1020        Uses.pop_back();
1021        return;
1022      }
1023    }
1024  }
1025
1026  void setNodeId(int Id) {
1027    NodeId = Id;
1028  }
1029};
1030
1031
1032// Define inline functions from the SDOperand class.
1033
1034inline unsigned SDOperand::getOpcode() const {
1035  return Val->getOpcode();
1036}
1037inline MVT::ValueType SDOperand::getValueType() const {
1038  return Val->getValueType(ResNo);
1039}
1040inline unsigned SDOperand::getNumOperands() const {
1041  return Val->getNumOperands();
1042}
1043inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1044  return Val->getOperand(i);
1045}
1046inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1047  return Val->getConstantOperandVal(i);
1048}
1049inline bool SDOperand::isTargetOpcode() const {
1050  return Val->isTargetOpcode();
1051}
1052inline unsigned SDOperand::getTargetOpcode() const {
1053  return Val->getTargetOpcode();
1054}
1055inline bool SDOperand::hasOneUse() const {
1056  return Val->hasNUsesOfValue(1, ResNo);
1057}
1058
1059/// HandleSDNode - This class is used to form a handle around another node that
1060/// is persistant and is updated across invocations of replaceAllUsesWith on its
1061/// operand.  This node should be directly created by end-users and not added to
1062/// the AllNodes list.
1063class HandleSDNode : public SDNode {
1064public:
1065  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
1066  ~HandleSDNode() {
1067    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
1068  }
1069
1070  SDOperand getValue() const { return getOperand(0); }
1071};
1072
1073class StringSDNode : public SDNode {
1074  std::string Value;
1075protected:
1076  friend class SelectionDAG;
1077  StringSDNode(const std::string &val)
1078    : SDNode(ISD::STRING, MVT::Other), Value(val) {
1079  }
1080public:
1081  const std::string &getValue() const { return Value; }
1082  static bool classof(const StringSDNode *) { return true; }
1083  static bool classof(const SDNode *N) {
1084    return N->getOpcode() == ISD::STRING;
1085  }
1086};
1087
1088class ConstantSDNode : public SDNode {
1089  uint64_t Value;
1090protected:
1091  friend class SelectionDAG;
1092  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1093    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
1094  }
1095public:
1096
1097  uint64_t getValue() const { return Value; }
1098
1099  int64_t getSignExtended() const {
1100    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1101    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1102  }
1103
1104  bool isNullValue() const { return Value == 0; }
1105  bool isAllOnesValue() const {
1106    return Value == MVT::getIntVTBitMask(getValueType(0));
1107  }
1108
1109  static bool classof(const ConstantSDNode *) { return true; }
1110  static bool classof(const SDNode *N) {
1111    return N->getOpcode() == ISD::Constant ||
1112           N->getOpcode() == ISD::TargetConstant;
1113  }
1114};
1115
1116class ConstantFPSDNode : public SDNode {
1117  double Value;
1118protected:
1119  friend class SelectionDAG;
1120  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1121    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
1122      Value(val) {
1123  }
1124public:
1125
1126  double getValue() const { return Value; }
1127
1128  /// isExactlyValue - We don't rely on operator== working on double values, as
1129  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1130  /// As such, this method can be used to do an exact bit-for-bit comparison of
1131  /// two floating point values.
1132  bool isExactlyValue(double V) const;
1133
1134  static bool classof(const ConstantFPSDNode *) { return true; }
1135  static bool classof(const SDNode *N) {
1136    return N->getOpcode() == ISD::ConstantFP ||
1137           N->getOpcode() == ISD::TargetConstantFP;
1138  }
1139};
1140
1141class GlobalAddressSDNode : public SDNode {
1142  GlobalValue *TheGlobal;
1143  int Offset;
1144protected:
1145  friend class SelectionDAG;
1146  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1147                      int o=0)
1148    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
1149      Offset(o) {
1150    TheGlobal = const_cast<GlobalValue*>(GA);
1151  }
1152public:
1153
1154  GlobalValue *getGlobal() const { return TheGlobal; }
1155  int getOffset() const { return Offset; }
1156
1157  static bool classof(const GlobalAddressSDNode *) { return true; }
1158  static bool classof(const SDNode *N) {
1159    return N->getOpcode() == ISD::GlobalAddress ||
1160           N->getOpcode() == ISD::TargetGlobalAddress;
1161  }
1162};
1163
1164
1165class FrameIndexSDNode : public SDNode {
1166  int FI;
1167protected:
1168  friend class SelectionDAG;
1169  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1170    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1171public:
1172
1173  int getIndex() const { return FI; }
1174
1175  static bool classof(const FrameIndexSDNode *) { return true; }
1176  static bool classof(const SDNode *N) {
1177    return N->getOpcode() == ISD::FrameIndex ||
1178           N->getOpcode() == ISD::TargetFrameIndex;
1179  }
1180};
1181
1182class JumpTableSDNode : public SDNode {
1183  int JTI;
1184protected:
1185  friend class SelectionDAG;
1186  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1187    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT),
1188    JTI(jti) {}
1189public:
1190
1191    int getIndex() const { return JTI; }
1192
1193  static bool classof(const JumpTableSDNode *) { return true; }
1194  static bool classof(const SDNode *N) {
1195    return N->getOpcode() == ISD::JumpTable ||
1196           N->getOpcode() == ISD::TargetJumpTable;
1197  }
1198};
1199
1200class ConstantPoolSDNode : public SDNode {
1201  union {
1202    Constant *ConstVal;
1203    MachineConstantPoolValue *MachineCPVal;
1204  } Val;
1205  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1206  unsigned Alignment;
1207protected:
1208  friend class SelectionDAG;
1209  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1210                     int o=0)
1211    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1212      Offset(o), Alignment(0) {
1213    assert((int)Offset >= 0 && "Offset is too large");
1214    Val.ConstVal = c;
1215  }
1216  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1217                     unsigned Align)
1218    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1219      Offset(o), Alignment(Align) {
1220    assert((int)Offset >= 0 && "Offset is too large");
1221    Val.ConstVal = c;
1222  }
1223  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1224                     MVT::ValueType VT, int o=0)
1225    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1226      Offset(o), Alignment(0) {
1227    assert((int)Offset >= 0 && "Offset is too large");
1228    Val.MachineCPVal = v;
1229    Offset |= 1 << (sizeof(unsigned)*8-1);
1230  }
1231  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1232                     MVT::ValueType VT, int o, unsigned Align)
1233    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1234      Offset(o), Alignment(Align) {
1235    assert((int)Offset >= 0 && "Offset is too large");
1236    Val.MachineCPVal = v;
1237    Offset |= 1 << (sizeof(unsigned)*8-1);
1238  }
1239public:
1240
1241  bool isMachineConstantPoolEntry() const {
1242    return (int)Offset < 0;
1243  }
1244
1245  Constant *getConstVal() const {
1246    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1247    return Val.ConstVal;
1248  }
1249
1250  MachineConstantPoolValue *getMachineCPVal() const {
1251    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1252    return Val.MachineCPVal;
1253  }
1254
1255  int getOffset() const {
1256    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1257  }
1258
1259  // Return the alignment of this constant pool object, which is either 0 (for
1260  // default alignment) or log2 of the desired value.
1261  unsigned getAlignment() const { return Alignment; }
1262
1263  const Type *getType() const;
1264
1265  static bool classof(const ConstantPoolSDNode *) { return true; }
1266  static bool classof(const SDNode *N) {
1267    return N->getOpcode() == ISD::ConstantPool ||
1268           N->getOpcode() == ISD::TargetConstantPool;
1269  }
1270};
1271
1272class BasicBlockSDNode : public SDNode {
1273  MachineBasicBlock *MBB;
1274protected:
1275  friend class SelectionDAG;
1276  BasicBlockSDNode(MachineBasicBlock *mbb)
1277    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1278public:
1279
1280  MachineBasicBlock *getBasicBlock() const { return MBB; }
1281
1282  static bool classof(const BasicBlockSDNode *) { return true; }
1283  static bool classof(const SDNode *N) {
1284    return N->getOpcode() == ISD::BasicBlock;
1285  }
1286};
1287
1288class SrcValueSDNode : public SDNode {
1289  const Value *V;
1290  int offset;
1291protected:
1292  friend class SelectionDAG;
1293  SrcValueSDNode(const Value* v, int o)
1294    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1295
1296public:
1297  const Value *getValue() const { return V; }
1298  int getOffset() const { return offset; }
1299
1300  static bool classof(const SrcValueSDNode *) { return true; }
1301  static bool classof(const SDNode *N) {
1302    return N->getOpcode() == ISD::SRCVALUE;
1303  }
1304};
1305
1306
1307class RegisterSDNode : public SDNode {
1308  unsigned Reg;
1309protected:
1310  friend class SelectionDAG;
1311  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1312    : SDNode(ISD::Register, VT), Reg(reg) {}
1313public:
1314
1315  unsigned getReg() const { return Reg; }
1316
1317  static bool classof(const RegisterSDNode *) { return true; }
1318  static bool classof(const SDNode *N) {
1319    return N->getOpcode() == ISD::Register;
1320  }
1321};
1322
1323class ExternalSymbolSDNode : public SDNode {
1324  const char *Symbol;
1325protected:
1326  friend class SelectionDAG;
1327  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1328    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1329      Symbol(Sym) {
1330    }
1331public:
1332
1333  const char *getSymbol() const { return Symbol; }
1334
1335  static bool classof(const ExternalSymbolSDNode *) { return true; }
1336  static bool classof(const SDNode *N) {
1337    return N->getOpcode() == ISD::ExternalSymbol ||
1338           N->getOpcode() == ISD::TargetExternalSymbol;
1339  }
1340};
1341
1342class CondCodeSDNode : public SDNode {
1343  ISD::CondCode Condition;
1344protected:
1345  friend class SelectionDAG;
1346  CondCodeSDNode(ISD::CondCode Cond)
1347    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1348  }
1349public:
1350
1351  ISD::CondCode get() const { return Condition; }
1352
1353  static bool classof(const CondCodeSDNode *) { return true; }
1354  static bool classof(const SDNode *N) {
1355    return N->getOpcode() == ISD::CONDCODE;
1356  }
1357};
1358
1359/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1360/// to parameterize some operations.
1361class VTSDNode : public SDNode {
1362  MVT::ValueType ValueType;
1363protected:
1364  friend class SelectionDAG;
1365  VTSDNode(MVT::ValueType VT)
1366    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1367public:
1368
1369  MVT::ValueType getVT() const { return ValueType; }
1370
1371  static bool classof(const VTSDNode *) { return true; }
1372  static bool classof(const SDNode *N) {
1373    return N->getOpcode() == ISD::VALUETYPE;
1374  }
1375};
1376
1377/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1378///
1379class LoadSDNode : public SDNode {
1380  // AddrMode - unindexed, pre-indexed, post-indexed.
1381  ISD::MemOpAddrMode AddrMode;
1382
1383  // ExtType - non-ext, anyext, sext, zext.
1384  ISD::LoadExtType ExtType;
1385
1386  // LoadedVT - VT of loaded value before extension.
1387  MVT::ValueType LoadedVT;
1388
1389  // SrcValue - Memory location for alias analysis.
1390  const Value *SrcValue;
1391
1392  // SVOffset - Memory location offset.
1393  int SVOffset;
1394
1395  // Alignment - Alignment of memory location in bytes.
1396  unsigned Alignment;
1397
1398  // IsVolatile - True if the load is volatile.
1399  bool IsVolatile;
1400protected:
1401  friend class SelectionDAG;
1402  LoadSDNode(SDOperand Chain, SDOperand Ptr, SDOperand Off,
1403             ISD::MemOpAddrMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1404             const Value *SV, int O=0, unsigned Align=1, bool Vol=false)
1405    : SDNode(ISD::LOAD, Chain, Ptr, Off),
1406      AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O),
1407      Alignment(Align), IsVolatile(Vol) {
1408    assert((Off.getOpcode() == ISD::UNDEF || AddrMode == ISD::POST_INDEXED) &&
1409           "Only post-indexed load has a non-undef offset operand");
1410  }
1411  LoadSDNode(SDOperand Chain, SDOperand Ptr, SDOperand Off,
1412             ISD::LoadExtType ETy, MVT::ValueType LVT,
1413             const Value *SV, int O=0, unsigned Align=1, bool Vol=false)
1414    : SDNode(ISD::LOAD, Chain, Ptr, Off),
1415      AddrMode(ISD::UNINDEXED), ExtType(ETy), LoadedVT(LVT), SrcValue(SV),
1416      SVOffset(O), Alignment(Align), IsVolatile(Vol) {
1417    assert((Off.getOpcode() == ISD::UNDEF || AddrMode == ISD::POST_INDEXED) &&
1418           "Only post-indexed load has a non-undef offset operand");
1419  }
1420public:
1421
1422  const SDOperand getChain() const { return getOperand(0); }
1423  const SDOperand getBasePtr() const { return getOperand(1); }
1424  const SDOperand getOffset() const { return getOperand(2); }
1425  ISD::MemOpAddrMode getAddressingMode() const { return AddrMode; }
1426  ISD::LoadExtType getExtensionType() const { return ExtType; }
1427  MVT::ValueType getLoadedVT() const { return LoadedVT; }
1428  const Value *getSrcValue() const { return SrcValue; }
1429  int getSrcValueOffset() const { return SVOffset; }
1430  unsigned getAlignment() const { return Alignment; }
1431  bool isVolatile() const { return IsVolatile; }
1432
1433  static bool classof(const LoadSDNode *) { return true; }
1434  static bool classof(const SDNode *N) {
1435    return N->getOpcode() == ISD::LOAD;
1436  }
1437};
1438
1439/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1440///
1441class StoreSDNode : public SDNode {
1442  // AddrMode - unindexed, pre-indexed, post-indexed.
1443  ISD::MemOpAddrMode AddrMode;
1444
1445  // IsTruncStore - True is the op does a truncation before store.
1446  bool IsTruncStore;
1447
1448  // StoredVT - VT of the value after truncation.
1449  MVT::ValueType StoredVT;
1450
1451  // SrcValue - Memory location for alias analysis.
1452  const Value *SrcValue;
1453
1454  // SVOffset - Memory location offset.
1455  int SVOffset;
1456
1457  // Alignment - Alignment of memory location in bytes.
1458  unsigned Alignment;
1459
1460  // IsVolatile - True if the store is volatile.
1461  bool IsVolatile;
1462protected:
1463  friend class SelectionDAG;
1464  StoreSDNode(SDOperand Chain, SDOperand Ptr, SDOperand Off,
1465              ISD::MemOpAddrMode AM, bool isTrunc, MVT::ValueType SVT,
1466              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1467    : SDNode(ISD::STORE, Chain, Ptr, Off),
1468      AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV),
1469      SVOffset(O), Alignment(Align), IsVolatile(Vol) {
1470    assert((Off.getOpcode() == ISD::UNDEF || AddrMode == ISD::POST_INDEXED) &&
1471           "Only post-indexed store has a non-undef offset operand");
1472  }
1473public:
1474
1475  const SDOperand getChain() const { return getOperand(0); }
1476  const SDOperand getBasePtr() const { return getOperand(1); }
1477  const SDOperand getOffset() const { return getOperand(2); }
1478  ISD::MemOpAddrMode getAddressingMode() const { return AddrMode; }
1479  bool isTruncatingStore() const { return IsTruncStore; }
1480  MVT::ValueType getStoredVT() const { return StoredVT; }
1481  const Value *getSrcValue() const { return SrcValue; }
1482  int getSrcValueOffset() const { return SVOffset; }
1483  unsigned getAlignment() const { return Alignment; }
1484  bool isVolatile() const { return IsVolatile; }
1485
1486  static bool classof(const LoadSDNode *) { return true; }
1487  static bool classof(const SDNode *N) {
1488    return N->getOpcode() == ISD::STORE;
1489  }
1490};
1491
1492
1493class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1494  SDNode *Node;
1495  unsigned Operand;
1496
1497  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1498public:
1499  bool operator==(const SDNodeIterator& x) const {
1500    return Operand == x.Operand;
1501  }
1502  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1503
1504  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1505    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1506    Operand = I.Operand;
1507    return *this;
1508  }
1509
1510  pointer operator*() const {
1511    return Node->getOperand(Operand).Val;
1512  }
1513  pointer operator->() const { return operator*(); }
1514
1515  SDNodeIterator& operator++() {                // Preincrement
1516    ++Operand;
1517    return *this;
1518  }
1519  SDNodeIterator operator++(int) { // Postincrement
1520    SDNodeIterator tmp = *this; ++*this; return tmp;
1521  }
1522
1523  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1524  static SDNodeIterator end  (SDNode *N) {
1525    return SDNodeIterator(N, N->getNumOperands());
1526  }
1527
1528  unsigned getOperand() const { return Operand; }
1529  const SDNode *getNode() const { return Node; }
1530};
1531
1532template <> struct GraphTraits<SDNode*> {
1533  typedef SDNode NodeType;
1534  typedef SDNodeIterator ChildIteratorType;
1535  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1536  static inline ChildIteratorType child_begin(NodeType *N) {
1537    return SDNodeIterator::begin(N);
1538  }
1539  static inline ChildIteratorType child_end(NodeType *N) {
1540    return SDNodeIterator::end(N);
1541  }
1542};
1543
1544template<>
1545struct ilist_traits<SDNode> {
1546  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1547  static SDNode *getNext(const SDNode *N) { return N->Next; }
1548
1549  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1550  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1551
1552  static SDNode *createSentinel() {
1553    return new SDNode(ISD::EntryToken, MVT::Other);
1554  }
1555  static void destroySentinel(SDNode *N) { delete N; }
1556  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1557
1558
1559  void addNodeToList(SDNode *NTy) {}
1560  void removeNodeFromList(SDNode *NTy) {}
1561  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1562                             const ilist_iterator<SDNode> &X,
1563                             const ilist_iterator<SDNode> &Y) {}
1564};
1565
1566namespace ISD {
1567  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1568  /// load.
1569  inline bool isNON_EXTLoad(const SDNode *N) {
1570    return N->getOpcode() == ISD::LOAD &&
1571      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1572  }
1573
1574  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1575  ///
1576  inline bool isEXTLoad(const SDNode *N) {
1577    return N->getOpcode() == ISD::LOAD &&
1578      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1579  }
1580
1581  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1582  ///
1583  inline bool isSEXTLoad(const SDNode *N) {
1584    return N->getOpcode() == ISD::LOAD &&
1585      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1586  }
1587
1588  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1589  ///
1590  inline bool isZEXTLoad(const SDNode *N) {
1591    return N->getOpcode() == ISD::LOAD &&
1592      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1593  }
1594}
1595
1596
1597} // end llvm namespace
1598
1599#endif
1600