SelectionDAGNodes.h revision 3b521d5acccf4fecdb1aea878180df6dc29553dc
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/Constants.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/ilist_node.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/RecyclingAllocator.h"
33#include "llvm/Support/DataTypes.h"
34#include <cassert>
35
36namespace llvm {
37
38class SelectionDAG;
39class GlobalValue;
40class MachineBasicBlock;
41class MachineConstantPoolValue;
42class SDNode;
43class CompileUnitDesc;
44template <typename T> struct DenseMapInfo;
45template <typename T> struct simplify_type;
46template <typename T> struct ilist_traits;
47
48/// SDVTList - This represents a list of ValueType's that has been intern'd by
49/// a SelectionDAG.  Instances of this simple value class are returned by
50/// SelectionDAG::getVTList(...).
51///
52struct SDVTList {
53  const MVT *VTs;
54  unsigned short NumVTs;
55};
56
57/// ISD namespace - This namespace contains an enum which represents all of the
58/// SelectionDAG node types and value types.
59///
60/// If you add new elements here you should increase OpActionsCapacity in
61/// TargetLowering.h by the number of new elements.
62namespace ISD {
63
64  //===--------------------------------------------------------------------===//
65  /// ISD::NodeType enum - This enum defines all of the operators valid in a
66  /// SelectionDAG.
67  ///
68  enum NodeType {
69    // DELETED_NODE - This is an illegal flag value that is used to catch
70    // errors.  This opcode is not a legal opcode for any node.
71    DELETED_NODE,
72
73    // EntryToken - This is the marker used to indicate the start of the region.
74    EntryToken,
75
76    // TokenFactor - This node takes multiple tokens as input and produces a
77    // single token result.  This is used to represent the fact that the operand
78    // operators are independent of each other.
79    TokenFactor,
80
81    // AssertSext, AssertZext - These nodes record if a register contains a
82    // value that has already been zero or sign extended from a narrower type.
83    // These nodes take two operands.  The first is the node that has already
84    // been extended, and the second is a value type node indicating the width
85    // of the extension
86    AssertSext, AssertZext,
87
88    // Various leaf nodes.
89    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
90    Constant, ConstantFP,
91    GlobalAddress, GlobalTLSAddress, FrameIndex,
92    JumpTable, ConstantPool, ExternalSymbol,
93
94    // The address of the GOT
95    GLOBAL_OFFSET_TABLE,
96
97    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
98    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
99    // of the frame or return address to return.  An index of zero corresponds
100    // to the current function's frame or return address, an index of one to the
101    // parent's frame or return address, and so on.
102    FRAMEADDR, RETURNADDR,
103
104    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
105    // first (possible) on-stack argument. This is needed for correct stack
106    // adjustment during unwind.
107    FRAME_TO_ARGS_OFFSET,
108
109    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
110    // address of the exception block on entry to an landing pad block.
111    EXCEPTIONADDR,
112
113    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
114    // the selection index of the exception thrown.
115    EHSELECTION,
116
117    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
118    // 'eh_return' gcc dwarf builtin, which is used to return from
119    // exception. The general meaning is: adjust stack by OFFSET and pass
120    // execution to HANDLER. Many platform-related details also :)
121    EH_RETURN,
122
123    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
124    // simplification of the constant.
125    TargetConstant,
126    TargetConstantFP,
127
128    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
129    // anything else with this node, and this is valid in the target-specific
130    // dag, turning into a GlobalAddress operand.
131    TargetGlobalAddress,
132    TargetGlobalTLSAddress,
133    TargetFrameIndex,
134    TargetJumpTable,
135    TargetConstantPool,
136    TargetExternalSymbol,
137
138    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
139    /// This node represents a target intrinsic function with no side effects.
140    /// The first operand is the ID number of the intrinsic from the
141    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
142    /// node has returns the result of the intrinsic.
143    INTRINSIC_WO_CHAIN,
144
145    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
146    /// This node represents a target intrinsic function with side effects that
147    /// returns a result.  The first operand is a chain pointer.  The second is
148    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
149    /// operands to the intrinsic follow.  The node has two results, the result
150    /// of the intrinsic and an output chain.
151    INTRINSIC_W_CHAIN,
152
153    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
154    /// This node represents a target intrinsic function with side effects that
155    /// does not return a result.  The first operand is a chain pointer.  The
156    /// second is the ID number of the intrinsic from the llvm::Intrinsic
157    /// namespace.  The operands to the intrinsic follow.
158    INTRINSIC_VOID,
159
160    // CopyToReg - This node has three operands: a chain, a register number to
161    // set to this value, and a value.
162    CopyToReg,
163
164    // CopyFromReg - This node indicates that the input value is a virtual or
165    // physical register that is defined outside of the scope of this
166    // SelectionDAG.  The register is available from the RegisterSDNode object.
167    CopyFromReg,
168
169    // UNDEF - An undefined node
170    UNDEF,
171
172    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
173    /// represents the formal arguments for a function.  CC# is a Constant value
174    /// indicating the calling convention of the function, and ISVARARG is a
175    /// flag that indicates whether the function is varargs or not. This node
176    /// has one result value for each incoming argument, plus one for the output
177    /// chain. It must be custom legalized. See description of CALL node for
178    /// FLAG argument contents explanation.
179    ///
180    FORMAL_ARGUMENTS,
181
182    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
183    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
184    /// This node represents a fully general function call, before the legalizer
185    /// runs.  This has one result value for each argument / flag pair, plus
186    /// a chain result. It must be custom legalized. Flag argument indicates
187    /// misc. argument attributes. Currently:
188    /// Bit 0 - signness
189    /// Bit 1 - 'inreg' attribute
190    /// Bit 2 - 'sret' attribute
191    /// Bit 4 - 'byval' attribute
192    /// Bit 5 - 'nest' attribute
193    /// Bit 6-9 - alignment of byval structures
194    /// Bit 10-26 - size of byval structures
195    /// Bits 31:27 - argument ABI alignment in the first argument piece and
196    /// alignment '1' in other argument pieces.
197    ///
198    /// CALL nodes use the CallSDNode subclass of SDNode, which
199    /// additionally carries information about the calling convention,
200    /// whether the call is varargs, and if it's marked as a tail call.
201    ///
202    CALL,
203
204    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
205    // a Constant, which is required to be operand #1) half of the integer or
206    // float value specified as operand #0.  This is only for use before
207    // legalization, for values that will be broken into multiple registers.
208    EXTRACT_ELEMENT,
209
210    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
211    // two values of the same integer value type, this produces a value twice as
212    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
213    BUILD_PAIR,
214
215    // MERGE_VALUES - This node takes multiple discrete operands and returns
216    // them all as its individual results.  This nodes has exactly the same
217    // number of inputs and outputs, and is only valid before legalization.
218    // This node is useful for some pieces of the code generator that want to
219    // think about a single node with multiple results, not multiple nodes.
220    MERGE_VALUES,
221
222    // Simple integer binary arithmetic operators.
223    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
224
225    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
226    // a signed/unsigned value of type i[2*N], and return the full value as
227    // two results, each of type iN.
228    SMUL_LOHI, UMUL_LOHI,
229
230    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
231    // remainder result.
232    SDIVREM, UDIVREM,
233
234    // CARRY_FALSE - This node is used when folding other nodes,
235    // like ADDC/SUBC, which indicate the carry result is always false.
236    CARRY_FALSE,
237
238    // Carry-setting nodes for multiple precision addition and subtraction.
239    // These nodes take two operands of the same value type, and produce two
240    // results.  The first result is the normal add or sub result, the second
241    // result is the carry flag result.
242    ADDC, SUBC,
243
244    // Carry-using nodes for multiple precision addition and subtraction.  These
245    // nodes take three operands: The first two are the normal lhs and rhs to
246    // the add or sub, and the third is the input carry flag.  These nodes
247    // produce two results; the normal result of the add or sub, and the output
248    // carry flag.  These nodes both read and write a carry flag to allow them
249    // to them to be chained together for add and sub of arbitrarily large
250    // values.
251    ADDE, SUBE,
252
253    // Simple binary floating point operators.
254    FADD, FSUB, FMUL, FDIV, FREM,
255
256    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
257    // DAG node does not require that X and Y have the same type, just that they
258    // are both floating point.  X and the result must have the same type.
259    // FCOPYSIGN(f32, f64) is allowed.
260    FCOPYSIGN,
261
262    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
263    // value as an integer 0/1 value.
264    FGETSIGN,
265
266    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
267    /// with the specified, possibly variable, elements.  The number of elements
268    /// is required to be a power of two.
269    BUILD_VECTOR,
270
271    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
272    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
273    /// element type then VAL is truncated before replacement.
274    INSERT_VECTOR_ELT,
275
276    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
277    /// identified by the (potentially variable) element number IDX.
278    EXTRACT_VECTOR_ELT,
279
280    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
281    /// vector type with the same length and element type, this produces a
282    /// concatenated vector result value, with length equal to the sum of the
283    /// lengths of the input vectors.
284    CONCAT_VECTORS,
285
286    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
287    /// vector value) starting with the (potentially variable) element number
288    /// IDX, which must be a multiple of the result vector length.
289    EXTRACT_SUBVECTOR,
290
291    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
292    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
293    /// (maybe of an illegal datatype) or undef that indicate which value each
294    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
295    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
296    /// that the indices must be constants and are in terms of the element size
297    /// of VEC1/VEC2, not in terms of bytes.
298    VECTOR_SHUFFLE,
299
300    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
301    /// scalar value into element 0 of the resultant vector type.  The top
302    /// elements 1 to N-1 of the N-element vector are undefined.
303    SCALAR_TO_VECTOR,
304
305    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
306    // This node takes a superreg and a constant sub-register index as operands.
307    // Note sub-register indices must be increasing. That is, if the
308    // sub-register index of a 8-bit sub-register is N, then the index for a
309    // 16-bit sub-register must be at least N+1.
310    EXTRACT_SUBREG,
311
312    // INSERT_SUBREG - This node is used to insert a sub-register value.
313    // This node takes a superreg, a subreg value, and a constant sub-register
314    // index as operands.
315    INSERT_SUBREG,
316
317    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
318    // an unsigned/signed value of type i[2*N], then return the top part.
319    MULHU, MULHS,
320
321    // Bitwise operators - logical and, logical or, logical xor, shift left,
322    // shift right algebraic (shift in sign bits), shift right logical (shift in
323    // zeroes), rotate left, rotate right, and byteswap.
324    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
325
326    // Counting operators
327    CTTZ, CTLZ, CTPOP,
328
329    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
330    // i1 then the high bits must conform to getSetCCResultContents.
331    SELECT,
332
333    // Select with condition operator - This selects between a true value and
334    // a false value (ops #2 and #3) based on the boolean result of comparing
335    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
336    // condition code in op #4, a CondCodeSDNode.
337    SELECT_CC,
338
339    // SetCC operator - This evaluates to a true value iff the condition is
340    // true.  If the result value type is not i1 then the high bits conform
341    // to getSetCCResultContents.  The operands to this are the left and right
342    // operands to compare (ops #0, and #1) and the condition code to compare
343    // them with (op #2) as a CondCodeSDNode.
344    SETCC,
345
346    // Vector SetCC operator - This evaluates to a vector of integer elements
347    // with the high bit in each element set to true if the comparison is true
348    // and false if the comparison is false.  All other bits in each element
349    // are undefined.  The operands to this are the left and right operands
350    // to compare (ops #0, and #1) and the condition code to compare them with
351    // (op #2) as a CondCodeSDNode.
352    VSETCC,
353
354    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
355    // integer shift operations, just like ADD/SUB_PARTS.  The operation
356    // ordering is:
357    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
358    SHL_PARTS, SRA_PARTS, SRL_PARTS,
359
360    // Conversion operators.  These are all single input single output
361    // operations.  For all of these, the result type must be strictly
362    // wider or narrower (depending on the operation) than the source
363    // type.
364
365    // SIGN_EXTEND - Used for integer types, replicating the sign bit
366    // into new bits.
367    SIGN_EXTEND,
368
369    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
370    ZERO_EXTEND,
371
372    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
373    ANY_EXTEND,
374
375    // TRUNCATE - Completely drop the high bits.
376    TRUNCATE,
377
378    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
379    // depends on the first letter) to floating point.
380    SINT_TO_FP,
381    UINT_TO_FP,
382
383    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
384    // sign extend a small value in a large integer register (e.g. sign
385    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
386    // with the 7th bit).  The size of the smaller type is indicated by the 1th
387    // operand, a ValueType node.
388    SIGN_EXTEND_INREG,
389
390    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
391    /// integer.
392    FP_TO_SINT,
393    FP_TO_UINT,
394
395    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
396    /// down to the precision of the destination VT.  TRUNC is a flag, which is
397    /// always an integer that is zero or one.  If TRUNC is 0, this is a
398    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
399    /// value of Y.
400    ///
401    /// The TRUNC = 1 case is used in cases where we know that the value will
402    /// not be modified by the node, because Y is not using any of the extra
403    /// precision of source type.  This allows certain transformations like
404    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
405    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
406    FP_ROUND,
407
408    // FLT_ROUNDS_ - Returns current rounding mode:
409    // -1 Undefined
410    //  0 Round to 0
411    //  1 Round to nearest
412    //  2 Round to +inf
413    //  3 Round to -inf
414    FLT_ROUNDS_,
415
416    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
417    /// rounds it to a floating point value.  It then promotes it and returns it
418    /// in a register of the same size.  This operation effectively just
419    /// discards excess precision.  The type to round down to is specified by
420    /// the VT operand, a VTSDNode.
421    FP_ROUND_INREG,
422
423    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
424    FP_EXTEND,
425
426    // BIT_CONVERT - Theis operator converts between integer and FP values, as
427    // if one was stored to memory as integer and the other was loaded from the
428    // same address (or equivalently for vector format conversions, etc).  The
429    // source and result are required to have the same bit size (e.g.
430    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
431    // conversions, but that is a noop, deleted by getNode().
432    BIT_CONVERT,
433
434    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
435    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
436    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
437    // point operations. These are inspired by libm.
438    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
439    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
440    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
441
442    // LOAD and STORE have token chains as their first operand, then the same
443    // operands as an LLVM load/store instruction, then an offset node that
444    // is added / subtracted from the base pointer to form the address (for
445    // indexed memory ops).
446    LOAD, STORE,
447
448    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
449    // to a specified boundary.  This node always has two return values: a new
450    // stack pointer value and a chain. The first operand is the token chain,
451    // the second is the number of bytes to allocate, and the third is the
452    // alignment boundary.  The size is guaranteed to be a multiple of the stack
453    // alignment, and the alignment is guaranteed to be bigger than the stack
454    // alignment (if required) or 0 to get standard stack alignment.
455    DYNAMIC_STACKALLOC,
456
457    // Control flow instructions.  These all have token chains.
458
459    // BR - Unconditional branch.  The first operand is the chain
460    // operand, the second is the MBB to branch to.
461    BR,
462
463    // BRIND - Indirect branch.  The first operand is the chain, the second
464    // is the value to branch to, which must be of the same type as the target's
465    // pointer type.
466    BRIND,
467
468    // BR_JT - Jumptable branch. The first operand is the chain, the second
469    // is the jumptable index, the last one is the jumptable entry index.
470    BR_JT,
471
472    // BRCOND - Conditional branch.  The first operand is the chain,
473    // the second is the condition, the third is the block to branch
474    // to if the condition is true.
475    BRCOND,
476
477    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
478    // that the condition is represented as condition code, and two nodes to
479    // compare, rather than as a combined SetCC node.  The operands in order are
480    // chain, cc, lhs, rhs, block to branch to if condition is true.
481    BR_CC,
482
483    // RET - Return from function.  The first operand is the chain,
484    // and any subsequent operands are pairs of return value and return value
485    // attributes (see CALL for description of attributes) for the function.
486    // This operation can have variable number of operands.
487    RET,
488
489    // INLINEASM - Represents an inline asm block.  This node always has two
490    // return values: a chain and a flag result.  The inputs are as follows:
491    //   Operand #0   : Input chain.
492    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
493    //   Operand #2n+2: A RegisterNode.
494    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
495    //   Operand #last: Optional, an incoming flag.
496    INLINEASM,
497
498    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
499    // locations needed for debug and exception handling tables.  These nodes
500    // take a chain as input and return a chain.
501    DBG_LABEL,
502    EH_LABEL,
503
504    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
505    // local variable declarations for debugging information. First operand is
506    // a chain, while the next two operands are first two arguments (address
507    // and variable) of a llvm.dbg.declare instruction.
508    DECLARE,
509
510    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
511    // value, the same type as the pointer type for the system, and an output
512    // chain.
513    STACKSAVE,
514
515    // STACKRESTORE has two operands, an input chain and a pointer to restore to
516    // it returns an output chain.
517    STACKRESTORE,
518
519    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
520    // a call sequence, and carry arbitrary information that target might want
521    // to know.  The first operand is a chain, the rest are specified by the
522    // target and not touched by the DAG optimizers.
523    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
524    CALLSEQ_START,  // Beginning of a call sequence
525    CALLSEQ_END,    // End of a call sequence
526
527    // VAARG - VAARG has three operands: an input chain, a pointer, and a
528    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
529    VAARG,
530
531    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
532    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
533    // source.
534    VACOPY,
535
536    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
537    // pointer, and a SRCVALUE.
538    VAEND, VASTART,
539
540    // SRCVALUE - This is a node type that holds a Value* that is used to
541    // make reference to a value in the LLVM IR.
542    SRCVALUE,
543
544    // MEMOPERAND - This is a node that contains a MachineMemOperand which
545    // records information about a memory reference. This is used to make
546    // AliasAnalysis queries from the backend.
547    MEMOPERAND,
548
549    // PCMARKER - This corresponds to the pcmarker intrinsic.
550    PCMARKER,
551
552    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
553    // The only operand is a chain and a value and a chain are produced.  The
554    // value is the contents of the architecture specific cycle counter like
555    // register (or other high accuracy low latency clock source)
556    READCYCLECOUNTER,
557
558    // HANDLENODE node - Used as a handle for various purposes.
559    HANDLENODE,
560
561    // DBG_STOPPOINT - This node is used to represent a source location for
562    // debug info.  It takes token chain as input, and carries a line number,
563    // column number, and a pointer to a CompileUnitDesc object identifying
564    // the containing compilation unit.  It produces a token chain as output.
565    DBG_STOPPOINT,
566
567    // DEBUG_LOC - This node is used to represent source line information
568    // embedded in the code.  It takes a token chain as input, then a line
569    // number, then a column then a file id (provided by MachineModuleInfo.) It
570    // produces a token chain as output.
571    DEBUG_LOC,
572
573    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
574    // It takes as input a token chain, the pointer to the trampoline,
575    // the pointer to the nested function, the pointer to pass for the
576    // 'nest' parameter, a SRCVALUE for the trampoline and another for
577    // the nested function (allowing targets to access the original
578    // Function*).  It produces the result of the intrinsic and a token
579    // chain as output.
580    TRAMPOLINE,
581
582    // TRAP - Trapping instruction
583    TRAP,
584
585    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
586    // their first operand. The other operands are the address to prefetch,
587    // read / write specifier, and locality specifier.
588    PREFETCH,
589
590    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
591    //                       store-store, device)
592    // This corresponds to the memory.barrier intrinsic.
593    // it takes an input chain, 4 operands to specify the type of barrier, an
594    // operand specifying if the barrier applies to device and uncached memory
595    // and produces an output chain.
596    MEMBARRIER,
597
598    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
599    // this corresponds to the atomic.lcs intrinsic.
600    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
601    // the return is always the original value in *ptr
602    ATOMIC_CMP_SWAP_8,
603    ATOMIC_CMP_SWAP_16,
604    ATOMIC_CMP_SWAP_32,
605    ATOMIC_CMP_SWAP_64,
606
607    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
608    // this corresponds to the atomic.swap intrinsic.
609    // amt is stored to *ptr atomically.
610    // the return is always the original value in *ptr
611    ATOMIC_SWAP_8,
612    ATOMIC_SWAP_16,
613    ATOMIC_SWAP_32,
614    ATOMIC_SWAP_64,
615
616    // Val, OUTCHAIN = ATOMIC_L[OpName]S(INCHAIN, ptr, amt)
617    // this corresponds to the atomic.[OpName] intrinsic.
618    // op(*ptr, amt) is stored to *ptr atomically.
619    // the return is always the original value in *ptr
620    ATOMIC_LOAD_ADD_8,
621    ATOMIC_LOAD_SUB_8,
622    ATOMIC_LOAD_AND_8,
623    ATOMIC_LOAD_OR_8,
624    ATOMIC_LOAD_XOR_8,
625    ATOMIC_LOAD_NAND_8,
626    ATOMIC_LOAD_MIN_8,
627    ATOMIC_LOAD_MAX_8,
628    ATOMIC_LOAD_UMIN_8,
629    ATOMIC_LOAD_UMAX_8,
630    ATOMIC_LOAD_ADD_16,
631    ATOMIC_LOAD_SUB_16,
632    ATOMIC_LOAD_AND_16,
633    ATOMIC_LOAD_OR_16,
634    ATOMIC_LOAD_XOR_16,
635    ATOMIC_LOAD_NAND_16,
636    ATOMIC_LOAD_MIN_16,
637    ATOMIC_LOAD_MAX_16,
638    ATOMIC_LOAD_UMIN_16,
639    ATOMIC_LOAD_UMAX_16,
640    ATOMIC_LOAD_ADD_32,
641    ATOMIC_LOAD_SUB_32,
642    ATOMIC_LOAD_AND_32,
643    ATOMIC_LOAD_OR_32,
644    ATOMIC_LOAD_XOR_32,
645    ATOMIC_LOAD_NAND_32,
646    ATOMIC_LOAD_MIN_32,
647    ATOMIC_LOAD_MAX_32,
648    ATOMIC_LOAD_UMIN_32,
649    ATOMIC_LOAD_UMAX_32,
650    ATOMIC_LOAD_ADD_64,
651    ATOMIC_LOAD_SUB_64,
652    ATOMIC_LOAD_AND_64,
653    ATOMIC_LOAD_OR_64,
654    ATOMIC_LOAD_XOR_64,
655    ATOMIC_LOAD_NAND_64,
656    ATOMIC_LOAD_MIN_64,
657    ATOMIC_LOAD_MAX_64,
658    ATOMIC_LOAD_UMIN_64,
659    ATOMIC_LOAD_UMAX_64,
660
661    // BUILTIN_OP_END - This must be the last enum value in this list.
662    BUILTIN_OP_END
663  };
664
665  /// Node predicates
666
667  /// isBuildVectorAllOnes - Return true if the specified node is a
668  /// BUILD_VECTOR where all of the elements are ~0 or undef.
669  bool isBuildVectorAllOnes(const SDNode *N);
670
671  /// isBuildVectorAllZeros - Return true if the specified node is a
672  /// BUILD_VECTOR where all of the elements are 0 or undef.
673  bool isBuildVectorAllZeros(const SDNode *N);
674
675  /// isScalarToVector - Return true if the specified node is a
676  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
677  /// element is not an undef.
678  bool isScalarToVector(const SDNode *N);
679
680  /// isDebugLabel - Return true if the specified node represents a debug
681  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
682  bool isDebugLabel(const SDNode *N);
683
684  //===--------------------------------------------------------------------===//
685  /// MemIndexedMode enum - This enum defines the load / store indexed
686  /// addressing modes.
687  ///
688  /// UNINDEXED    "Normal" load / store. The effective address is already
689  ///              computed and is available in the base pointer. The offset
690  ///              operand is always undefined. In addition to producing a
691  ///              chain, an unindexed load produces one value (result of the
692  ///              load); an unindexed store does not produce a value.
693  ///
694  /// PRE_INC      Similar to the unindexed mode where the effective address is
695  /// PRE_DEC      the value of the base pointer add / subtract the offset.
696  ///              It considers the computation as being folded into the load /
697  ///              store operation (i.e. the load / store does the address
698  ///              computation as well as performing the memory transaction).
699  ///              The base operand is always undefined. In addition to
700  ///              producing a chain, pre-indexed load produces two values
701  ///              (result of the load and the result of the address
702  ///              computation); a pre-indexed store produces one value (result
703  ///              of the address computation).
704  ///
705  /// POST_INC     The effective address is the value of the base pointer. The
706  /// POST_DEC     value of the offset operand is then added to / subtracted
707  ///              from the base after memory transaction. In addition to
708  ///              producing a chain, post-indexed load produces two values
709  ///              (the result of the load and the result of the base +/- offset
710  ///              computation); a post-indexed store produces one value (the
711  ///              the result of the base +/- offset computation).
712  ///
713  enum MemIndexedMode {
714    UNINDEXED = 0,
715    PRE_INC,
716    PRE_DEC,
717    POST_INC,
718    POST_DEC,
719    LAST_INDEXED_MODE
720  };
721
722  //===--------------------------------------------------------------------===//
723  /// LoadExtType enum - This enum defines the three variants of LOADEXT
724  /// (load with extension).
725  ///
726  /// SEXTLOAD loads the integer operand and sign extends it to a larger
727  ///          integer result type.
728  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
729  ///          integer result type.
730  /// EXTLOAD  is used for three things: floating point extending loads,
731  ///          integer extending loads [the top bits are undefined], and vector
732  ///          extending loads [load into low elt].
733  ///
734  enum LoadExtType {
735    NON_EXTLOAD = 0,
736    EXTLOAD,
737    SEXTLOAD,
738    ZEXTLOAD,
739    LAST_LOADEXT_TYPE
740  };
741
742  //===--------------------------------------------------------------------===//
743  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
744  /// below work out, when considering SETFALSE (something that never exists
745  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
746  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
747  /// to.  If the "N" column is 1, the result of the comparison is undefined if
748  /// the input is a NAN.
749  ///
750  /// All of these (except for the 'always folded ops') should be handled for
751  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
752  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
753  ///
754  /// Note that these are laid out in a specific order to allow bit-twiddling
755  /// to transform conditions.
756  enum CondCode {
757    // Opcode          N U L G E       Intuitive operation
758    SETFALSE,      //    0 0 0 0       Always false (always folded)
759    SETOEQ,        //    0 0 0 1       True if ordered and equal
760    SETOGT,        //    0 0 1 0       True if ordered and greater than
761    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
762    SETOLT,        //    0 1 0 0       True if ordered and less than
763    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
764    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
765    SETO,          //    0 1 1 1       True if ordered (no nans)
766    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
767    SETUEQ,        //    1 0 0 1       True if unordered or equal
768    SETUGT,        //    1 0 1 0       True if unordered or greater than
769    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
770    SETULT,        //    1 1 0 0       True if unordered or less than
771    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
772    SETUNE,        //    1 1 1 0       True if unordered or not equal
773    SETTRUE,       //    1 1 1 1       Always true (always folded)
774    // Don't care operations: undefined if the input is a nan.
775    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
776    SETEQ,         //  1 X 0 0 1       True if equal
777    SETGT,         //  1 X 0 1 0       True if greater than
778    SETGE,         //  1 X 0 1 1       True if greater than or equal
779    SETLT,         //  1 X 1 0 0       True if less than
780    SETLE,         //  1 X 1 0 1       True if less than or equal
781    SETNE,         //  1 X 1 1 0       True if not equal
782    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
783
784    SETCC_INVALID       // Marker value.
785  };
786
787  /// isSignedIntSetCC - Return true if this is a setcc instruction that
788  /// performs a signed comparison when used with integer operands.
789  inline bool isSignedIntSetCC(CondCode Code) {
790    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
791  }
792
793  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
794  /// performs an unsigned comparison when used with integer operands.
795  inline bool isUnsignedIntSetCC(CondCode Code) {
796    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
797  }
798
799  /// isTrueWhenEqual - Return true if the specified condition returns true if
800  /// the two operands to the condition are equal.  Note that if one of the two
801  /// operands is a NaN, this value is meaningless.
802  inline bool isTrueWhenEqual(CondCode Cond) {
803    return ((int)Cond & 1) != 0;
804  }
805
806  /// getUnorderedFlavor - This function returns 0 if the condition is always
807  /// false if an operand is a NaN, 1 if the condition is always true if the
808  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
809  /// NaN.
810  inline unsigned getUnorderedFlavor(CondCode Cond) {
811    return ((int)Cond >> 3) & 3;
812  }
813
814  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
815  /// 'op' is a valid SetCC operation.
816  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
817
818  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
819  /// when given the operation for (X op Y).
820  CondCode getSetCCSwappedOperands(CondCode Operation);
821
822  /// getSetCCOrOperation - Return the result of a logical OR between different
823  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
824  /// function returns SETCC_INVALID if it is not possible to represent the
825  /// resultant comparison.
826  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
827
828  /// getSetCCAndOperation - Return the result of a logical AND between
829  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
830  /// function returns SETCC_INVALID if it is not possible to represent the
831  /// resultant comparison.
832  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
833}  // end llvm::ISD namespace
834
835
836//===----------------------------------------------------------------------===//
837/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
838/// values as the result of a computation.  Many nodes return multiple values,
839/// from loads (which define a token and a return value) to ADDC (which returns
840/// a result and a carry value), to calls (which may return an arbitrary number
841/// of values).
842///
843/// As such, each use of a SelectionDAG computation must indicate the node that
844/// computes it as well as which return value to use from that node.  This pair
845/// of information is represented with the SDValue value type.
846///
847class SDValue {
848  SDNode *Node;       // The node defining the value we are using.
849  unsigned ResNo;     // Which return value of the node we are using.
850public:
851  SDValue() : Node(0), ResNo(0) {}
852  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
853
854  /// get the index which selects a specific result in the SDNode
855  unsigned getResNo() const { return ResNo; }
856
857  /// get the SDNode which holds the desired result
858  SDNode *getNode() const { return Node; }
859
860  /// set the SDNode
861  void setNode(SDNode *N) { Node = N; }
862
863  bool operator==(const SDValue &O) const {
864    return Node == O.Node && ResNo == O.ResNo;
865  }
866  bool operator!=(const SDValue &O) const {
867    return !operator==(O);
868  }
869  bool operator<(const SDValue &O) const {
870    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
871  }
872
873  SDValue getValue(unsigned R) const {
874    return SDValue(Node, R);
875  }
876
877  // isOperandOf - Return true if this node is an operand of N.
878  bool isOperandOf(SDNode *N) const;
879
880  /// getValueType - Return the ValueType of the referenced return value.
881  ///
882  inline MVT getValueType() const;
883
884  /// getValueSizeInBits - Returns the size of the value in bits.
885  ///
886  unsigned getValueSizeInBits() const {
887    return getValueType().getSizeInBits();
888  }
889
890  // Forwarding methods - These forward to the corresponding methods in SDNode.
891  inline unsigned getOpcode() const;
892  inline unsigned getNumOperands() const;
893  inline const SDValue &getOperand(unsigned i) const;
894  inline uint64_t getConstantOperandVal(unsigned i) const;
895  inline bool isTargetOpcode() const;
896  inline bool isMachineOpcode() const;
897  inline unsigned getMachineOpcode() const;
898
899
900  /// reachesChainWithoutSideEffects - Return true if this operand (which must
901  /// be a chain) reaches the specified operand without crossing any
902  /// side-effecting instructions.  In practice, this looks through token
903  /// factors and non-volatile loads.  In order to remain efficient, this only
904  /// looks a couple of nodes in, it does not do an exhaustive search.
905  bool reachesChainWithoutSideEffects(SDValue Dest,
906                                      unsigned Depth = 2) const;
907
908  /// use_empty - Return true if there are no nodes using value ResNo
909  /// of Node.
910  ///
911  inline bool use_empty() const;
912
913  /// hasOneUse - Return true if there is exactly one node using value
914  /// ResNo of Node.
915  ///
916  inline bool hasOneUse() const;
917};
918
919
920template<> struct DenseMapInfo<SDValue> {
921  static inline SDValue getEmptyKey() {
922    return SDValue((SDNode*)-1, -1U);
923  }
924  static inline SDValue getTombstoneKey() {
925    return SDValue((SDNode*)-1, 0);
926  }
927  static unsigned getHashValue(const SDValue &Val) {
928    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
929            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
930  }
931  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
932    return LHS == RHS;
933  }
934  static bool isPod() { return true; }
935};
936
937/// simplify_type specializations - Allow casting operators to work directly on
938/// SDValues as if they were SDNode*'s.
939template<> struct simplify_type<SDValue> {
940  typedef SDNode* SimpleType;
941  static SimpleType getSimplifiedValue(const SDValue &Val) {
942    return static_cast<SimpleType>(Val.getNode());
943  }
944};
945template<> struct simplify_type<const SDValue> {
946  typedef SDNode* SimpleType;
947  static SimpleType getSimplifiedValue(const SDValue &Val) {
948    return static_cast<SimpleType>(Val.getNode());
949  }
950};
951
952/// SDUse - Represents a use of the SDNode referred by
953/// the SDValue.
954class SDUse {
955  SDValue Operand;
956  /// User - Parent node of this operand.
957  SDNode    *User;
958  /// Prev, next - Pointers to the uses list of the SDNode referred by
959  /// this operand.
960  SDUse **Prev, *Next;
961public:
962  friend class SDNode;
963  SDUse(): Operand(), User(NULL), Prev(NULL), Next(NULL) {}
964
965  SDUse(SDNode *val, unsigned resno) :
966    Operand(val,resno), User(NULL), Prev(NULL), Next(NULL) {}
967
968  SDUse& operator= (const SDValue& Op) {
969      Operand = Op;
970      Next = NULL;
971      Prev = NULL;
972      return *this;
973  }
974
975  SDUse& operator= (const SDUse& Op) {
976      Operand = Op;
977      Next = NULL;
978      Prev = NULL;
979      return *this;
980  }
981
982  SDUse *getNext() { return Next; }
983
984  SDNode *getUser() { return User; }
985
986  void setUser(SDNode *p) { User = p; }
987
988  operator SDValue() const { return Operand; }
989
990  const SDValue& getSDValue() const { return Operand; }
991
992  SDValue &getSDValue() { return Operand; }
993  SDNode *getVal() { return Operand.getNode(); }
994  SDNode *getVal() const { return Operand.getNode(); } // FIXME: const correct?
995
996  bool operator==(const SDValue &O) const {
997    return Operand == O;
998  }
999
1000  bool operator!=(const SDValue &O) const {
1001    return !(Operand == O);
1002  }
1003
1004  bool operator<(const SDValue &O) const {
1005    return Operand < O;
1006  }
1007
1008protected:
1009  void addToList(SDUse **List) {
1010    Next = *List;
1011    if (Next) Next->Prev = &Next;
1012    Prev = List;
1013    *List = this;
1014  }
1015
1016  void removeFromList() {
1017    *Prev = Next;
1018    if (Next) Next->Prev = Prev;
1019  }
1020};
1021
1022
1023/// simplify_type specializations - Allow casting operators to work directly on
1024/// SDValues as if they were SDNode*'s.
1025template<> struct simplify_type<SDUse> {
1026  typedef SDNode* SimpleType;
1027  static SimpleType getSimplifiedValue(const SDUse &Val) {
1028    return static_cast<SimpleType>(Val.getVal());
1029  }
1030};
1031template<> struct simplify_type<const SDUse> {
1032  typedef SDNode* SimpleType;
1033  static SimpleType getSimplifiedValue(const SDUse &Val) {
1034    return static_cast<SimpleType>(Val.getVal());
1035  }
1036};
1037
1038
1039/// SDOperandPtr - A helper SDValue pointer class, that can handle
1040/// arrays of SDUse and arrays of SDValue objects. This is required
1041/// in many places inside the SelectionDAG.
1042///
1043class SDOperandPtr {
1044  const SDValue *ptr; // The pointer to the SDValue object
1045  int object_size;      // The size of the object containg the SDValue
1046public:
1047  SDOperandPtr() : ptr(0), object_size(0) {}
1048
1049  SDOperandPtr(SDUse * use_ptr) {
1050    ptr = &use_ptr->getSDValue();
1051    object_size = (int)sizeof(SDUse);
1052  }
1053
1054  SDOperandPtr(const SDValue * op_ptr) {
1055    ptr = op_ptr;
1056    object_size = (int)sizeof(SDValue);
1057  }
1058
1059  const SDValue operator *() { return *ptr; }
1060  const SDValue *operator ->() { return ptr; }
1061  SDOperandPtr operator ++ () {
1062    ptr = (SDValue*)((char *)ptr + object_size);
1063    return *this;
1064  }
1065
1066  SDOperandPtr operator ++ (int) {
1067    SDOperandPtr tmp = *this;
1068    ptr = (SDValue*)((char *)ptr + object_size);
1069    return tmp;
1070  }
1071
1072  SDValue operator[] (int idx) const {
1073    return *(SDValue*)((char*) ptr + object_size * idx);
1074  }
1075};
1076
1077/// SDNode - Represents one node in the SelectionDAG.
1078///
1079class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1080private:
1081  /// NodeType - The operation that this node performs.
1082  ///
1083  short NodeType;
1084
1085  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1086  /// then they will be delete[]'d when the node is destroyed.
1087  unsigned short OperandsNeedDelete : 1;
1088
1089protected:
1090  /// SubclassData - This member is defined by this class, but is not used for
1091  /// anything.  Subclasses can use it to hold whatever state they find useful.
1092  /// This field is initialized to zero by the ctor.
1093  unsigned short SubclassData : 15;
1094
1095private:
1096  /// NodeId - Unique id per SDNode in the DAG.
1097  int NodeId;
1098
1099  /// OperandList - The values that are used by this operation.
1100  ///
1101  SDUse *OperandList;
1102
1103  /// ValueList - The types of the values this node defines.  SDNode's may
1104  /// define multiple values simultaneously.
1105  const MVT *ValueList;
1106
1107  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1108  unsigned short NumOperands, NumValues;
1109
1110  /// Uses - List of uses for this SDNode.
1111  SDUse *Uses;
1112
1113  /// addUse - add SDUse to the list of uses.
1114  void addUse(SDUse &U) { U.addToList(&Uses); }
1115
1116  // Out-of-line virtual method to give class a home.
1117  virtual void ANCHOR();
1118public:
1119  virtual ~SDNode() {
1120    assert(NumOperands == 0 && "Operand list not cleared before deletion");
1121    NodeType = ISD::DELETED_NODE;
1122  }
1123
1124  //===--------------------------------------------------------------------===//
1125  //  Accessors
1126  //
1127
1128  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1129  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1130  /// are the opcode values in the ISD and <target>ISD namespaces. For
1131  /// post-isel opcodes, see getMachineOpcode.
1132  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1133
1134  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1135  /// <target>ISD namespace).
1136  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1137
1138  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1139  /// corresponding to a MachineInstr opcode.
1140  bool isMachineOpcode() const { return NodeType < 0; }
1141
1142  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1143  /// true. It returns the MachineInstr opcode value that the node's opcode
1144  /// corresponds to.
1145  unsigned getMachineOpcode() const {
1146    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1147    return ~NodeType;
1148  }
1149
1150  /// use_empty - Return true if there are no uses of this node.
1151  ///
1152  bool use_empty() const { return Uses == NULL; }
1153
1154  /// hasOneUse - Return true if there is exactly one use of this node.
1155  ///
1156  bool hasOneUse() const {
1157    return !use_empty() && next(use_begin()) == use_end();
1158  }
1159
1160  /// use_size - Return the number of uses of this node. This method takes
1161  /// time proportional to the number of uses.
1162  ///
1163  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1164
1165  /// getNodeId - Return the unique node id.
1166  ///
1167  int getNodeId() const { return NodeId; }
1168
1169  /// setNodeId - Set unique node id.
1170  void setNodeId(int Id) { NodeId = Id; }
1171
1172  /// use_iterator - This class provides iterator support for SDUse
1173  /// operands that use a specific SDNode.
1174  class use_iterator
1175    : public forward_iterator<SDUse, ptrdiff_t> {
1176    SDUse *Op;
1177    explicit use_iterator(SDUse *op) : Op(op) {
1178    }
1179    friend class SDNode;
1180  public:
1181    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1182    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1183
1184    use_iterator(const use_iterator &I) : Op(I.Op) {}
1185    use_iterator() : Op(0) {}
1186
1187    bool operator==(const use_iterator &x) const {
1188      return Op == x.Op;
1189    }
1190    bool operator!=(const use_iterator &x) const {
1191      return !operator==(x);
1192    }
1193
1194    /// atEnd - return true if this iterator is at the end of uses list.
1195    bool atEnd() const { return Op == 0; }
1196
1197    // Iterator traversal: forward iteration only.
1198    use_iterator &operator++() {          // Preincrement
1199      assert(Op && "Cannot increment end iterator!");
1200      Op = Op->getNext();
1201      return *this;
1202    }
1203
1204    use_iterator operator++(int) {        // Postincrement
1205      use_iterator tmp = *this; ++*this; return tmp;
1206    }
1207
1208    /// Retrieve a pointer to the current user node.
1209    SDNode *operator*() const {
1210      assert(Op && "Cannot dereference end iterator!");
1211      return Op->getUser();
1212    }
1213
1214    SDNode *operator->() const { return operator*(); }
1215
1216    SDUse &getUse() const { return *Op; }
1217
1218    /// getOperandNo - Retrive the operand # of this use in its user.
1219    ///
1220    unsigned getOperandNo() const {
1221      assert(Op && "Cannot dereference end iterator!");
1222      return (unsigned)(Op - Op->getUser()->OperandList);
1223    }
1224  };
1225
1226  /// use_begin/use_end - Provide iteration support to walk over all uses
1227  /// of an SDNode.
1228
1229  use_iterator use_begin() const {
1230    return use_iterator(Uses);
1231  }
1232
1233  static use_iterator use_end() { return use_iterator(0); }
1234
1235
1236  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1237  /// indicated value.  This method ignores uses of other values defined by this
1238  /// operation.
1239  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1240
1241  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1242  /// value. This method ignores uses of other values defined by this operation.
1243  bool hasAnyUseOfValue(unsigned Value) const;
1244
1245  /// isOnlyUserOf - Return true if this node is the only use of N.
1246  ///
1247  bool isOnlyUserOf(SDNode *N) const;
1248
1249  /// isOperandOf - Return true if this node is an operand of N.
1250  ///
1251  bool isOperandOf(SDNode *N) const;
1252
1253  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1254  /// node is either an operand of N or it can be reached by recursively
1255  /// traversing up the operands.
1256  /// NOTE: this is an expensive method. Use it carefully.
1257  bool isPredecessorOf(SDNode *N) const;
1258
1259  /// getNumOperands - Return the number of values used by this operation.
1260  ///
1261  unsigned getNumOperands() const { return NumOperands; }
1262
1263  /// getConstantOperandVal - Helper method returns the integer value of a
1264  /// ConstantSDNode operand.
1265  uint64_t getConstantOperandVal(unsigned Num) const;
1266
1267  const SDValue &getOperand(unsigned Num) const {
1268    assert(Num < NumOperands && "Invalid child # of SDNode!");
1269    return OperandList[Num].getSDValue();
1270  }
1271
1272  typedef SDUse* op_iterator;
1273  op_iterator op_begin() const { return OperandList; }
1274  op_iterator op_end() const { return OperandList+NumOperands; }
1275
1276
1277  SDVTList getVTList() const {
1278    SDVTList X = { ValueList, NumValues };
1279    return X;
1280  };
1281
1282  /// getNumValues - Return the number of values defined/returned by this
1283  /// operator.
1284  ///
1285  unsigned getNumValues() const { return NumValues; }
1286
1287  /// getValueType - Return the type of a specified result.
1288  ///
1289  MVT getValueType(unsigned ResNo) const {
1290    assert(ResNo < NumValues && "Illegal result number!");
1291    return ValueList[ResNo];
1292  }
1293
1294  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1295  ///
1296  unsigned getValueSizeInBits(unsigned ResNo) const {
1297    return getValueType(ResNo).getSizeInBits();
1298  }
1299
1300  typedef const MVT* value_iterator;
1301  value_iterator value_begin() const { return ValueList; }
1302  value_iterator value_end() const { return ValueList+NumValues; }
1303
1304  /// getOperationName - Return the opcode of this operation for printing.
1305  ///
1306  std::string getOperationName(const SelectionDAG *G = 0) const;
1307  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1308  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1309  void dump() const;
1310  void dump(const SelectionDAG *G) const;
1311
1312  static bool classof(const SDNode *) { return true; }
1313
1314  /// Profile - Gather unique data for the node.
1315  ///
1316  void Profile(FoldingSetNodeID &ID) const;
1317
1318protected:
1319  friend class SelectionDAG;
1320  friend struct ilist_traits<SDNode>;
1321
1322  /// getValueTypeList - Return a pointer to the specified value type.
1323  ///
1324  static const MVT *getValueTypeList(MVT VT);
1325  static SDVTList getSDVTList(MVT VT) {
1326    SDVTList Ret = { getValueTypeList(VT), 1 };
1327    return Ret;
1328  }
1329
1330  SDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps)
1331    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1332      NodeId(-1), Uses(NULL) {
1333    NumOperands = NumOps;
1334    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1335
1336    for (unsigned i = 0; i != NumOps; ++i) {
1337      OperandList[i] = Ops[i];
1338      OperandList[i].setUser(this);
1339      Ops[i].getNode()->addUse(OperandList[i]);
1340    }
1341
1342    ValueList = VTs.VTs;
1343    NumValues = VTs.NumVTs;
1344  }
1345
1346  SDNode(unsigned Opc, SDVTList VTs, const SDUse *Ops, unsigned NumOps)
1347    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1348      NodeId(-1), Uses(NULL) {
1349    OperandsNeedDelete = true;
1350    NumOperands = NumOps;
1351    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1352
1353    for (unsigned i = 0; i != NumOps; ++i) {
1354      OperandList[i] = Ops[i];
1355      OperandList[i].setUser(this);
1356      Ops[i].getVal()->addUse(OperandList[i]);
1357    }
1358
1359    ValueList = VTs.VTs;
1360    NumValues = VTs.NumVTs;
1361  }
1362
1363  /// This constructor adds no operands itself; operands can be
1364  /// set later with InitOperands.
1365  SDNode(unsigned Opc, SDVTList VTs)
1366    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1367      NodeId(-1), Uses(NULL) {
1368    NumOperands = 0;
1369    OperandList = 0;
1370    ValueList = VTs.VTs;
1371    NumValues = VTs.NumVTs;
1372  }
1373
1374  /// InitOperands - Initialize the operands list of this node with the
1375  /// specified values, which are part of the node (thus they don't need to be
1376  /// copied in or allocated).
1377  void InitOperands(SDUse *Ops, unsigned NumOps) {
1378    assert(OperandList == 0 && "Operands already set!");
1379    NumOperands = NumOps;
1380    OperandList = Ops;
1381    Uses = NULL;
1382
1383    for (unsigned i = 0; i != NumOps; ++i) {
1384      OperandList[i].setUser(this);
1385      Ops[i].getVal()->addUse(OperandList[i]);
1386    }
1387  }
1388
1389  /// DropOperands - Release the operands and set this node to have
1390  /// zero operands.
1391  void DropOperands();
1392
1393  void addUser(unsigned i, SDNode *User) {
1394    assert(User->OperandList[i].getUser() && "Node without parent");
1395    addUse(User->OperandList[i]);
1396  }
1397
1398  void removeUser(unsigned i, SDNode *User) {
1399    assert(User->OperandList[i].getUser() && "Node without parent");
1400    SDUse &Op = User->OperandList[i];
1401    Op.removeFromList();
1402  }
1403};
1404
1405
1406// Define inline functions from the SDValue class.
1407
1408inline unsigned SDValue::getOpcode() const {
1409  return Node->getOpcode();
1410}
1411inline MVT SDValue::getValueType() const {
1412  return Node->getValueType(ResNo);
1413}
1414inline unsigned SDValue::getNumOperands() const {
1415  return Node->getNumOperands();
1416}
1417inline const SDValue &SDValue::getOperand(unsigned i) const {
1418  return Node->getOperand(i);
1419}
1420inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1421  return Node->getConstantOperandVal(i);
1422}
1423inline bool SDValue::isTargetOpcode() const {
1424  return Node->isTargetOpcode();
1425}
1426inline bool SDValue::isMachineOpcode() const {
1427  return Node->isMachineOpcode();
1428}
1429inline unsigned SDValue::getMachineOpcode() const {
1430  return Node->getMachineOpcode();
1431}
1432inline bool SDValue::use_empty() const {
1433  return !Node->hasAnyUseOfValue(ResNo);
1434}
1435inline bool SDValue::hasOneUse() const {
1436  return Node->hasNUsesOfValue(1, ResNo);
1437}
1438
1439/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1440/// to allow co-allocation of node operands with the node itself.
1441class UnarySDNode : public SDNode {
1442  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1443  SDUse Op;
1444public:
1445  UnarySDNode(unsigned Opc, SDVTList VTs, SDValue X)
1446    : SDNode(Opc, VTs) {
1447    Op = X;
1448    InitOperands(&Op, 1);
1449  }
1450};
1451
1452/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1453/// to allow co-allocation of node operands with the node itself.
1454class BinarySDNode : public SDNode {
1455  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1456  SDUse Ops[2];
1457public:
1458  BinarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y)
1459    : SDNode(Opc, VTs) {
1460    Ops[0] = X;
1461    Ops[1] = Y;
1462    InitOperands(Ops, 2);
1463  }
1464};
1465
1466/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1467/// to allow co-allocation of node operands with the node itself.
1468class TernarySDNode : public SDNode {
1469  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1470  SDUse Ops[3];
1471public:
1472  TernarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y,
1473                SDValue Z)
1474    : SDNode(Opc, VTs) {
1475    Ops[0] = X;
1476    Ops[1] = Y;
1477    Ops[2] = Z;
1478    InitOperands(Ops, 3);
1479  }
1480};
1481
1482
1483/// HandleSDNode - This class is used to form a handle around another node that
1484/// is persistant and is updated across invocations of replaceAllUsesWith on its
1485/// operand.  This node should be directly created by end-users and not added to
1486/// the AllNodes list.
1487class HandleSDNode : public SDNode {
1488  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1489  SDUse Op;
1490public:
1491  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1492  // fixed.
1493#ifdef __GNUC__
1494  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1495#else
1496  explicit HandleSDNode(SDValue X)
1497#endif
1498    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
1499    Op = X;
1500    InitOperands(&Op, 1);
1501  }
1502  ~HandleSDNode();
1503  const SDValue &getValue() const { return Op.getSDValue(); }
1504};
1505
1506/// Abstact virtual class for operations for memory operations
1507class MemSDNode : public SDNode {
1508  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1509
1510private:
1511  // MemoryVT - VT of in-memory value.
1512  MVT MemoryVT;
1513
1514  //! SrcValue - Memory location for alias analysis.
1515  const Value *SrcValue;
1516
1517  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1518  int SVOffset;
1519
1520  /// Flags - the low bit indicates whether this is a volatile reference;
1521  /// the remainder is a log2 encoding of the alignment in bytes.
1522  unsigned Flags;
1523
1524public:
1525  MemSDNode(unsigned Opc, SDVTList VTs, MVT MemoryVT,
1526            const Value *srcValue, int SVOff,
1527            unsigned alignment, bool isvolatile);
1528
1529  MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps,
1530            MVT MemoryVT, const Value *srcValue, int SVOff,
1531            unsigned alignment, bool isvolatile);
1532
1533  /// Returns alignment and volatility of the memory access
1534  unsigned getAlignment() const { return (1u << (Flags >> 1)) >> 1; }
1535  bool isVolatile() const { return Flags & 1; }
1536
1537  /// Returns the SrcValue and offset that describes the location of the access
1538  const Value *getSrcValue() const { return SrcValue; }
1539  int getSrcValueOffset() const { return SVOffset; }
1540
1541  /// getMemoryVT - Return the type of the in-memory value.
1542  MVT getMemoryVT() const { return MemoryVT; }
1543
1544  /// getMemOperand - Return a MachineMemOperand object describing the memory
1545  /// reference performed by operation.
1546  MachineMemOperand getMemOperand() const;
1547
1548  const SDValue &getChain() const { return getOperand(0); }
1549  const SDValue &getBasePtr() const {
1550    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1551  }
1552
1553  /// getRawFlags - Represent the flags as a bunch of bits.
1554  ///
1555  unsigned getRawFlags() const { return Flags; }
1556
1557  // Methods to support isa and dyn_cast
1558  static bool classof(const MemSDNode *) { return true; }
1559  static bool classof(const SDNode *N) {
1560    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1561    // with either an intrinsic or a target opcode.
1562    return N->getOpcode() == ISD::LOAD                ||
1563           N->getOpcode() == ISD::STORE               ||
1564           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_8   ||
1565           N->getOpcode() == ISD::ATOMIC_SWAP_8       ||
1566           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_8   ||
1567           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_8   ||
1568           N->getOpcode() == ISD::ATOMIC_LOAD_AND_8   ||
1569           N->getOpcode() == ISD::ATOMIC_LOAD_OR_8    ||
1570           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_8   ||
1571           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_8  ||
1572           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_8   ||
1573           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_8   ||
1574           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_8  ||
1575           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_8  ||
1576
1577           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_16  ||
1578           N->getOpcode() == ISD::ATOMIC_SWAP_16      ||
1579           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_16  ||
1580           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_16  ||
1581           N->getOpcode() == ISD::ATOMIC_LOAD_AND_16  ||
1582           N->getOpcode() == ISD::ATOMIC_LOAD_OR_16   ||
1583           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_16  ||
1584           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_16 ||
1585           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_16  ||
1586           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_16  ||
1587           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_16 ||
1588           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_16 ||
1589
1590           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_32  ||
1591           N->getOpcode() == ISD::ATOMIC_SWAP_32      ||
1592           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_32  ||
1593           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_32  ||
1594           N->getOpcode() == ISD::ATOMIC_LOAD_AND_32  ||
1595           N->getOpcode() == ISD::ATOMIC_LOAD_OR_32   ||
1596           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_32  ||
1597           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_32 ||
1598           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_32  ||
1599           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_32  ||
1600           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_32 ||
1601           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_32 ||
1602
1603           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_64  ||
1604           N->getOpcode() == ISD::ATOMIC_SWAP_64      ||
1605           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_64  ||
1606           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_64  ||
1607           N->getOpcode() == ISD::ATOMIC_LOAD_AND_64  ||
1608           N->getOpcode() == ISD::ATOMIC_LOAD_OR_64   ||
1609           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_64  ||
1610           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_64 ||
1611           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_64  ||
1612           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_64  ||
1613           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_64 ||
1614           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_64 ||
1615
1616           N->getOpcode() == ISD::INTRINSIC_W_CHAIN   ||
1617           N->getOpcode() == ISD::INTRINSIC_VOID      ||
1618           N->isTargetOpcode();
1619  }
1620};
1621
1622/// AtomicSDNode - A SDNode reprenting atomic operations.
1623///
1624class AtomicSDNode : public MemSDNode {
1625  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1626  SDUse Ops[4];
1627
1628 public:
1629  // Opc:   opcode for atomic
1630  // VTL:    value type list
1631  // Chain:  memory chain for operaand
1632  // Ptr:    address to update as a SDValue
1633  // Cmp:    compare value
1634  // Swp:    swap value
1635  // SrcVal: address to update as a Value (used for MemOperand)
1636  // Align:  alignment of memory
1637  AtomicSDNode(unsigned Opc, SDVTList VTL, SDValue Chain, SDValue Ptr,
1638               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1639               unsigned Align=0)
1640    : MemSDNode(Opc, VTL, Cmp.getValueType(), SrcVal, /*SVOffset=*/0,
1641                Align, /*isVolatile=*/true) {
1642    Ops[0] = Chain;
1643    Ops[1] = Ptr;
1644    Ops[2] = Cmp;
1645    Ops[3] = Swp;
1646    InitOperands(Ops, 4);
1647  }
1648  AtomicSDNode(unsigned Opc, SDVTList VTL, SDValue Chain, SDValue Ptr,
1649               SDValue Val, const Value* SrcVal, unsigned Align=0)
1650    : MemSDNode(Opc, VTL, Val.getValueType(), SrcVal, /*SVOffset=*/0,
1651                Align, /*isVolatile=*/true) {
1652    Ops[0] = Chain;
1653    Ops[1] = Ptr;
1654    Ops[2] = Val;
1655    InitOperands(Ops, 3);
1656  }
1657
1658  const SDValue &getBasePtr() const { return getOperand(1); }
1659  const SDValue &getVal() const { return getOperand(2); }
1660
1661  bool isCompareAndSwap() const {
1662    unsigned Op = getOpcode();
1663    return Op == ISD::ATOMIC_CMP_SWAP_8 ||
1664           Op == ISD::ATOMIC_CMP_SWAP_16 ||
1665           Op == ISD::ATOMIC_CMP_SWAP_32 ||
1666           Op == ISD::ATOMIC_CMP_SWAP_64;
1667  }
1668
1669  // Methods to support isa and dyn_cast
1670  static bool classof(const AtomicSDNode *) { return true; }
1671  static bool classof(const SDNode *N) {
1672    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP_8   ||
1673           N->getOpcode() == ISD::ATOMIC_SWAP_8       ||
1674           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_8   ||
1675           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_8   ||
1676           N->getOpcode() == ISD::ATOMIC_LOAD_AND_8   ||
1677           N->getOpcode() == ISD::ATOMIC_LOAD_OR_8    ||
1678           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_8   ||
1679           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_8  ||
1680           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_8   ||
1681           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_8   ||
1682           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_8  ||
1683           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_8  ||
1684           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_16  ||
1685           N->getOpcode() == ISD::ATOMIC_SWAP_16      ||
1686           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_16  ||
1687           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_16  ||
1688           N->getOpcode() == ISD::ATOMIC_LOAD_AND_16  ||
1689           N->getOpcode() == ISD::ATOMIC_LOAD_OR_16   ||
1690           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_16  ||
1691           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_16 ||
1692           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_16  ||
1693           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_16  ||
1694           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_16 ||
1695           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_16 ||
1696           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_32  ||
1697           N->getOpcode() == ISD::ATOMIC_SWAP_32      ||
1698           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_32  ||
1699           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_32  ||
1700           N->getOpcode() == ISD::ATOMIC_LOAD_AND_32  ||
1701           N->getOpcode() == ISD::ATOMIC_LOAD_OR_32   ||
1702           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_32  ||
1703           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_32 ||
1704           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_32  ||
1705           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_32  ||
1706           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_32 ||
1707           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_32 ||
1708           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_64  ||
1709           N->getOpcode() == ISD::ATOMIC_SWAP_64      ||
1710           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_64  ||
1711           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_64  ||
1712           N->getOpcode() == ISD::ATOMIC_LOAD_AND_64  ||
1713           N->getOpcode() == ISD::ATOMIC_LOAD_OR_64   ||
1714           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_64  ||
1715           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_64 ||
1716           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_64  ||
1717           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_64  ||
1718           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_64 ||
1719           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_64;
1720  }
1721};
1722
1723/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
1724/// memory and need an associated memory operand.
1725///
1726class MemIntrinsicSDNode : public MemSDNode {
1727  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1728  bool ReadMem;  // Intrinsic reads memory
1729  bool WriteMem; // Intrinsic writes memory
1730  public:
1731  MemIntrinsicSDNode(unsigned Opc, SDVTList VTs,
1732                     const SDValue *Ops, unsigned NumOps,
1733                     MVT MemoryVT, const Value *srcValue, int SVO,
1734                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1735    : MemSDNode(Opc, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1736      ReadMem(ReadMem), WriteMem(WriteMem) {
1737  }
1738
1739  bool readMem() const { return ReadMem; }
1740  bool writeMem() const { return WriteMem; }
1741
1742  // Methods to support isa and dyn_cast
1743  static bool classof(const MemIntrinsicSDNode *) { return true; }
1744  static bool classof(const SDNode *N) {
1745    // We lower some target intrinsics to their target opcode
1746    // early a node with a target opcode can be of this class
1747    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1748           N->getOpcode() == ISD::INTRINSIC_VOID ||
1749           N->isTargetOpcode();
1750  }
1751};
1752
1753class ConstantSDNode : public SDNode {
1754  const ConstantInt *Value;
1755  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1756protected:
1757  friend class SelectionDAG;
1758  ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
1759    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1760      Value(val) {
1761  }
1762public:
1763
1764  const ConstantInt *getConstantIntValue() const { return Value; }
1765  const APInt &getAPIntValue() const { return Value->getValue(); }
1766  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1767  int64_t getSExtValue() const { return Value->getSExtValue(); }
1768
1769  bool isNullValue() const { return Value->isNullValue(); }
1770  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1771
1772  static bool classof(const ConstantSDNode *) { return true; }
1773  static bool classof(const SDNode *N) {
1774    return N->getOpcode() == ISD::Constant ||
1775           N->getOpcode() == ISD::TargetConstant;
1776  }
1777};
1778
1779class ConstantFPSDNode : public SDNode {
1780  const ConstantFP *Value;
1781  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1782protected:
1783  friend class SelectionDAG;
1784  ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
1785    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1786             getSDVTList(VT)), Value(val) {
1787  }
1788public:
1789
1790  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1791  const ConstantFP *getConstantFPValue() const { return Value; }
1792
1793  /// isExactlyValue - We don't rely on operator== working on double values, as
1794  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1795  /// As such, this method can be used to do an exact bit-for-bit comparison of
1796  /// two floating point values.
1797
1798  /// We leave the version with the double argument here because it's just so
1799  /// convenient to write "2.0" and the like.  Without this function we'd
1800  /// have to duplicate its logic everywhere it's called.
1801  bool isExactlyValue(double V) const {
1802    bool ignored;
1803    // convert is not supported on this type
1804    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1805      return false;
1806    APFloat Tmp(V);
1807    Tmp.convert(Value->getValueAPF().getSemantics(),
1808                APFloat::rmNearestTiesToEven, &ignored);
1809    return isExactlyValue(Tmp);
1810  }
1811  bool isExactlyValue(const APFloat& V) const;
1812
1813  bool isValueValidForType(MVT VT, const APFloat& Val);
1814
1815  static bool classof(const ConstantFPSDNode *) { return true; }
1816  static bool classof(const SDNode *N) {
1817    return N->getOpcode() == ISD::ConstantFP ||
1818           N->getOpcode() == ISD::TargetConstantFP;
1819  }
1820};
1821
1822class GlobalAddressSDNode : public SDNode {
1823  GlobalValue *TheGlobal;
1824  int64_t Offset;
1825  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1826protected:
1827  friend class SelectionDAG;
1828  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT,
1829                      int64_t o = 0);
1830public:
1831
1832  GlobalValue *getGlobal() const { return TheGlobal; }
1833  int64_t getOffset() const { return Offset; }
1834
1835  static bool classof(const GlobalAddressSDNode *) { return true; }
1836  static bool classof(const SDNode *N) {
1837    return N->getOpcode() == ISD::GlobalAddress ||
1838           N->getOpcode() == ISD::TargetGlobalAddress ||
1839           N->getOpcode() == ISD::GlobalTLSAddress ||
1840           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1841  }
1842};
1843
1844class FrameIndexSDNode : public SDNode {
1845  int FI;
1846  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1847protected:
1848  friend class SelectionDAG;
1849  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1850    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1851      FI(fi) {
1852  }
1853public:
1854
1855  int getIndex() const { return FI; }
1856
1857  static bool classof(const FrameIndexSDNode *) { return true; }
1858  static bool classof(const SDNode *N) {
1859    return N->getOpcode() == ISD::FrameIndex ||
1860           N->getOpcode() == ISD::TargetFrameIndex;
1861  }
1862};
1863
1864class JumpTableSDNode : public SDNode {
1865  int JTI;
1866  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1867protected:
1868  friend class SelectionDAG;
1869  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1870    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1871      JTI(jti) {
1872  }
1873public:
1874
1875  int getIndex() const { return JTI; }
1876
1877  static bool classof(const JumpTableSDNode *) { return true; }
1878  static bool classof(const SDNode *N) {
1879    return N->getOpcode() == ISD::JumpTable ||
1880           N->getOpcode() == ISD::TargetJumpTable;
1881  }
1882};
1883
1884class ConstantPoolSDNode : public SDNode {
1885  union {
1886    Constant *ConstVal;
1887    MachineConstantPoolValue *MachineCPVal;
1888  } Val;
1889  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1890  unsigned Alignment;
1891  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1892protected:
1893  friend class SelectionDAG;
1894  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1895    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1896             getSDVTList(VT)), Offset(o), Alignment(0) {
1897    assert((int)Offset >= 0 && "Offset is too large");
1898    Val.ConstVal = c;
1899  }
1900  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1901    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1902             getSDVTList(VT)), Offset(o), Alignment(Align) {
1903    assert((int)Offset >= 0 && "Offset is too large");
1904    Val.ConstVal = c;
1905  }
1906  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1907                     MVT VT, int o=0)
1908    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1909             getSDVTList(VT)), Offset(o), Alignment(0) {
1910    assert((int)Offset >= 0 && "Offset is too large");
1911    Val.MachineCPVal = v;
1912    Offset |= 1 << (sizeof(unsigned)*8-1);
1913  }
1914  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1915                     MVT VT, int o, unsigned Align)
1916    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1917             getSDVTList(VT)), Offset(o), Alignment(Align) {
1918    assert((int)Offset >= 0 && "Offset is too large");
1919    Val.MachineCPVal = v;
1920    Offset |= 1 << (sizeof(unsigned)*8-1);
1921  }
1922public:
1923
1924  bool isMachineConstantPoolEntry() const {
1925    return (int)Offset < 0;
1926  }
1927
1928  Constant *getConstVal() const {
1929    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1930    return Val.ConstVal;
1931  }
1932
1933  MachineConstantPoolValue *getMachineCPVal() const {
1934    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1935    return Val.MachineCPVal;
1936  }
1937
1938  int getOffset() const {
1939    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1940  }
1941
1942  // Return the alignment of this constant pool object, which is either 0 (for
1943  // default alignment) or log2 of the desired value.
1944  unsigned getAlignment() const { return Alignment; }
1945
1946  const Type *getType() const;
1947
1948  static bool classof(const ConstantPoolSDNode *) { return true; }
1949  static bool classof(const SDNode *N) {
1950    return N->getOpcode() == ISD::ConstantPool ||
1951           N->getOpcode() == ISD::TargetConstantPool;
1952  }
1953};
1954
1955class BasicBlockSDNode : public SDNode {
1956  MachineBasicBlock *MBB;
1957  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1958protected:
1959  friend class SelectionDAG;
1960  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1961    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1962  }
1963public:
1964
1965  MachineBasicBlock *getBasicBlock() const { return MBB; }
1966
1967  static bool classof(const BasicBlockSDNode *) { return true; }
1968  static bool classof(const SDNode *N) {
1969    return N->getOpcode() == ISD::BasicBlock;
1970  }
1971};
1972
1973/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1974/// used when the SelectionDAG needs to make a simple reference to something
1975/// in the LLVM IR representation.
1976///
1977/// Note that this is not used for carrying alias information; that is done
1978/// with MemOperandSDNode, which includes a Value which is required to be a
1979/// pointer, and several other fields specific to memory references.
1980///
1981class SrcValueSDNode : public SDNode {
1982  const Value *V;
1983  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1984protected:
1985  friend class SelectionDAG;
1986  /// Create a SrcValue for a general value.
1987  explicit SrcValueSDNode(const Value *v)
1988    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
1989
1990public:
1991  /// getValue - return the contained Value.
1992  const Value *getValue() const { return V; }
1993
1994  static bool classof(const SrcValueSDNode *) { return true; }
1995  static bool classof(const SDNode *N) {
1996    return N->getOpcode() == ISD::SRCVALUE;
1997  }
1998};
1999
2000
2001/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
2002/// used to represent a reference to memory after ISD::LOAD
2003/// and ISD::STORE have been lowered.
2004///
2005class MemOperandSDNode : public SDNode {
2006  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2007protected:
2008  friend class SelectionDAG;
2009  /// Create a MachineMemOperand node
2010  explicit MemOperandSDNode(const MachineMemOperand &mo)
2011    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
2012
2013public:
2014  /// MO - The contained MachineMemOperand.
2015  const MachineMemOperand MO;
2016
2017  static bool classof(const MemOperandSDNode *) { return true; }
2018  static bool classof(const SDNode *N) {
2019    return N->getOpcode() == ISD::MEMOPERAND;
2020  }
2021};
2022
2023
2024class RegisterSDNode : public SDNode {
2025  unsigned Reg;
2026  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2027protected:
2028  friend class SelectionDAG;
2029  RegisterSDNode(unsigned reg, MVT VT)
2030    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
2031  }
2032public:
2033
2034  unsigned getReg() const { return Reg; }
2035
2036  static bool classof(const RegisterSDNode *) { return true; }
2037  static bool classof(const SDNode *N) {
2038    return N->getOpcode() == ISD::Register;
2039  }
2040};
2041
2042class DbgStopPointSDNode : public SDNode {
2043  SDUse Chain;
2044  unsigned Line;
2045  unsigned Column;
2046  const CompileUnitDesc *CU;
2047  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2048protected:
2049  friend class SelectionDAG;
2050  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2051                     const CompileUnitDesc *cu)
2052    : SDNode(ISD::DBG_STOPPOINT, getSDVTList(MVT::Other)),
2053      Line(l), Column(c), CU(cu) {
2054    Chain = ch;
2055    InitOperands(&Chain, 1);
2056  }
2057public:
2058  unsigned getLine() const { return Line; }
2059  unsigned getColumn() const { return Column; }
2060  const CompileUnitDesc *getCompileUnit() const { return CU; }
2061
2062  static bool classof(const DbgStopPointSDNode *) { return true; }
2063  static bool classof(const SDNode *N) {
2064    return N->getOpcode() == ISD::DBG_STOPPOINT;
2065  }
2066};
2067
2068class LabelSDNode : public SDNode {
2069  SDUse Chain;
2070  unsigned LabelID;
2071  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2072protected:
2073  friend class SelectionDAG;
2074  LabelSDNode(unsigned NodeTy, SDValue ch, unsigned id)
2075    : SDNode(NodeTy, getSDVTList(MVT::Other)), LabelID(id) {
2076    Chain = ch;
2077    InitOperands(&Chain, 1);
2078  }
2079public:
2080  unsigned getLabelID() const { return LabelID; }
2081
2082  static bool classof(const LabelSDNode *) { return true; }
2083  static bool classof(const SDNode *N) {
2084    return N->getOpcode() == ISD::DBG_LABEL ||
2085           N->getOpcode() == ISD::EH_LABEL;
2086  }
2087};
2088
2089class ExternalSymbolSDNode : public SDNode {
2090  const char *Symbol;
2091  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2092protected:
2093  friend class SelectionDAG;
2094  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
2095    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2096             getSDVTList(VT)), Symbol(Sym) {
2097  }
2098public:
2099
2100  const char *getSymbol() const { return Symbol; }
2101
2102  static bool classof(const ExternalSymbolSDNode *) { return true; }
2103  static bool classof(const SDNode *N) {
2104    return N->getOpcode() == ISD::ExternalSymbol ||
2105           N->getOpcode() == ISD::TargetExternalSymbol;
2106  }
2107};
2108
2109class CondCodeSDNode : public SDNode {
2110  ISD::CondCode Condition;
2111  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2112protected:
2113  friend class SelectionDAG;
2114  explicit CondCodeSDNode(ISD::CondCode Cond)
2115    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
2116  }
2117public:
2118
2119  ISD::CondCode get() const { return Condition; }
2120
2121  static bool classof(const CondCodeSDNode *) { return true; }
2122  static bool classof(const SDNode *N) {
2123    return N->getOpcode() == ISD::CONDCODE;
2124  }
2125};
2126
2127namespace ISD {
2128  struct ArgFlagsTy {
2129  private:
2130    static const uint64_t NoFlagSet      = 0ULL;
2131    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2132    static const uint64_t ZExtOffs       = 0;
2133    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2134    static const uint64_t SExtOffs       = 1;
2135    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2136    static const uint64_t InRegOffs      = 2;
2137    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2138    static const uint64_t SRetOffs       = 3;
2139    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2140    static const uint64_t ByValOffs      = 4;
2141    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2142    static const uint64_t NestOffs       = 5;
2143    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2144    static const uint64_t ByValAlignOffs = 6;
2145    static const uint64_t Split          = 1ULL << 10;
2146    static const uint64_t SplitOffs      = 10;
2147    static const uint64_t OrigAlign      = 0x1FULL<<27;
2148    static const uint64_t OrigAlignOffs  = 27;
2149    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2150    static const uint64_t ByValSizeOffs  = 32;
2151
2152    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2153
2154    uint64_t Flags;
2155  public:
2156    ArgFlagsTy() : Flags(0) { }
2157
2158    bool isZExt()   const { return Flags & ZExt; }
2159    void setZExt()  { Flags |= One << ZExtOffs; }
2160
2161    bool isSExt()   const { return Flags & SExt; }
2162    void setSExt()  { Flags |= One << SExtOffs; }
2163
2164    bool isInReg()  const { return Flags & InReg; }
2165    void setInReg() { Flags |= One << InRegOffs; }
2166
2167    bool isSRet()   const { return Flags & SRet; }
2168    void setSRet()  { Flags |= One << SRetOffs; }
2169
2170    bool isByVal()  const { return Flags & ByVal; }
2171    void setByVal() { Flags |= One << ByValOffs; }
2172
2173    bool isNest()   const { return Flags & Nest; }
2174    void setNest()  { Flags |= One << NestOffs; }
2175
2176    unsigned getByValAlign() const {
2177      return (unsigned)
2178        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2179    }
2180    void setByValAlign(unsigned A) {
2181      Flags = (Flags & ~ByValAlign) |
2182        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2183    }
2184
2185    bool isSplit()   const { return Flags & Split; }
2186    void setSplit()  { Flags |= One << SplitOffs; }
2187
2188    unsigned getOrigAlign() const {
2189      return (unsigned)
2190        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2191    }
2192    void setOrigAlign(unsigned A) {
2193      Flags = (Flags & ~OrigAlign) |
2194        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2195    }
2196
2197    unsigned getByValSize() const {
2198      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2199    }
2200    void setByValSize(unsigned S) {
2201      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2202    }
2203
2204    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2205    std::string getArgFlagsString();
2206
2207    /// getRawBits - Represent the flags as a bunch of bits.
2208    uint64_t getRawBits() const { return Flags; }
2209  };
2210}
2211
2212/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2213class ARG_FLAGSSDNode : public SDNode {
2214  ISD::ArgFlagsTy TheFlags;
2215  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2216protected:
2217  friend class SelectionDAG;
2218  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2219    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
2220  }
2221public:
2222  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2223
2224  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2225  static bool classof(const SDNode *N) {
2226    return N->getOpcode() == ISD::ARG_FLAGS;
2227  }
2228};
2229
2230/// CallSDNode - Node for calls -- ISD::CALL.
2231class CallSDNode : public SDNode {
2232  unsigned CallingConv;
2233  bool IsVarArg;
2234  bool IsTailCall;
2235  // We might eventually want a full-blown Attributes for the result; that
2236  // will expand the size of the representation.  At the moment we only
2237  // need Inreg.
2238  bool Inreg;
2239  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2240protected:
2241  friend class SelectionDAG;
2242  CallSDNode(unsigned cc, bool isvararg, bool istailcall, bool isinreg,
2243             SDVTList VTs, const SDValue *Operands, unsigned numOperands)
2244    : SDNode(ISD::CALL, VTs, Operands, numOperands),
2245      CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
2246      Inreg(isinreg) {}
2247public:
2248  unsigned getCallingConv() const { return CallingConv; }
2249  unsigned isVarArg() const { return IsVarArg; }
2250  unsigned isTailCall() const { return IsTailCall; }
2251  unsigned isInreg() const { return Inreg; }
2252
2253  /// Set this call to not be marked as a tail call. Normally setter
2254  /// methods in SDNodes are unsafe because it breaks the CSE map,
2255  /// but we don't include the tail call flag for calls so it's ok
2256  /// in this case.
2257  void setNotTailCall() { IsTailCall = false; }
2258
2259  SDValue getChain() const { return getOperand(0); }
2260  SDValue getCallee() const { return getOperand(1); }
2261
2262  unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
2263  SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
2264  SDValue getArgFlagsVal(unsigned i) const {
2265    return getOperand(3+2*i);
2266  }
2267  ISD::ArgFlagsTy getArgFlags(unsigned i) const {
2268    return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
2269  }
2270
2271  unsigned getNumRetVals() const { return getNumValues() - 1; }
2272  MVT getRetValType(unsigned i) const { return getValueType(i); }
2273
2274  static bool classof(const CallSDNode *) { return true; }
2275  static bool classof(const SDNode *N) {
2276    return N->getOpcode() == ISD::CALL;
2277  }
2278};
2279
2280/// VTSDNode - This class is used to represent MVT's, which are used
2281/// to parameterize some operations.
2282class VTSDNode : public SDNode {
2283  MVT ValueType;
2284  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2285protected:
2286  friend class SelectionDAG;
2287  explicit VTSDNode(MVT VT)
2288    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
2289  }
2290public:
2291
2292  MVT getVT() const { return ValueType; }
2293
2294  static bool classof(const VTSDNode *) { return true; }
2295  static bool classof(const SDNode *N) {
2296    return N->getOpcode() == ISD::VALUETYPE;
2297  }
2298};
2299
2300/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2301///
2302class LSBaseSDNode : public MemSDNode {
2303protected:
2304  //! Operand array for load and store
2305  /*!
2306    \note Moving this array to the base class captures more
2307    common functionality shared between LoadSDNode and
2308    StoreSDNode
2309   */
2310  SDUse Ops[4];
2311public:
2312  LSBaseSDNode(ISD::NodeType NodeTy, SDValue *Operands, unsigned numOperands,
2313               SDVTList VTs, ISD::MemIndexedMode AM, MVT VT,
2314               const Value *SV, int SVO, unsigned Align, bool Vol)
2315    : MemSDNode(NodeTy, VTs, VT, SV, SVO, Align, Vol) {
2316    SubclassData = AM;
2317    for (unsigned i = 0; i != numOperands; ++i)
2318      Ops[i] = Operands[i];
2319    InitOperands(Ops, numOperands);
2320    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2321    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2322           "Only indexed loads and stores have a non-undef offset operand");
2323  }
2324
2325  const SDValue &getOffset() const {
2326    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2327  }
2328
2329  /// getAddressingMode - Return the addressing mode for this load or store:
2330  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2331  ISD::MemIndexedMode getAddressingMode() const {
2332    return ISD::MemIndexedMode(SubclassData & 7);
2333  }
2334
2335  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2336  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2337
2338  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2339  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2340
2341  static bool classof(const LSBaseSDNode *) { return true; }
2342  static bool classof(const SDNode *N) {
2343    return N->getOpcode() == ISD::LOAD ||
2344           N->getOpcode() == ISD::STORE;
2345  }
2346};
2347
2348/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2349///
2350class LoadSDNode : public LSBaseSDNode {
2351  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2352protected:
2353  friend class SelectionDAG;
2354  LoadSDNode(SDValue *ChainPtrOff, SDVTList VTs,
2355             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2356             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2357    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
2358                   VTs, AM, LVT, SV, O, Align, Vol) {
2359    SubclassData |= (unsigned short)ETy << 3;
2360  }
2361public:
2362
2363  /// getExtensionType - Return whether this is a plain node,
2364  /// or one of the varieties of value-extending loads.
2365  ISD::LoadExtType getExtensionType() const {
2366    return ISD::LoadExtType((SubclassData >> 3) & 3);
2367  }
2368
2369  const SDValue &getBasePtr() const { return getOperand(1); }
2370  const SDValue &getOffset() const { return getOperand(2); }
2371
2372  static bool classof(const LoadSDNode *) { return true; }
2373  static bool classof(const SDNode *N) {
2374    return N->getOpcode() == ISD::LOAD;
2375  }
2376};
2377
2378/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2379///
2380class StoreSDNode : public LSBaseSDNode {
2381  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2382protected:
2383  friend class SelectionDAG;
2384  StoreSDNode(SDValue *ChainValuePtrOff, SDVTList VTs,
2385              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2386              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2387    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
2388                   VTs, AM, SVT, SV, O, Align, Vol) {
2389    SubclassData |= (unsigned short)isTrunc << 3;
2390  }
2391public:
2392
2393  /// isTruncatingStore - Return true if the op does a truncation before store.
2394  /// For integers this is the same as doing a TRUNCATE and storing the result.
2395  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2396  bool isTruncatingStore() const { return (SubclassData >> 3) & 1; }
2397
2398  const SDValue &getValue() const { return getOperand(1); }
2399  const SDValue &getBasePtr() const { return getOperand(2); }
2400  const SDValue &getOffset() const { return getOperand(3); }
2401
2402  static bool classof(const StoreSDNode *) { return true; }
2403  static bool classof(const SDNode *N) {
2404    return N->getOpcode() == ISD::STORE;
2405  }
2406};
2407
2408
2409class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2410  SDNode *Node;
2411  unsigned Operand;
2412
2413  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2414public:
2415  bool operator==(const SDNodeIterator& x) const {
2416    return Operand == x.Operand;
2417  }
2418  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2419
2420  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2421    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2422    Operand = I.Operand;
2423    return *this;
2424  }
2425
2426  pointer operator*() const {
2427    return Node->getOperand(Operand).getNode();
2428  }
2429  pointer operator->() const { return operator*(); }
2430
2431  SDNodeIterator& operator++() {                // Preincrement
2432    ++Operand;
2433    return *this;
2434  }
2435  SDNodeIterator operator++(int) { // Postincrement
2436    SDNodeIterator tmp = *this; ++*this; return tmp;
2437  }
2438
2439  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2440  static SDNodeIterator end  (SDNode *N) {
2441    return SDNodeIterator(N, N->getNumOperands());
2442  }
2443
2444  unsigned getOperand() const { return Operand; }
2445  const SDNode *getNode() const { return Node; }
2446};
2447
2448template <> struct GraphTraits<SDNode*> {
2449  typedef SDNode NodeType;
2450  typedef SDNodeIterator ChildIteratorType;
2451  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2452  static inline ChildIteratorType child_begin(NodeType *N) {
2453    return SDNodeIterator::begin(N);
2454  }
2455  static inline ChildIteratorType child_end(NodeType *N) {
2456    return SDNodeIterator::end(N);
2457  }
2458};
2459
2460/// LargestSDNode - The largest SDNode class.
2461///
2462typedef LoadSDNode LargestSDNode;
2463
2464/// MostAlignedSDNode - The SDNode class with the greatest alignment
2465/// requirement.
2466///
2467typedef ARG_FLAGSSDNode MostAlignedSDNode;
2468
2469namespace ISD {
2470  /// isNormalLoad - Returns true if the specified node is a non-extending
2471  /// and unindexed load.
2472  inline bool isNormalLoad(const SDNode *N) {
2473    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2474    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2475      Ld->getAddressingMode() == ISD::UNINDEXED;
2476  }
2477
2478  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2479  /// load.
2480  inline bool isNON_EXTLoad(const SDNode *N) {
2481    return isa<LoadSDNode>(N) &&
2482      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2483  }
2484
2485  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2486  ///
2487  inline bool isEXTLoad(const SDNode *N) {
2488    return isa<LoadSDNode>(N) &&
2489      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2490  }
2491
2492  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2493  ///
2494  inline bool isSEXTLoad(const SDNode *N) {
2495    return isa<LoadSDNode>(N) &&
2496      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2497  }
2498
2499  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2500  ///
2501  inline bool isZEXTLoad(const SDNode *N) {
2502    return isa<LoadSDNode>(N) &&
2503      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2504  }
2505
2506  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2507  ///
2508  inline bool isUNINDEXEDLoad(const SDNode *N) {
2509    return isa<LoadSDNode>(N) &&
2510      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2511  }
2512
2513  /// isNormalStore - Returns true if the specified node is a non-truncating
2514  /// and unindexed store.
2515  inline bool isNormalStore(const SDNode *N) {
2516    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2517    return St && !St->isTruncatingStore() &&
2518      St->getAddressingMode() == ISD::UNINDEXED;
2519  }
2520
2521  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2522  /// store.
2523  inline bool isNON_TRUNCStore(const SDNode *N) {
2524    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2525  }
2526
2527  /// isTRUNCStore - Returns true if the specified node is a truncating
2528  /// store.
2529  inline bool isTRUNCStore(const SDNode *N) {
2530    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2531  }
2532
2533  /// isUNINDEXEDStore - Returns true if the specified node is an
2534  /// unindexed store.
2535  inline bool isUNINDEXEDStore(const SDNode *N) {
2536    return isa<StoreSDNode>(N) &&
2537      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2538  }
2539}
2540
2541
2542} // end llvm namespace
2543
2544#endif
2545