SelectionDAGNodes.h revision 33d5595d667ba4a880bd7fe785724e8197bef70c
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/Support/DataTypes.h"
28#include <cassert>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class MachineConstantPoolValue;
36class SDNode;
37template <typename T> struct DenseMapKeyInfo;
38template <typename T> struct simplify_type;
39template <typename T> struct ilist_traits;
40template<typename NodeTy, typename Traits> class iplist;
41template<typename NodeTy> class ilist_iterator;
42
43/// SDVTList - This represents a list of ValueType's that has been intern'd by
44/// a SelectionDAG.  Instances of this simple value class are returned by
45/// SelectionDAG::getVTList(...).
46///
47struct SDVTList {
48  const MVT::ValueType *VTs;
49  unsigned short NumVTs;
50};
51
52/// ISD namespace - This namespace contains an enum which represents all of the
53/// SelectionDAG node types and value types.
54///
55namespace ISD {
56  namespace ParamFlags {
57  enum Flags {
58    NoFlagSet         = 0,
59    ZExt              = 1<<0,  ///< Parameter should be zero extended
60    ZExtOffs          = 0,
61    SExt              = 1<<1,  ///< Parameter should be sign extended
62    SExtOffs          = 1,
63    InReg             = 1<<2,  ///< Parameter should be passed in register
64    InRegOffs         = 2,
65    StructReturn      = 1<<3,  ///< Hidden struct-return pointer
66    StructReturnOffs  = 3,
67    ByVal             = 1<<4,  ///< Struct passed by value
68    ByValOffs         = 4,
69    Nest              = 1<<5,  ///< Parameter is nested function static chain
70    NestOffs          = 5,
71    OrigAlignment     = 0x1F<<27,
72    OrigAlignmentOffs = 27
73  };
74  }
75
76  //===--------------------------------------------------------------------===//
77  /// ISD::NodeType enum - This enum defines all of the operators valid in a
78  /// SelectionDAG.
79  ///
80  enum NodeType {
81    // DELETED_NODE - This is an illegal flag value that is used to catch
82    // errors.  This opcode is not a legal opcode for any node.
83    DELETED_NODE,
84
85    // EntryToken - This is the marker used to indicate the start of the region.
86    EntryToken,
87
88    // Token factor - This node takes multiple tokens as input and produces a
89    // single token result.  This is used to represent the fact that the operand
90    // operators are independent of each other.
91    TokenFactor,
92
93    // AssertSext, AssertZext - These nodes record if a register contains a
94    // value that has already been zero or sign extended from a narrower type.
95    // These nodes take two operands.  The first is the node that has already
96    // been extended, and the second is a value type node indicating the width
97    // of the extension
98    AssertSext, AssertZext,
99
100    // Various leaf nodes.
101    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
102    Constant, ConstantFP,
103    GlobalAddress, GlobalTLSAddress, FrameIndex,
104    JumpTable, ConstantPool, ExternalSymbol,
105
106    // The address of the GOT
107    GLOBAL_OFFSET_TABLE,
108
109    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
110    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
111    // of the frame or return address to return.  An index of zero corresponds
112    // to the current function's frame or return address, an index of one to the
113    // parent's frame or return address, and so on.
114    FRAMEADDR, RETURNADDR,
115
116    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
117    // first (possible) on-stack argument. This is needed for correct stack
118    // adjustment during unwind.
119    FRAME_TO_ARGS_OFFSET,
120
121    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
122    // address of the exception block on entry to an landing pad block.
123    EXCEPTIONADDR,
124
125    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
126    // the selection index of the exception thrown.
127    EHSELECTION,
128
129    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
130    // 'eh_return' gcc dwarf builtin, which is used to return from
131    // exception. The general meaning is: adjust stack by OFFSET and pass
132    // execution to HANDLER. Many platform-related details also :)
133    EH_RETURN,
134
135    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
136    // simplification of the constant.
137    TargetConstant,
138    TargetConstantFP,
139
140    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
141    // anything else with this node, and this is valid in the target-specific
142    // dag, turning into a GlobalAddress operand.
143    TargetGlobalAddress,
144    TargetGlobalTLSAddress,
145    TargetFrameIndex,
146    TargetJumpTable,
147    TargetConstantPool,
148    TargetExternalSymbol,
149
150    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
151    /// This node represents a target intrinsic function with no side effects.
152    /// The first operand is the ID number of the intrinsic from the
153    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
154    /// node has returns the result of the intrinsic.
155    INTRINSIC_WO_CHAIN,
156
157    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
158    /// This node represents a target intrinsic function with side effects that
159    /// returns a result.  The first operand is a chain pointer.  The second is
160    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
161    /// operands to the intrinsic follow.  The node has two results, the result
162    /// of the intrinsic and an output chain.
163    INTRINSIC_W_CHAIN,
164
165    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
166    /// This node represents a target intrinsic function with side effects that
167    /// does not return a result.  The first operand is a chain pointer.  The
168    /// second is the ID number of the intrinsic from the llvm::Intrinsic
169    /// namespace.  The operands to the intrinsic follow.
170    INTRINSIC_VOID,
171
172    // CopyToReg - This node has three operands: a chain, a register number to
173    // set to this value, and a value.
174    CopyToReg,
175
176    // CopyFromReg - This node indicates that the input value is a virtual or
177    // physical register that is defined outside of the scope of this
178    // SelectionDAG.  The register is available from the RegSDNode object.
179    CopyFromReg,
180
181    // UNDEF - An undefined node
182    UNDEF,
183
184    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
185    /// represents the formal arguments for a function.  CC# is a Constant value
186    /// indicating the calling convention of the function, and ISVARARG is a
187    /// flag that indicates whether the function is varargs or not. This node
188    /// has one result value for each incoming argument, plus one for the output
189    /// chain. It must be custom legalized. See description of CALL node for
190    /// FLAG argument contents explanation.
191    ///
192    FORMAL_ARGUMENTS,
193
194    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
195    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
196    /// This node represents a fully general function call, before the legalizer
197    /// runs.  This has one result value for each argument / flag pair, plus
198    /// a chain result. It must be custom legalized. Flag argument indicates
199    /// misc. argument attributes. Currently:
200    /// Bit 0 - signness
201    /// Bit 1 - 'inreg' attribute
202    /// Bit 2 - 'sret' attribute
203    /// Bits 31:27 - argument ABI alignment in the first argument piece and
204    /// alignment '1' in other argument pieces.
205    CALL,
206
207    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
208    // a Constant, which is required to be operand #1), element of the aggregate
209    // value specified as operand #0.  This is only for use before legalization,
210    // for values that will be broken into multiple registers.
211    EXTRACT_ELEMENT,
212
213    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
214    // two values of the same integer value type, this produces a value twice as
215    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
216    BUILD_PAIR,
217
218    // MERGE_VALUES - This node takes multiple discrete operands and returns
219    // them all as its individual results.  This nodes has exactly the same
220    // number of inputs and outputs, and is only valid before legalization.
221    // This node is useful for some pieces of the code generator that want to
222    // think about a single node with multiple results, not multiple nodes.
223    MERGE_VALUES,
224
225    // Simple integer binary arithmetic operators.
226    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
227
228    // CARRY_FALSE - This node is used when folding other nodes,
229    // like ADDC/SUBC, which indicate the carry result is always false.
230    CARRY_FALSE,
231
232    // Carry-setting nodes for multiple precision addition and subtraction.
233    // These nodes take two operands of the same value type, and produce two
234    // results.  The first result is the normal add or sub result, the second
235    // result is the carry flag result.
236    ADDC, SUBC,
237
238    // Carry-using nodes for multiple precision addition and subtraction.  These
239    // nodes take three operands: The first two are the normal lhs and rhs to
240    // the add or sub, and the third is the input carry flag.  These nodes
241    // produce two results; the normal result of the add or sub, and the output
242    // carry flag.  These nodes both read and write a carry flag to allow them
243    // to them to be chained together for add and sub of arbitrarily large
244    // values.
245    ADDE, SUBE,
246
247    // Simple binary floating point operators.
248    FADD, FSUB, FMUL, FDIV, FREM,
249
250    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
251    // DAG node does not require that X and Y have the same type, just that they
252    // are both floating point.  X and the result must have the same type.
253    // FCOPYSIGN(f32, f64) is allowed.
254    FCOPYSIGN,
255
256    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
257    /// with the specified, possibly variable, elements.  The number of elements
258    /// is required to be a power of two.
259    BUILD_VECTOR,
260
261    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
262    /// at IDX replaced with VAL.
263    INSERT_VECTOR_ELT,
264
265    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
266    /// identified by the (potentially variable) element number IDX.
267    EXTRACT_VECTOR_ELT,
268
269    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
270    /// vector type with the same length and element type, this produces a
271    /// concatenated vector result value, with length equal to the sum of the
272    /// lengths of the input vectors.
273    CONCAT_VECTORS,
274
275    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
276    /// vector value) starting with the (potentially variable) element number
277    /// IDX, which must be a multiple of the result vector length.
278    EXTRACT_SUBVECTOR,
279
280    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
281    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
282    /// (regardless of whether its datatype is legal or not) that indicate
283    /// which value each result element will get.  The elements of VEC1/VEC2 are
284    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
285    /// instruction, except that the indices must be constants and are in terms
286    /// of the element size of VEC1/VEC2, not in terms of bytes.
287    VECTOR_SHUFFLE,
288
289    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
290    /// scalar value into the low element of the resultant vector type.  The top
291    /// elements of the vector are undefined.
292    SCALAR_TO_VECTOR,
293
294    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
295    // This node takes a superreg and a constant sub-register index as operands.
296    EXTRACT_SUBREG,
297
298    // INSERT_SUBREG - This node is used to insert a sub-register value.
299    // This node takes a superreg, a subreg value, and a constant sub-register
300    // index as operands.
301    INSERT_SUBREG,
302
303    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
304    // an unsigned/signed value of type i[2*n], then return the top part.
305    MULHU, MULHS,
306
307    // Bitwise operators - logical and, logical or, logical xor, shift left,
308    // shift right algebraic (shift in sign bits), shift right logical (shift in
309    // zeroes), rotate left, rotate right, and byteswap.
310    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
311
312    // Counting operators
313    CTTZ, CTLZ, CTPOP,
314
315    // Select(COND, TRUEVAL, FALSEVAL)
316    SELECT,
317
318    // Select with condition operator - This selects between a true value and
319    // a false value (ops #2 and #3) based on the boolean result of comparing
320    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
321    // condition code in op #4, a CondCodeSDNode.
322    SELECT_CC,
323
324    // SetCC operator - This evaluates to a boolean (i1) true value if the
325    // condition is true.  The operands to this are the left and right operands
326    // to compare (ops #0, and #1) and the condition code to compare them with
327    // (op #2) as a CondCodeSDNode.
328    SETCC,
329
330    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
331    // integer shift operations, just like ADD/SUB_PARTS.  The operation
332    // ordering is:
333    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
334    SHL_PARTS, SRA_PARTS, SRL_PARTS,
335
336    // Conversion operators.  These are all single input single output
337    // operations.  For all of these, the result type must be strictly
338    // wider or narrower (depending on the operation) than the source
339    // type.
340
341    // SIGN_EXTEND - Used for integer types, replicating the sign bit
342    // into new bits.
343    SIGN_EXTEND,
344
345    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
346    ZERO_EXTEND,
347
348    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
349    ANY_EXTEND,
350
351    // TRUNCATE - Completely drop the high bits.
352    TRUNCATE,
353
354    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
355    // depends on the first letter) to floating point.
356    SINT_TO_FP,
357    UINT_TO_FP,
358
359    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
360    // sign extend a small value in a large integer register (e.g. sign
361    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
362    // with the 7th bit).  The size of the smaller type is indicated by the 1th
363    // operand, a ValueType node.
364    SIGN_EXTEND_INREG,
365
366    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
367    // integer.
368    FP_TO_SINT,
369    FP_TO_UINT,
370
371    // FP_ROUND - Perform a rounding operation from the current
372    // precision down to the specified precision (currently always 64->32).
373    FP_ROUND,
374
375    // FP_ROUND_INREG - This operator takes a floating point register, and
376    // rounds it to a floating point value.  It then promotes it and returns it
377    // in a register of the same size.  This operation effectively just discards
378    // excess precision.  The type to round down to is specified by the 1th
379    // operation, a VTSDNode (currently always 64->32->64).
380    FP_ROUND_INREG,
381
382    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
383    FP_EXTEND,
384
385    // BIT_CONVERT - Theis operator converts between integer and FP values, as
386    // if one was stored to memory as integer and the other was loaded from the
387    // same address (or equivalently for vector format conversions, etc).  The
388    // source and result are required to have the same bit size (e.g.
389    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
390    // conversions, but that is a noop, deleted by getNode().
391    BIT_CONVERT,
392
393    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI - Perform unary floating point
394    // negation, absolute value, square root, sine and cosine, and powi
395    // operations.
396    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI,
397
398    // LOAD and STORE have token chains as their first operand, then the same
399    // operands as an LLVM load/store instruction, then an offset node that
400    // is added / subtracted from the base pointer to form the address (for
401    // indexed memory ops).
402    LOAD, STORE,
403
404    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
405    // value and stores it to memory in one operation.  This can be used for
406    // either integer or floating point operands.  The first four operands of
407    // this are the same as a standard store.  The fifth is the ValueType to
408    // store it as (which will be smaller than the source value).
409    TRUNCSTORE,
410
411    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
412    // to a specified boundary.  This node always has two return values: a new
413    // stack pointer value and a chain. The first operand is the token chain,
414    // the second is the number of bytes to allocate, and the third is the
415    // alignment boundary.  The size is guaranteed to be a multiple of the stack
416    // alignment, and the alignment is guaranteed to be bigger than the stack
417    // alignment (if required) or 0 to get standard stack alignment.
418    DYNAMIC_STACKALLOC,
419
420    // Control flow instructions.  These all have token chains.
421
422    // BR - Unconditional branch.  The first operand is the chain
423    // operand, the second is the MBB to branch to.
424    BR,
425
426    // BRIND - Indirect branch.  The first operand is the chain, the second
427    // is the value to branch to, which must be of the same type as the target's
428    // pointer type.
429    BRIND,
430
431    // BR_JT - Jumptable branch. The first operand is the chain, the second
432    // is the jumptable index, the last one is the jumptable entry index.
433    BR_JT,
434
435    // BRCOND - Conditional branch.  The first operand is the chain,
436    // the second is the condition, the third is the block to branch
437    // to if the condition is true.
438    BRCOND,
439
440    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
441    // that the condition is represented as condition code, and two nodes to
442    // compare, rather than as a combined SetCC node.  The operands in order are
443    // chain, cc, lhs, rhs, block to branch to if condition is true.
444    BR_CC,
445
446    // RET - Return from function.  The first operand is the chain,
447    // and any subsequent operands are pairs of return value and return value
448    // signness for the function.  This operation can have variable number of
449    // operands.
450    RET,
451
452    // INLINEASM - Represents an inline asm block.  This node always has two
453    // return values: a chain and a flag result.  The inputs are as follows:
454    //   Operand #0   : Input chain.
455    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
456    //   Operand #2n+2: A RegisterNode.
457    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
458    //   Operand #last: Optional, an incoming flag.
459    INLINEASM,
460
461    // LABEL - Represents a label in mid basic block used to track
462    // locations needed for debug and exception handling tables.  This node
463    // returns a chain.
464    //   Operand #0 : input chain.
465    //   Operand #1 : module unique number use to identify the label.
466    LABEL,
467
468    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
469    // value, the same type as the pointer type for the system, and an output
470    // chain.
471    STACKSAVE,
472
473    // STACKRESTORE has two operands, an input chain and a pointer to restore to
474    // it returns an output chain.
475    STACKRESTORE,
476
477    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
478    // correspond to the operands of the LLVM intrinsic functions.  The only
479    // result is a token chain.  The alignment argument is guaranteed to be a
480    // Constant node.
481    MEMSET,
482    MEMMOVE,
483    MEMCPY,
484
485    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
486    // a call sequence, and carry arbitrary information that target might want
487    // to know.  The first operand is a chain, the rest are specified by the
488    // target and not touched by the DAG optimizers.
489    CALLSEQ_START,  // Beginning of a call sequence
490    CALLSEQ_END,    // End of a call sequence
491
492    // VAARG - VAARG has three operands: an input chain, a pointer, and a
493    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
494    VAARG,
495
496    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
497    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
498    // source.
499    VACOPY,
500
501    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
502    // pointer, and a SRCVALUE.
503    VAEND, VASTART,
504
505    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
506    // locations with their value.  This allows one use alias analysis
507    // information in the backend.
508    SRCVALUE,
509
510    // PCMARKER - This corresponds to the pcmarker intrinsic.
511    PCMARKER,
512
513    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
514    // The only operand is a chain and a value and a chain are produced.  The
515    // value is the contents of the architecture specific cycle counter like
516    // register (or other high accuracy low latency clock source)
517    READCYCLECOUNTER,
518
519    // HANDLENODE node - Used as a handle for various purposes.
520    HANDLENODE,
521
522    // LOCATION - This node is used to represent a source location for debug
523    // info.  It takes token chain as input, then a line number, then a column
524    // number, then a filename, then a working dir.  It produces a token chain
525    // as output.
526    LOCATION,
527
528    // DEBUG_LOC - This node is used to represent source line information
529    // embedded in the code.  It takes a token chain as input, then a line
530    // number, then a column then a file id (provided by MachineModuleInfo.) It
531    // produces a token chain as output.
532    DEBUG_LOC,
533
534    // ADJUST_TRAMP - This corresponds to the adjust_trampoline intrinsic.
535    // It takes a value as input and returns a value as output.
536    ADJUST_TRAMP,
537
538    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
539    // It takes as input a token chain, the pointer to the trampoline,
540    // the pointer to the nested function, the pointer to pass for the
541    // 'nest' parameter, a SRCVALUE for the trampoline and another for
542    // the nested function (allowing targets to access the original
543    // Function*).  It produces a token chain as output.
544    TRAMPOLINE,
545
546    // BUILTIN_OP_END - This must be the last enum value in this list.
547    BUILTIN_OP_END
548  };
549
550  /// Node predicates
551
552  /// isBuildVectorAllOnes - Return true if the specified node is a
553  /// BUILD_VECTOR where all of the elements are ~0 or undef.
554  bool isBuildVectorAllOnes(const SDNode *N);
555
556  /// isBuildVectorAllZeros - Return true if the specified node is a
557  /// BUILD_VECTOR where all of the elements are 0 or undef.
558  bool isBuildVectorAllZeros(const SDNode *N);
559
560  //===--------------------------------------------------------------------===//
561  /// MemIndexedMode enum - This enum defines the load / store indexed
562  /// addressing modes.
563  ///
564  /// UNINDEXED    "Normal" load / store. The effective address is already
565  ///              computed and is available in the base pointer. The offset
566  ///              operand is always undefined. In addition to producing a
567  ///              chain, an unindexed load produces one value (result of the
568  ///              load); an unindexed store does not produces a value.
569  ///
570  /// PRE_INC      Similar to the unindexed mode where the effective address is
571  /// PRE_DEC      the value of the base pointer add / subtract the offset.
572  ///              It considers the computation as being folded into the load /
573  ///              store operation (i.e. the load / store does the address
574  ///              computation as well as performing the memory transaction).
575  ///              The base operand is always undefined. In addition to
576  ///              producing a chain, pre-indexed load produces two values
577  ///              (result of the load and the result of the address
578  ///              computation); a pre-indexed store produces one value (result
579  ///              of the address computation).
580  ///
581  /// POST_INC     The effective address is the value of the base pointer. The
582  /// POST_DEC     value of the offset operand is then added to / subtracted
583  ///              from the base after memory transaction. In addition to
584  ///              producing a chain, post-indexed load produces two values
585  ///              (the result of the load and the result of the base +/- offset
586  ///              computation); a post-indexed store produces one value (the
587  ///              the result of the base +/- offset computation).
588  ///
589  enum MemIndexedMode {
590    UNINDEXED = 0,
591    PRE_INC,
592    PRE_DEC,
593    POST_INC,
594    POST_DEC,
595    LAST_INDEXED_MODE
596  };
597
598  //===--------------------------------------------------------------------===//
599  /// LoadExtType enum - This enum defines the three variants of LOADEXT
600  /// (load with extension).
601  ///
602  /// SEXTLOAD loads the integer operand and sign extends it to a larger
603  ///          integer result type.
604  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
605  ///          integer result type.
606  /// EXTLOAD  is used for three things: floating point extending loads,
607  ///          integer extending loads [the top bits are undefined], and vector
608  ///          extending loads [load into low elt].
609  ///
610  enum LoadExtType {
611    NON_EXTLOAD = 0,
612    EXTLOAD,
613    SEXTLOAD,
614    ZEXTLOAD,
615    LAST_LOADX_TYPE
616  };
617
618  //===--------------------------------------------------------------------===//
619  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
620  /// below work out, when considering SETFALSE (something that never exists
621  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
622  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
623  /// to.  If the "N" column is 1, the result of the comparison is undefined if
624  /// the input is a NAN.
625  ///
626  /// All of these (except for the 'always folded ops') should be handled for
627  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
628  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
629  ///
630  /// Note that these are laid out in a specific order to allow bit-twiddling
631  /// to transform conditions.
632  enum CondCode {
633    // Opcode          N U L G E       Intuitive operation
634    SETFALSE,      //    0 0 0 0       Always false (always folded)
635    SETOEQ,        //    0 0 0 1       True if ordered and equal
636    SETOGT,        //    0 0 1 0       True if ordered and greater than
637    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
638    SETOLT,        //    0 1 0 0       True if ordered and less than
639    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
640    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
641    SETO,          //    0 1 1 1       True if ordered (no nans)
642    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
643    SETUEQ,        //    1 0 0 1       True if unordered or equal
644    SETUGT,        //    1 0 1 0       True if unordered or greater than
645    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
646    SETULT,        //    1 1 0 0       True if unordered or less than
647    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
648    SETUNE,        //    1 1 1 0       True if unordered or not equal
649    SETTRUE,       //    1 1 1 1       Always true (always folded)
650    // Don't care operations: undefined if the input is a nan.
651    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
652    SETEQ,         //  1 X 0 0 1       True if equal
653    SETGT,         //  1 X 0 1 0       True if greater than
654    SETGE,         //  1 X 0 1 1       True if greater than or equal
655    SETLT,         //  1 X 1 0 0       True if less than
656    SETLE,         //  1 X 1 0 1       True if less than or equal
657    SETNE,         //  1 X 1 1 0       True if not equal
658    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
659
660    SETCC_INVALID       // Marker value.
661  };
662
663  /// isSignedIntSetCC - Return true if this is a setcc instruction that
664  /// performs a signed comparison when used with integer operands.
665  inline bool isSignedIntSetCC(CondCode Code) {
666    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
667  }
668
669  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
670  /// performs an unsigned comparison when used with integer operands.
671  inline bool isUnsignedIntSetCC(CondCode Code) {
672    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
673  }
674
675  /// isTrueWhenEqual - Return true if the specified condition returns true if
676  /// the two operands to the condition are equal.  Note that if one of the two
677  /// operands is a NaN, this value is meaningless.
678  inline bool isTrueWhenEqual(CondCode Cond) {
679    return ((int)Cond & 1) != 0;
680  }
681
682  /// getUnorderedFlavor - This function returns 0 if the condition is always
683  /// false if an operand is a NaN, 1 if the condition is always true if the
684  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
685  /// NaN.
686  inline unsigned getUnorderedFlavor(CondCode Cond) {
687    return ((int)Cond >> 3) & 3;
688  }
689
690  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
691  /// 'op' is a valid SetCC operation.
692  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
693
694  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
695  /// when given the operation for (X op Y).
696  CondCode getSetCCSwappedOperands(CondCode Operation);
697
698  /// getSetCCOrOperation - Return the result of a logical OR between different
699  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
700  /// function returns SETCC_INVALID if it is not possible to represent the
701  /// resultant comparison.
702  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
703
704  /// getSetCCAndOperation - Return the result of a logical AND between
705  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
706  /// function returns SETCC_INVALID if it is not possible to represent the
707  /// resultant comparison.
708  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
709}  // end llvm::ISD namespace
710
711
712//===----------------------------------------------------------------------===//
713/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
714/// values as the result of a computation.  Many nodes return multiple values,
715/// from loads (which define a token and a return value) to ADDC (which returns
716/// a result and a carry value), to calls (which may return an arbitrary number
717/// of values).
718///
719/// As such, each use of a SelectionDAG computation must indicate the node that
720/// computes it as well as which return value to use from that node.  This pair
721/// of information is represented with the SDOperand value type.
722///
723class SDOperand {
724public:
725  SDNode *Val;        // The node defining the value we are using.
726  unsigned ResNo;     // Which return value of the node we are using.
727
728  SDOperand() : Val(0), ResNo(0) {}
729  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
730
731  bool operator==(const SDOperand &O) const {
732    return Val == O.Val && ResNo == O.ResNo;
733  }
734  bool operator!=(const SDOperand &O) const {
735    return !operator==(O);
736  }
737  bool operator<(const SDOperand &O) const {
738    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
739  }
740
741  SDOperand getValue(unsigned R) const {
742    return SDOperand(Val, R);
743  }
744
745  // isOperand - Return true if this node is an operand of N.
746  bool isOperand(SDNode *N) const;
747
748  /// getValueType - Return the ValueType of the referenced return value.
749  ///
750  inline MVT::ValueType getValueType() const;
751
752  // Forwarding methods - These forward to the corresponding methods in SDNode.
753  inline unsigned getOpcode() const;
754  inline unsigned getNumOperands() const;
755  inline const SDOperand &getOperand(unsigned i) const;
756  inline uint64_t getConstantOperandVal(unsigned i) const;
757  inline bool isTargetOpcode() const;
758  inline unsigned getTargetOpcode() const;
759
760  /// hasOneUse - Return true if there is exactly one operation using this
761  /// result value of the defining operator.
762  inline bool hasOneUse() const;
763};
764
765
766template<> struct DenseMapKeyInfo<SDOperand> {
767  static inline SDOperand getEmptyKey() { return SDOperand((SDNode*)-1, -1U); }
768  static inline SDOperand getTombstoneKey() { return SDOperand((SDNode*)-1, 0);}
769  static unsigned getHashValue(const SDOperand &Val) {
770    return (unsigned)((uintptr_t)Val.Val >> 4) ^
771           (unsigned)((uintptr_t)Val.Val >> 9) + Val.ResNo;
772  }
773  static bool isPod() { return true; }
774};
775
776/// simplify_type specializations - Allow casting operators to work directly on
777/// SDOperands as if they were SDNode*'s.
778template<> struct simplify_type<SDOperand> {
779  typedef SDNode* SimpleType;
780  static SimpleType getSimplifiedValue(const SDOperand &Val) {
781    return static_cast<SimpleType>(Val.Val);
782  }
783};
784template<> struct simplify_type<const SDOperand> {
785  typedef SDNode* SimpleType;
786  static SimpleType getSimplifiedValue(const SDOperand &Val) {
787    return static_cast<SimpleType>(Val.Val);
788  }
789};
790
791
792/// SDNode - Represents one node in the SelectionDAG.
793///
794class SDNode : public FoldingSetNode {
795  /// NodeType - The operation that this node performs.
796  ///
797  unsigned short NodeType;
798
799  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
800  /// then they will be delete[]'d when the node is destroyed.
801  bool OperandsNeedDelete : 1;
802
803  /// NodeId - Unique id per SDNode in the DAG.
804  int NodeId;
805
806  /// OperandList - The values that are used by this operation.
807  ///
808  SDOperand *OperandList;
809
810  /// ValueList - The types of the values this node defines.  SDNode's may
811  /// define multiple values simultaneously.
812  const MVT::ValueType *ValueList;
813
814  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
815  unsigned short NumOperands, NumValues;
816
817  /// Prev/Next pointers - These pointers form the linked list of of the
818  /// AllNodes list in the current DAG.
819  SDNode *Prev, *Next;
820  friend struct ilist_traits<SDNode>;
821
822  /// Uses - These are all of the SDNode's that use a value produced by this
823  /// node.
824  SmallVector<SDNode*,3> Uses;
825
826  // Out-of-line virtual method to give class a home.
827  virtual void ANCHOR();
828public:
829  virtual ~SDNode() {
830    assert(NumOperands == 0 && "Operand list not cleared before deletion");
831    NodeType = ISD::DELETED_NODE;
832  }
833
834  //===--------------------------------------------------------------------===//
835  //  Accessors
836  //
837  unsigned getOpcode()  const { return NodeType; }
838  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
839  unsigned getTargetOpcode() const {
840    assert(isTargetOpcode() && "Not a target opcode!");
841    return NodeType - ISD::BUILTIN_OP_END;
842  }
843
844  size_t use_size() const { return Uses.size(); }
845  bool use_empty() const { return Uses.empty(); }
846  bool hasOneUse() const { return Uses.size() == 1; }
847
848  /// getNodeId - Return the unique node id.
849  ///
850  int getNodeId() const { return NodeId; }
851
852  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
853  use_iterator use_begin() const { return Uses.begin(); }
854  use_iterator use_end() const { return Uses.end(); }
855
856  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
857  /// indicated value.  This method ignores uses of other values defined by this
858  /// operation.
859  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
860
861  /// hasAnyUseOfValue - Return true if there are any use of the indicated
862  /// value. This method ignores uses of other values defined by this operation.
863  bool hasAnyUseOfValue(unsigned Value) const;
864
865  /// isOnlyUse - Return true if this node is the only use of N.
866  ///
867  bool isOnlyUse(SDNode *N) const;
868
869  /// isOperand - Return true if this node is an operand of N.
870  ///
871  bool isOperand(SDNode *N) const;
872
873  /// isPredecessor - Return true if this node is a predecessor of N. This node
874  /// is either an operand of N or it can be reached by recursively traversing
875  /// up the operands.
876  /// NOTE: this is an expensive method. Use it carefully.
877  bool isPredecessor(SDNode *N) const;
878
879  /// getNumOperands - Return the number of values used by this operation.
880  ///
881  unsigned getNumOperands() const { return NumOperands; }
882
883  /// getConstantOperandVal - Helper method returns the integer value of a
884  /// ConstantSDNode operand.
885  uint64_t getConstantOperandVal(unsigned Num) const;
886
887  const SDOperand &getOperand(unsigned Num) const {
888    assert(Num < NumOperands && "Invalid child # of SDNode!");
889    return OperandList[Num];
890  }
891
892  typedef const SDOperand* op_iterator;
893  op_iterator op_begin() const { return OperandList; }
894  op_iterator op_end() const { return OperandList+NumOperands; }
895
896
897  SDVTList getVTList() const {
898    SDVTList X = { ValueList, NumValues };
899    return X;
900  };
901
902  /// getNumValues - Return the number of values defined/returned by this
903  /// operator.
904  ///
905  unsigned getNumValues() const { return NumValues; }
906
907  /// getValueType - Return the type of a specified result.
908  ///
909  MVT::ValueType getValueType(unsigned ResNo) const {
910    assert(ResNo < NumValues && "Illegal result number!");
911    return ValueList[ResNo];
912  }
913
914  typedef const MVT::ValueType* value_iterator;
915  value_iterator value_begin() const { return ValueList; }
916  value_iterator value_end() const { return ValueList+NumValues; }
917
918  /// getOperationName - Return the opcode of this operation for printing.
919  ///
920  std::string getOperationName(const SelectionDAG *G = 0) const;
921  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
922  void dump() const;
923  void dump(const SelectionDAG *G) const;
924
925  static bool classof(const SDNode *) { return true; }
926
927  /// Profile - Gather unique data for the node.
928  ///
929  void Profile(FoldingSetNodeID &ID);
930
931protected:
932  friend class SelectionDAG;
933
934  /// getValueTypeList - Return a pointer to the specified value type.
935  ///
936  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
937  static SDVTList getSDVTList(MVT::ValueType VT) {
938    SDVTList Ret = { getValueTypeList(VT), 1 };
939    return Ret;
940  }
941
942  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
943    : NodeType(Opc), NodeId(-1) {
944    OperandsNeedDelete = true;
945    NumOperands = NumOps;
946    OperandList = NumOps ? new SDOperand[NumOperands] : 0;
947
948    for (unsigned i = 0; i != NumOps; ++i) {
949      OperandList[i] = Ops[i];
950      Ops[i].Val->Uses.push_back(this);
951    }
952
953    ValueList = VTs.VTs;
954    NumValues = VTs.NumVTs;
955    Prev = 0; Next = 0;
956  }
957  SDNode(unsigned Opc, SDVTList VTs) : NodeType(Opc), NodeId(-1) {
958    OperandsNeedDelete = false;  // Operands set with InitOperands.
959    NumOperands = 0;
960    OperandList = 0;
961
962    ValueList = VTs.VTs;
963    NumValues = VTs.NumVTs;
964    Prev = 0; Next = 0;
965  }
966
967  /// InitOperands - Initialize the operands list of this node with the
968  /// specified values, which are part of the node (thus they don't need to be
969  /// copied in or allocated).
970  void InitOperands(SDOperand *Ops, unsigned NumOps) {
971    assert(OperandList == 0 && "Operands already set!");
972    NumOperands = NumOps;
973    OperandList = Ops;
974
975    for (unsigned i = 0; i != NumOps; ++i)
976      Ops[i].Val->Uses.push_back(this);
977  }
978
979  /// MorphNodeTo - This frees the operands of the current node, resets the
980  /// opcode, types, and operands to the specified value.  This should only be
981  /// used by the SelectionDAG class.
982  void MorphNodeTo(unsigned Opc, SDVTList L,
983                   const SDOperand *Ops, unsigned NumOps);
984
985  void addUser(SDNode *User) {
986    Uses.push_back(User);
987  }
988  void removeUser(SDNode *User) {
989    // Remove this user from the operand's use list.
990    for (unsigned i = Uses.size(); ; --i) {
991      assert(i != 0 && "Didn't find user!");
992      if (Uses[i-1] == User) {
993        Uses[i-1] = Uses.back();
994        Uses.pop_back();
995        return;
996      }
997    }
998  }
999
1000  void setNodeId(int Id) {
1001    NodeId = Id;
1002  }
1003};
1004
1005
1006// Define inline functions from the SDOperand class.
1007
1008inline unsigned SDOperand::getOpcode() const {
1009  return Val->getOpcode();
1010}
1011inline MVT::ValueType SDOperand::getValueType() const {
1012  return Val->getValueType(ResNo);
1013}
1014inline unsigned SDOperand::getNumOperands() const {
1015  return Val->getNumOperands();
1016}
1017inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1018  return Val->getOperand(i);
1019}
1020inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1021  return Val->getConstantOperandVal(i);
1022}
1023inline bool SDOperand::isTargetOpcode() const {
1024  return Val->isTargetOpcode();
1025}
1026inline unsigned SDOperand::getTargetOpcode() const {
1027  return Val->getTargetOpcode();
1028}
1029inline bool SDOperand::hasOneUse() const {
1030  return Val->hasNUsesOfValue(1, ResNo);
1031}
1032
1033/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1034/// to allow co-allocation of node operands with the node itself.
1035class UnarySDNode : public SDNode {
1036  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1037  SDOperand Op;
1038public:
1039  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1040    : SDNode(Opc, VTs), Op(X) {
1041    InitOperands(&Op, 1);
1042  }
1043};
1044
1045/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1046/// to allow co-allocation of node operands with the node itself.
1047class BinarySDNode : public SDNode {
1048  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1049  SDOperand Ops[2];
1050public:
1051  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1052    : SDNode(Opc, VTs) {
1053    Ops[0] = X;
1054    Ops[1] = Y;
1055    InitOperands(Ops, 2);
1056  }
1057};
1058
1059/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1060/// to allow co-allocation of node operands with the node itself.
1061class TernarySDNode : public SDNode {
1062  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1063  SDOperand Ops[3];
1064public:
1065  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1066                SDOperand Z)
1067    : SDNode(Opc, VTs) {
1068    Ops[0] = X;
1069    Ops[1] = Y;
1070    Ops[2] = Z;
1071    InitOperands(Ops, 3);
1072  }
1073};
1074
1075
1076/// HandleSDNode - This class is used to form a handle around another node that
1077/// is persistant and is updated across invocations of replaceAllUsesWith on its
1078/// operand.  This node should be directly created by end-users and not added to
1079/// the AllNodes list.
1080class HandleSDNode : public SDNode {
1081  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1082  SDOperand Op;
1083public:
1084  explicit HandleSDNode(SDOperand X)
1085    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) {
1086    InitOperands(&Op, 1);
1087  }
1088  ~HandleSDNode();
1089  SDOperand getValue() const { return Op; }
1090};
1091
1092class StringSDNode : public SDNode {
1093  std::string Value;
1094  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1095protected:
1096  friend class SelectionDAG;
1097  explicit StringSDNode(const std::string &val)
1098    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
1099  }
1100public:
1101  const std::string &getValue() const { return Value; }
1102  static bool classof(const StringSDNode *) { return true; }
1103  static bool classof(const SDNode *N) {
1104    return N->getOpcode() == ISD::STRING;
1105  }
1106};
1107
1108class ConstantSDNode : public SDNode {
1109  uint64_t Value;
1110  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1111protected:
1112  friend class SelectionDAG;
1113  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1114    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1115      Value(val) {
1116  }
1117public:
1118
1119  uint64_t getValue() const { return Value; }
1120
1121  int64_t getSignExtended() const {
1122    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1123    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1124  }
1125
1126  bool isNullValue() const { return Value == 0; }
1127  bool isAllOnesValue() const {
1128    return Value == MVT::getIntVTBitMask(getValueType(0));
1129  }
1130
1131  static bool classof(const ConstantSDNode *) { return true; }
1132  static bool classof(const SDNode *N) {
1133    return N->getOpcode() == ISD::Constant ||
1134           N->getOpcode() == ISD::TargetConstant;
1135  }
1136};
1137
1138class ConstantFPSDNode : public SDNode {
1139  double Value;
1140  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1141protected:
1142  friend class SelectionDAG;
1143  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1144    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1145             getSDVTList(VT)), Value(val) {
1146  }
1147public:
1148
1149  double getValue() const { return Value; }
1150
1151  /// isExactlyValue - We don't rely on operator== working on double values, as
1152  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1153  /// As such, this method can be used to do an exact bit-for-bit comparison of
1154  /// two floating point values.
1155  bool isExactlyValue(double V) const;
1156
1157  static bool classof(const ConstantFPSDNode *) { return true; }
1158  static bool classof(const SDNode *N) {
1159    return N->getOpcode() == ISD::ConstantFP ||
1160           N->getOpcode() == ISD::TargetConstantFP;
1161  }
1162};
1163
1164class GlobalAddressSDNode : public SDNode {
1165  GlobalValue *TheGlobal;
1166  int Offset;
1167  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1168protected:
1169  friend class SelectionDAG;
1170  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1171                      int o = 0);
1172public:
1173
1174  GlobalValue *getGlobal() const { return TheGlobal; }
1175  int getOffset() const { return Offset; }
1176
1177  static bool classof(const GlobalAddressSDNode *) { return true; }
1178  static bool classof(const SDNode *N) {
1179    return N->getOpcode() == ISD::GlobalAddress ||
1180           N->getOpcode() == ISD::TargetGlobalAddress ||
1181           N->getOpcode() == ISD::GlobalTLSAddress ||
1182           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1183  }
1184};
1185
1186class FrameIndexSDNode : public SDNode {
1187  int FI;
1188  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1189protected:
1190  friend class SelectionDAG;
1191  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1192    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1193      FI(fi) {
1194  }
1195public:
1196
1197  int getIndex() const { return FI; }
1198
1199  static bool classof(const FrameIndexSDNode *) { return true; }
1200  static bool classof(const SDNode *N) {
1201    return N->getOpcode() == ISD::FrameIndex ||
1202           N->getOpcode() == ISD::TargetFrameIndex;
1203  }
1204};
1205
1206class JumpTableSDNode : public SDNode {
1207  int JTI;
1208  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1209protected:
1210  friend class SelectionDAG;
1211  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1212    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1213      JTI(jti) {
1214  }
1215public:
1216
1217    int getIndex() const { return JTI; }
1218
1219  static bool classof(const JumpTableSDNode *) { return true; }
1220  static bool classof(const SDNode *N) {
1221    return N->getOpcode() == ISD::JumpTable ||
1222           N->getOpcode() == ISD::TargetJumpTable;
1223  }
1224};
1225
1226class ConstantPoolSDNode : public SDNode {
1227  union {
1228    Constant *ConstVal;
1229    MachineConstantPoolValue *MachineCPVal;
1230  } Val;
1231  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1232  unsigned Alignment;
1233  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1234protected:
1235  friend class SelectionDAG;
1236  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1237                     int o=0)
1238    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1239             getSDVTList(VT)), Offset(o), Alignment(0) {
1240    assert((int)Offset >= 0 && "Offset is too large");
1241    Val.ConstVal = c;
1242  }
1243  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1244                     unsigned Align)
1245    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1246             getSDVTList(VT)), Offset(o), Alignment(Align) {
1247    assert((int)Offset >= 0 && "Offset is too large");
1248    Val.ConstVal = c;
1249  }
1250  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1251                     MVT::ValueType VT, int o=0)
1252    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1253             getSDVTList(VT)), Offset(o), Alignment(0) {
1254    assert((int)Offset >= 0 && "Offset is too large");
1255    Val.MachineCPVal = v;
1256    Offset |= 1 << (sizeof(unsigned)*8-1);
1257  }
1258  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1259                     MVT::ValueType VT, int o, unsigned Align)
1260    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1261             getSDVTList(VT)), Offset(o), Alignment(Align) {
1262    assert((int)Offset >= 0 && "Offset is too large");
1263    Val.MachineCPVal = v;
1264    Offset |= 1 << (sizeof(unsigned)*8-1);
1265  }
1266public:
1267
1268  bool isMachineConstantPoolEntry() const {
1269    return (int)Offset < 0;
1270  }
1271
1272  Constant *getConstVal() const {
1273    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1274    return Val.ConstVal;
1275  }
1276
1277  MachineConstantPoolValue *getMachineCPVal() const {
1278    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1279    return Val.MachineCPVal;
1280  }
1281
1282  int getOffset() const {
1283    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1284  }
1285
1286  // Return the alignment of this constant pool object, which is either 0 (for
1287  // default alignment) or log2 of the desired value.
1288  unsigned getAlignment() const { return Alignment; }
1289
1290  const Type *getType() const;
1291
1292  static bool classof(const ConstantPoolSDNode *) { return true; }
1293  static bool classof(const SDNode *N) {
1294    return N->getOpcode() == ISD::ConstantPool ||
1295           N->getOpcode() == ISD::TargetConstantPool;
1296  }
1297};
1298
1299class BasicBlockSDNode : public SDNode {
1300  MachineBasicBlock *MBB;
1301  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1302protected:
1303  friend class SelectionDAG;
1304  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1305    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1306  }
1307public:
1308
1309  MachineBasicBlock *getBasicBlock() const { return MBB; }
1310
1311  static bool classof(const BasicBlockSDNode *) { return true; }
1312  static bool classof(const SDNode *N) {
1313    return N->getOpcode() == ISD::BasicBlock;
1314  }
1315};
1316
1317class SrcValueSDNode : public SDNode {
1318  const Value *V;
1319  int offset;
1320  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1321protected:
1322  friend class SelectionDAG;
1323  SrcValueSDNode(const Value* v, int o)
1324    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v), offset(o) {
1325  }
1326
1327public:
1328  const Value *getValue() const { return V; }
1329  int getOffset() const { return offset; }
1330
1331  static bool classof(const SrcValueSDNode *) { return true; }
1332  static bool classof(const SDNode *N) {
1333    return N->getOpcode() == ISD::SRCVALUE;
1334  }
1335};
1336
1337
1338class RegisterSDNode : public SDNode {
1339  unsigned Reg;
1340  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1341protected:
1342  friend class SelectionDAG;
1343  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1344    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1345  }
1346public:
1347
1348  unsigned getReg() const { return Reg; }
1349
1350  static bool classof(const RegisterSDNode *) { return true; }
1351  static bool classof(const SDNode *N) {
1352    return N->getOpcode() == ISD::Register;
1353  }
1354};
1355
1356class ExternalSymbolSDNode : public SDNode {
1357  const char *Symbol;
1358  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1359protected:
1360  friend class SelectionDAG;
1361  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1362    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1363             getSDVTList(VT)), Symbol(Sym) {
1364  }
1365public:
1366
1367  const char *getSymbol() const { return Symbol; }
1368
1369  static bool classof(const ExternalSymbolSDNode *) { return true; }
1370  static bool classof(const SDNode *N) {
1371    return N->getOpcode() == ISD::ExternalSymbol ||
1372           N->getOpcode() == ISD::TargetExternalSymbol;
1373  }
1374};
1375
1376class CondCodeSDNode : public SDNode {
1377  ISD::CondCode Condition;
1378  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1379protected:
1380  friend class SelectionDAG;
1381  explicit CondCodeSDNode(ISD::CondCode Cond)
1382    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1383  }
1384public:
1385
1386  ISD::CondCode get() const { return Condition; }
1387
1388  static bool classof(const CondCodeSDNode *) { return true; }
1389  static bool classof(const SDNode *N) {
1390    return N->getOpcode() == ISD::CONDCODE;
1391  }
1392};
1393
1394/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1395/// to parameterize some operations.
1396class VTSDNode : public SDNode {
1397  MVT::ValueType ValueType;
1398  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1399protected:
1400  friend class SelectionDAG;
1401  explicit VTSDNode(MVT::ValueType VT)
1402    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
1403  }
1404public:
1405
1406  MVT::ValueType getVT() const { return ValueType; }
1407
1408  static bool classof(const VTSDNode *) { return true; }
1409  static bool classof(const SDNode *N) {
1410    return N->getOpcode() == ISD::VALUETYPE;
1411  }
1412};
1413
1414/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1415///
1416class LoadSDNode : public SDNode {
1417  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1418  SDOperand Ops[3];
1419
1420  // AddrMode - unindexed, pre-indexed, post-indexed.
1421  ISD::MemIndexedMode AddrMode;
1422
1423  // ExtType - non-ext, anyext, sext, zext.
1424  ISD::LoadExtType ExtType;
1425
1426  // LoadedVT - VT of loaded value before extension.
1427  MVT::ValueType LoadedVT;
1428
1429  // SrcValue - Memory location for alias analysis.
1430  const Value *SrcValue;
1431
1432  // SVOffset - Memory location offset.
1433  int SVOffset;
1434
1435  // Alignment - Alignment of memory location in bytes.
1436  unsigned Alignment;
1437
1438  // IsVolatile - True if the load is volatile.
1439  bool IsVolatile;
1440protected:
1441  friend class SelectionDAG;
1442  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
1443             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1444             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1445    : SDNode(ISD::LOAD, VTs),
1446      AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O),
1447      Alignment(Align), IsVolatile(Vol) {
1448    Ops[0] = ChainPtrOff[0]; // Chain
1449    Ops[1] = ChainPtrOff[1]; // Ptr
1450    Ops[2] = ChainPtrOff[2]; // Off
1451    InitOperands(Ops, 3);
1452    assert(Align != 0 && "Loads should have non-zero aligment");
1453    assert((getOffset().getOpcode() == ISD::UNDEF ||
1454            AddrMode != ISD::UNINDEXED) &&
1455           "Only indexed load has a non-undef offset operand");
1456  }
1457public:
1458
1459  const SDOperand getChain() const { return getOperand(0); }
1460  const SDOperand getBasePtr() const { return getOperand(1); }
1461  const SDOperand getOffset() const { return getOperand(2); }
1462  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1463  ISD::LoadExtType getExtensionType() const { return ExtType; }
1464  MVT::ValueType getLoadedVT() const { return LoadedVT; }
1465  const Value *getSrcValue() const { return SrcValue; }
1466  int getSrcValueOffset() const { return SVOffset; }
1467  unsigned getAlignment() const { return Alignment; }
1468  bool isVolatile() const { return IsVolatile; }
1469
1470  static bool classof(const LoadSDNode *) { return true; }
1471  static bool classof(const SDNode *N) {
1472    return N->getOpcode() == ISD::LOAD;
1473  }
1474};
1475
1476/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1477///
1478class StoreSDNode : public SDNode {
1479  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1480  SDOperand Ops[4];
1481
1482  // AddrMode - unindexed, pre-indexed, post-indexed.
1483  ISD::MemIndexedMode AddrMode;
1484
1485  // IsTruncStore - True is the op does a truncation before store.
1486  bool IsTruncStore;
1487
1488  // StoredVT - VT of the value after truncation.
1489  MVT::ValueType StoredVT;
1490
1491  // SrcValue - Memory location for alias analysis.
1492  const Value *SrcValue;
1493
1494  // SVOffset - Memory location offset.
1495  int SVOffset;
1496
1497  // Alignment - Alignment of memory location in bytes.
1498  unsigned Alignment;
1499
1500  // IsVolatile - True if the store is volatile.
1501  bool IsVolatile;
1502protected:
1503  friend class SelectionDAG;
1504  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
1505              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
1506              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1507    : SDNode(ISD::STORE, VTs),
1508      AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV),
1509      SVOffset(O), Alignment(Align), IsVolatile(Vol) {
1510    Ops[0] = ChainValuePtrOff[0]; // Chain
1511    Ops[1] = ChainValuePtrOff[1]; // Value
1512    Ops[2] = ChainValuePtrOff[2]; // Ptr
1513    Ops[3] = ChainValuePtrOff[3]; // Off
1514    InitOperands(Ops, 4);
1515    assert(Align != 0 && "Stores should have non-zero aligment");
1516    assert((getOffset().getOpcode() == ISD::UNDEF ||
1517            AddrMode != ISD::UNINDEXED) &&
1518           "Only indexed store has a non-undef offset operand");
1519  }
1520public:
1521
1522  const SDOperand getChain() const { return getOperand(0); }
1523  const SDOperand getValue() const { return getOperand(1); }
1524  const SDOperand getBasePtr() const { return getOperand(2); }
1525  const SDOperand getOffset() const { return getOperand(3); }
1526  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1527  bool isTruncatingStore() const { return IsTruncStore; }
1528  MVT::ValueType getStoredVT() const { return StoredVT; }
1529  const Value *getSrcValue() const { return SrcValue; }
1530  int getSrcValueOffset() const { return SVOffset; }
1531  unsigned getAlignment() const { return Alignment; }
1532  bool isVolatile() const { return IsVolatile; }
1533
1534  static bool classof(const StoreSDNode *) { return true; }
1535  static bool classof(const SDNode *N) {
1536    return N->getOpcode() == ISD::STORE;
1537  }
1538};
1539
1540
1541class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1542  SDNode *Node;
1543  unsigned Operand;
1544
1545  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1546public:
1547  bool operator==(const SDNodeIterator& x) const {
1548    return Operand == x.Operand;
1549  }
1550  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1551
1552  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1553    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1554    Operand = I.Operand;
1555    return *this;
1556  }
1557
1558  pointer operator*() const {
1559    return Node->getOperand(Operand).Val;
1560  }
1561  pointer operator->() const { return operator*(); }
1562
1563  SDNodeIterator& operator++() {                // Preincrement
1564    ++Operand;
1565    return *this;
1566  }
1567  SDNodeIterator operator++(int) { // Postincrement
1568    SDNodeIterator tmp = *this; ++*this; return tmp;
1569  }
1570
1571  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1572  static SDNodeIterator end  (SDNode *N) {
1573    return SDNodeIterator(N, N->getNumOperands());
1574  }
1575
1576  unsigned getOperand() const { return Operand; }
1577  const SDNode *getNode() const { return Node; }
1578};
1579
1580template <> struct GraphTraits<SDNode*> {
1581  typedef SDNode NodeType;
1582  typedef SDNodeIterator ChildIteratorType;
1583  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1584  static inline ChildIteratorType child_begin(NodeType *N) {
1585    return SDNodeIterator::begin(N);
1586  }
1587  static inline ChildIteratorType child_end(NodeType *N) {
1588    return SDNodeIterator::end(N);
1589  }
1590};
1591
1592template<>
1593struct ilist_traits<SDNode> {
1594  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1595  static SDNode *getNext(const SDNode *N) { return N->Next; }
1596
1597  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1598  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1599
1600  static SDNode *createSentinel() {
1601    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
1602  }
1603  static void destroySentinel(SDNode *N) { delete N; }
1604  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1605
1606
1607  void addNodeToList(SDNode *NTy) {}
1608  void removeNodeFromList(SDNode *NTy) {}
1609  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1610                             const ilist_iterator<SDNode> &X,
1611                             const ilist_iterator<SDNode> &Y) {}
1612};
1613
1614namespace ISD {
1615  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1616  /// load.
1617  inline bool isNON_EXTLoad(const SDNode *N) {
1618    return N->getOpcode() == ISD::LOAD &&
1619      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1620  }
1621
1622  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1623  ///
1624  inline bool isEXTLoad(const SDNode *N) {
1625    return N->getOpcode() == ISD::LOAD &&
1626      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1627  }
1628
1629  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1630  ///
1631  inline bool isSEXTLoad(const SDNode *N) {
1632    return N->getOpcode() == ISD::LOAD &&
1633      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1634  }
1635
1636  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1637  ///
1638  inline bool isZEXTLoad(const SDNode *N) {
1639    return N->getOpcode() == ISD::LOAD &&
1640      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1641  }
1642
1643  /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
1644  ///
1645  inline bool isUNINDEXEDLoad(const SDNode *N) {
1646    return N->getOpcode() == ISD::LOAD &&
1647      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
1648  }
1649
1650  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
1651  /// store.
1652  inline bool isNON_TRUNCStore(const SDNode *N) {
1653    return N->getOpcode() == ISD::STORE &&
1654      !cast<StoreSDNode>(N)->isTruncatingStore();
1655  }
1656
1657  /// isTRUNCStore - Returns true if the specified node is a truncating
1658  /// store.
1659  inline bool isTRUNCStore(const SDNode *N) {
1660    return N->getOpcode() == ISD::STORE &&
1661      cast<StoreSDNode>(N)->isTruncatingStore();
1662  }
1663}
1664
1665
1666} // end llvm namespace
1667
1668#endif
1669