SelectionDAGNodes.h revision 49027e639eb40eef51837b55a3af17dcdb4d400a
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37template <typename T> struct ilist_traits;
38template<typename NodeTy, typename Traits> class iplist;
39template<typename NodeTy> class ilist_iterator;
40
41/// ISD namespace - This namespace contains an enum which represents all of the
42/// SelectionDAG node types and value types.
43///
44namespace ISD {
45  //===--------------------------------------------------------------------===//
46  /// ISD::NodeType enum - This enum defines all of the operators valid in a
47  /// SelectionDAG.
48  ///
49  enum NodeType {
50    // EntryToken - This is the marker used to indicate the start of the region.
51    EntryToken,
52
53    // Token factor - This node takes multiple tokens as input and produces a
54    // single token result.  This is used to represent the fact that the operand
55    // operators are independent of each other.
56    TokenFactor,
57
58    // AssertSext, AssertZext - These nodes record if a register contains a
59    // value that has already been zero or sign extended from a narrower type.
60    // These nodes take two operands.  The first is the node that has already
61    // been extended, and the second is a value type node indicating the width
62    // of the extension
63    AssertSext, AssertZext,
64
65    // Various leaf nodes.
66    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
67    Constant, ConstantFP,
68    GlobalAddress, FrameIndex, ConstantPool, ExternalSymbol,
69
70    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
71    // simplification of the constant.
72    TargetConstant,
73    TargetConstantFP,
74
75    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
76    // anything else with this node, and this is valid in the target-specific
77    // dag, turning into a GlobalAddress operand.
78    TargetGlobalAddress,
79    TargetFrameIndex,
80    TargetConstantPool,
81    TargetExternalSymbol,
82
83    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
84    /// This node represents a target intrinsic function with no side effects.
85    /// The first operand is the ID number of the intrinsic from the
86    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
87    /// node has returns the result of the intrinsic.
88    INTRINSIC_WO_CHAIN,
89
90    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
91    /// This node represents a target intrinsic function with side effects that
92    /// returns a result.  The first operand is a chain pointer.  The second is
93    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
94    /// operands to the intrinsic follow.  The node has two results, the result
95    /// of the intrinsic and an output chain.
96    INTRINSIC_W_CHAIN,
97
98    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
99    /// This node represents a target intrinsic function with side effects that
100    /// does not return a result.  The first operand is a chain pointer.  The
101    /// second is the ID number of the intrinsic from the llvm::Intrinsic
102    /// namespace.  The operands to the intrinsic follow.
103    INTRINSIC_VOID,
104
105    // CopyToReg - This node has three operands: a chain, a register number to
106    // set to this value, and a value.
107    CopyToReg,
108
109    // CopyFromReg - This node indicates that the input value is a virtual or
110    // physical register that is defined outside of the scope of this
111    // SelectionDAG.  The register is available from the RegSDNode object.
112    CopyFromReg,
113
114    // UNDEF - An undefined node
115    UNDEF,
116
117    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
118    // a Constant, which is required to be operand #1), element of the aggregate
119    // value specified as operand #0.  This is only for use before legalization,
120    // for values that will be broken into multiple registers.
121    EXTRACT_ELEMENT,
122
123    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
124    // two values of the same integer value type, this produces a value twice as
125    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
126    BUILD_PAIR,
127
128    // MERGE_VALUES - This node takes multiple discrete operands and returns
129    // them all as its individual results.  This nodes has exactly the same
130    // number of inputs and outputs, and is only valid before legalization.
131    // This node is useful for some pieces of the code generator that want to
132    // think about a single node with multiple results, not multiple nodes.
133    MERGE_VALUES,
134
135    // Simple integer binary arithmetic operators.
136    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
137
138    // Carry-setting nodes for multiple precision addition and subtraction.
139    // These nodes take two operands of the same value type, and produce two
140    // results.  The first result is the normal add or sub result, the second
141    // result is the carry flag result.
142    ADDC, SUBC,
143
144    // Carry-using nodes for multiple precision addition and subtraction.  These
145    // nodes take three operands: The first two are the normal lhs and rhs to
146    // the add or sub, and the third is the input carry flag.  These nodes
147    // produce two results; the normal result of the add or sub, and the output
148    // carry flag.  These nodes both read and write a carry flag to allow them
149    // to them to be chained together for add and sub of arbitrarily large
150    // values.
151    ADDE, SUBE,
152
153    // Simple binary floating point operators.
154    FADD, FSUB, FMUL, FDIV, FREM,
155
156    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
157    // DAG node does not require that X and Y have the same type, just that they
158    // are both floating point.  X and the result must have the same type.
159    // FCOPYSIGN(f32, f64) is allowed.
160    FCOPYSIGN,
161
162    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
163    /// with the specified, possibly variable, elements.  The number of elements
164    /// is required to be a power of two.
165    VBUILD_VECTOR,
166
167    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
168    /// with the specified, possibly variable, elements.  The number of elements
169    /// is required to be a power of two.
170    BUILD_VECTOR,
171
172    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
173    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
174    /// return an vector with the specified element of VECTOR replaced with VAL.
175    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
176    VINSERT_VECTOR_ELT,
177
178    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
179    /// type) with the element at IDX replaced with VAL.
180    INSERT_VECTOR_ELT,
181
182    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
183    /// (an MVT::Vector value) identified by the (potentially variable) element
184    /// number IDX.
185    VEXTRACT_VECTOR_ELT,
186
187    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
188    /// (a legal packed type vector) identified by the (potentially variable)
189    /// element number IDX.
190    EXTRACT_VECTOR_ELT,
191
192    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
193    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
194    /// constant int values that indicate which value each result element will
195    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
196    /// similar to the Altivec 'vperm' instruction, except that the indices must
197    /// be constants and are in terms of the element size of VEC1/VEC2, not in
198    /// terms of bytes.
199    VVECTOR_SHUFFLE,
200
201    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
202    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
203    /// (regardless of whether its datatype is legal or not) that indicate
204    /// which value each result element will get.  The elements of VEC1/VEC2 are
205    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
206    /// instruction, except that the indices must be constants and are in terms
207    /// of the element size of VEC1/VEC2, not in terms of bytes.
208    VECTOR_SHUFFLE,
209
210    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
211    /// represents a conversion from or to an ISD::Vector type.
212    ///
213    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
214    /// The input and output are required to have the same size and at least one
215    /// is required to be a vector (if neither is a vector, just use
216    /// BIT_CONVERT).
217    ///
218    /// If the result is a vector, this takes three operands (like any other
219    /// vector producer) which indicate the size and type of the vector result.
220    /// Otherwise it takes one input.
221    VBIT_CONVERT,
222
223    /// BINOP(LHS, RHS,  COUNT,TYPE)
224    /// Simple abstract vector operators.  Unlike the integer and floating point
225    /// binary operators, these nodes also take two additional operands:
226    /// a constant element count, and a value type node indicating the type of
227    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
228    /// including VLOAD and VConstant must currently have count and type as
229    /// their last two operands.
230    VADD, VSUB, VMUL, VSDIV, VUDIV,
231    VAND, VOR, VXOR,
232
233    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
234    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
235    /// COND is false.
236    VSELECT,
237
238    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
239    /// scalar value into the low element of the resultant vector type.  The top
240    /// elements of the vector are undefined.
241    SCALAR_TO_VECTOR,
242
243    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
244    // an unsigned/signed value of type i[2*n], then return the top part.
245    MULHU, MULHS,
246
247    // Bitwise operators - logical and, logical or, logical xor, shift left,
248    // shift right algebraic (shift in sign bits), shift right logical (shift in
249    // zeroes), rotate left, rotate right, and byteswap.
250    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
251
252    // Counting operators
253    CTTZ, CTLZ, CTPOP,
254
255    // Select(COND, TRUEVAL, FALSEVAL)
256    SELECT,
257
258    // Select with condition operator - This selects between a true value and
259    // a false value (ops #2 and #3) based on the boolean result of comparing
260    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
261    // condition code in op #4, a CondCodeSDNode.
262    SELECT_CC,
263
264    // SetCC operator - This evaluates to a boolean (i1) true value if the
265    // condition is true.  The operands to this are the left and right operands
266    // to compare (ops #0, and #1) and the condition code to compare them with
267    // (op #2) as a CondCodeSDNode.
268    SETCC,
269
270    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
271    // integer shift operations, just like ADD/SUB_PARTS.  The operation
272    // ordering is:
273    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
274    SHL_PARTS, SRA_PARTS, SRL_PARTS,
275
276    // Conversion operators.  These are all single input single output
277    // operations.  For all of these, the result type must be strictly
278    // wider or narrower (depending on the operation) than the source
279    // type.
280
281    // SIGN_EXTEND - Used for integer types, replicating the sign bit
282    // into new bits.
283    SIGN_EXTEND,
284
285    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
286    ZERO_EXTEND,
287
288    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
289    ANY_EXTEND,
290
291    // TRUNCATE - Completely drop the high bits.
292    TRUNCATE,
293
294    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
295    // depends on the first letter) to floating point.
296    SINT_TO_FP,
297    UINT_TO_FP,
298
299    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
300    // sign extend a small value in a large integer register (e.g. sign
301    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
302    // with the 7th bit).  The size of the smaller type is indicated by the 1th
303    // operand, a ValueType node.
304    SIGN_EXTEND_INREG,
305
306    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
307    // integer.
308    FP_TO_SINT,
309    FP_TO_UINT,
310
311    // FP_ROUND - Perform a rounding operation from the current
312    // precision down to the specified precision (currently always 64->32).
313    FP_ROUND,
314
315    // FP_ROUND_INREG - This operator takes a floating point register, and
316    // rounds it to a floating point value.  It then promotes it and returns it
317    // in a register of the same size.  This operation effectively just discards
318    // excess precision.  The type to round down to is specified by the 1th
319    // operation, a VTSDNode (currently always 64->32->64).
320    FP_ROUND_INREG,
321
322    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
323    FP_EXTEND,
324
325    // BIT_CONVERT - Theis operator converts between integer and FP values, as
326    // if one was stored to memory as integer and the other was loaded from the
327    // same address (or equivalently for vector format conversions, etc).  The
328    // source and result are required to have the same bit size (e.g.
329    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
330    // conversions, but that is a noop, deleted by getNode().
331    BIT_CONVERT,
332
333    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
334    // absolute value, square root, sine and cosine operations.
335    FNEG, FABS, FSQRT, FSIN, FCOS,
336
337    // Other operators.  LOAD and STORE have token chains as their first
338    // operand, then the same operands as an LLVM load/store instruction, then a
339    // SRCVALUE node that provides alias analysis information.
340    LOAD, STORE,
341
342    // Abstract vector version of LOAD.  VLOAD has a constant element count as
343    // the first operand, followed by a value type node indicating the type of
344    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
345    VLOAD,
346
347    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
348    // memory and extend them to a larger value (e.g. load a byte into a word
349    // register).  All three of these have four operands, a token chain, a
350    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
351    // indicating the type to load.
352    //
353    // SEXTLOAD loads the integer operand and sign extends it to a larger
354    //          integer result type.
355    // ZEXTLOAD loads the integer operand and zero extends it to a larger
356    //          integer result type.
357    // EXTLOAD  is used for three things: floating point extending loads,
358    //          integer extending loads [the top bits are undefined], and vector
359    //          extending loads [load into low elt].
360    EXTLOAD, SEXTLOAD, ZEXTLOAD,
361
362    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
363    // value and stores it to memory in one operation.  This can be used for
364    // either integer or floating point operands.  The first four operands of
365    // this are the same as a standard store.  The fifth is the ValueType to
366    // store it as (which will be smaller than the source value).
367    TRUNCSTORE,
368
369    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
370    // to a specified boundary.  The first operand is the token chain, the
371    // second is the number of bytes to allocate, and the third is the alignment
372    // boundary.  The size is guaranteed to be a multiple of the stack
373    // alignment, and the alignment is guaranteed to be bigger than the stack
374    // alignment (if required) or 0 to get standard stack alignment.
375    DYNAMIC_STACKALLOC,
376
377    // Control flow instructions.  These all have token chains.
378
379    // BR - Unconditional branch.  The first operand is the chain
380    // operand, the second is the MBB to branch to.
381    BR,
382
383    // BRCOND - Conditional branch.  The first operand is the chain,
384    // the second is the condition, the third is the block to branch
385    // to if the condition is true.
386    BRCOND,
387
388    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
389    // that the condition is represented as condition code, and two nodes to
390    // compare, rather than as a combined SetCC node.  The operands in order are
391    // chain, cc, lhs, rhs, block to branch to if condition is true.
392    BR_CC,
393
394    // RET - Return from function.  The first operand is the chain,
395    // and any subsequent operands are the return values for the
396    // function.  This operation can have variable number of operands.
397    RET,
398
399    // INLINEASM - Represents an inline asm block.  This node always has two
400    // return values: a chain and a flag result.  The inputs are as follows:
401    //   Operand #0   : Input chain.
402    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
403    //   Operand #2n+2: A RegisterNode.
404    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
405    //   Operand #last: Optional, an incoming flag.
406    INLINEASM,
407
408    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
409    // value, the same type as the pointer type for the system, and an output
410    // chain.
411    STACKSAVE,
412
413    // STACKRESTORE has two operands, an input chain and a pointer to restore to
414    // it returns an output chain.
415    STACKRESTORE,
416
417    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
418    // correspond to the operands of the LLVM intrinsic functions.  The only
419    // result is a token chain.  The alignment argument is guaranteed to be a
420    // Constant node.
421    MEMSET,
422    MEMMOVE,
423    MEMCPY,
424
425    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
426    // a call sequence, and carry arbitrary information that target might want
427    // to know.  The first operand is a chain, the rest are specified by the
428    // target and not touched by the DAG optimizers.
429    CALLSEQ_START,  // Beginning of a call sequence
430    CALLSEQ_END,    // End of a call sequence
431
432    // VAARG - VAARG has three operands: an input chain, a pointer, and a
433    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
434    VAARG,
435
436    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
437    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
438    // source.
439    VACOPY,
440
441    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
442    // pointer, and a SRCVALUE.
443    VAEND, VASTART,
444
445    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
446    // locations with their value.  This allows one use alias analysis
447    // information in the backend.
448    SRCVALUE,
449
450    // PCMARKER - This corresponds to the pcmarker intrinsic.
451    PCMARKER,
452
453    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
454    // The only operand is a chain and a value and a chain are produced.  The
455    // value is the contents of the architecture specific cycle counter like
456    // register (or other high accuracy low latency clock source)
457    READCYCLECOUNTER,
458
459    // HANDLENODE node - Used as a handle for various purposes.
460    HANDLENODE,
461
462    // LOCATION - This node is used to represent a source location for debug
463    // info.  It takes token chain as input, then a line number, then a column
464    // number, then a filename, then a working dir.  It produces a token chain
465    // as output.
466    LOCATION,
467
468    // DEBUG_LOC - This node is used to represent source line information
469    // embedded in the code.  It takes a token chain as input, then a line
470    // number, then a column then a file id (provided by MachineDebugInfo.) It
471    // produces a token chain as output.
472    DEBUG_LOC,
473
474    // DEBUG_LABEL - This node is used to mark a location in the code where a
475    // label should be generated for use by the debug information.  It takes a
476    // token chain as input and then a unique id (provided by MachineDebugInfo.)
477    // It produces a token chain as output.
478    DEBUG_LABEL,
479
480    // BUILTIN_OP_END - This must be the last enum value in this list.
481    BUILTIN_OP_END
482  };
483
484  /// Node predicates
485
486  /// isBuildVectorAllOnes - Return true if the specified node is a
487  /// BUILD_VECTOR where all of the elements are ~0 or undef.
488  bool isBuildVectorAllOnes(const SDNode *N);
489
490  /// isBuildVectorAllZeros - Return true if the specified node is a
491  /// BUILD_VECTOR where all of the elements are 0 or undef.
492  bool isBuildVectorAllZeros(const SDNode *N);
493
494  //===--------------------------------------------------------------------===//
495  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
496  /// below work out, when considering SETFALSE (something that never exists
497  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
498  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
499  /// to.  If the "N" column is 1, the result of the comparison is undefined if
500  /// the input is a NAN.
501  ///
502  /// All of these (except for the 'always folded ops') should be handled for
503  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
504  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
505  ///
506  /// Note that these are laid out in a specific order to allow bit-twiddling
507  /// to transform conditions.
508  enum CondCode {
509    // Opcode          N U L G E       Intuitive operation
510    SETFALSE,      //    0 0 0 0       Always false (always folded)
511    SETOEQ,        //    0 0 0 1       True if ordered and equal
512    SETOGT,        //    0 0 1 0       True if ordered and greater than
513    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
514    SETOLT,        //    0 1 0 0       True if ordered and less than
515    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
516    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
517    SETO,          //    0 1 1 1       True if ordered (no nans)
518    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
519    SETUEQ,        //    1 0 0 1       True if unordered or equal
520    SETUGT,        //    1 0 1 0       True if unordered or greater than
521    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
522    SETULT,        //    1 1 0 0       True if unordered or less than
523    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
524    SETUNE,        //    1 1 1 0       True if unordered or not equal
525    SETTRUE,       //    1 1 1 1       Always true (always folded)
526    // Don't care operations: undefined if the input is a nan.
527    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
528    SETEQ,         //  1 X 0 0 1       True if equal
529    SETGT,         //  1 X 0 1 0       True if greater than
530    SETGE,         //  1 X 0 1 1       True if greater than or equal
531    SETLT,         //  1 X 1 0 0       True if less than
532    SETLE,         //  1 X 1 0 1       True if less than or equal
533    SETNE,         //  1 X 1 1 0       True if not equal
534    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
535
536    SETCC_INVALID       // Marker value.
537  };
538
539  /// isSignedIntSetCC - Return true if this is a setcc instruction that
540  /// performs a signed comparison when used with integer operands.
541  inline bool isSignedIntSetCC(CondCode Code) {
542    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
543  }
544
545  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
546  /// performs an unsigned comparison when used with integer operands.
547  inline bool isUnsignedIntSetCC(CondCode Code) {
548    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
549  }
550
551  /// isTrueWhenEqual - Return true if the specified condition returns true if
552  /// the two operands to the condition are equal.  Note that if one of the two
553  /// operands is a NaN, this value is meaningless.
554  inline bool isTrueWhenEqual(CondCode Cond) {
555    return ((int)Cond & 1) != 0;
556  }
557
558  /// getUnorderedFlavor - This function returns 0 if the condition is always
559  /// false if an operand is a NaN, 1 if the condition is always true if the
560  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
561  /// NaN.
562  inline unsigned getUnorderedFlavor(CondCode Cond) {
563    return ((int)Cond >> 3) & 3;
564  }
565
566  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
567  /// 'op' is a valid SetCC operation.
568  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
569
570  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
571  /// when given the operation for (X op Y).
572  CondCode getSetCCSwappedOperands(CondCode Operation);
573
574  /// getSetCCOrOperation - Return the result of a logical OR between different
575  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
576  /// function returns SETCC_INVALID if it is not possible to represent the
577  /// resultant comparison.
578  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
579
580  /// getSetCCAndOperation - Return the result of a logical AND between
581  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
582  /// function returns SETCC_INVALID if it is not possible to represent the
583  /// resultant comparison.
584  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
585}  // end llvm::ISD namespace
586
587
588//===----------------------------------------------------------------------===//
589/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
590/// values as the result of a computation.  Many nodes return multiple values,
591/// from loads (which define a token and a return value) to ADDC (which returns
592/// a result and a carry value), to calls (which may return an arbitrary number
593/// of values).
594///
595/// As such, each use of a SelectionDAG computation must indicate the node that
596/// computes it as well as which return value to use from that node.  This pair
597/// of information is represented with the SDOperand value type.
598///
599class SDOperand {
600public:
601  SDNode *Val;        // The node defining the value we are using.
602  unsigned ResNo;     // Which return value of the node we are using.
603
604  SDOperand() : Val(0) {}
605  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
606
607  bool operator==(const SDOperand &O) const {
608    return Val == O.Val && ResNo == O.ResNo;
609  }
610  bool operator!=(const SDOperand &O) const {
611    return !operator==(O);
612  }
613  bool operator<(const SDOperand &O) const {
614    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
615  }
616
617  SDOperand getValue(unsigned R) const {
618    return SDOperand(Val, R);
619  }
620
621  // isOperand - Return true if this node is an operand of N.
622  bool isOperand(SDNode *N) const;
623
624  /// getValueType - Return the ValueType of the referenced return value.
625  ///
626  inline MVT::ValueType getValueType() const;
627
628  // Forwarding methods - These forward to the corresponding methods in SDNode.
629  inline unsigned getOpcode() const;
630  inline unsigned getNodeDepth() const;
631  inline unsigned getNumOperands() const;
632  inline const SDOperand &getOperand(unsigned i) const;
633  inline bool isTargetOpcode() const;
634  inline unsigned getTargetOpcode() const;
635
636  /// hasOneUse - Return true if there is exactly one operation using this
637  /// result value of the defining operator.
638  inline bool hasOneUse() const;
639};
640
641
642/// simplify_type specializations - Allow casting operators to work directly on
643/// SDOperands as if they were SDNode*'s.
644template<> struct simplify_type<SDOperand> {
645  typedef SDNode* SimpleType;
646  static SimpleType getSimplifiedValue(const SDOperand &Val) {
647    return static_cast<SimpleType>(Val.Val);
648  }
649};
650template<> struct simplify_type<const SDOperand> {
651  typedef SDNode* SimpleType;
652  static SimpleType getSimplifiedValue(const SDOperand &Val) {
653    return static_cast<SimpleType>(Val.Val);
654  }
655};
656
657
658/// SDNode - Represents one node in the SelectionDAG.
659///
660class SDNode {
661  /// NodeType - The operation that this node performs.
662  ///
663  unsigned short NodeType;
664
665  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
666  /// means that leaves have a depth of 1, things that use only leaves have a
667  /// depth of 2, etc.
668  unsigned short NodeDepth;
669
670  /// OperandList - The values that are used by this operation.
671  ///
672  SDOperand *OperandList;
673
674  /// ValueList - The types of the values this node defines.  SDNode's may
675  /// define multiple values simultaneously.
676  MVT::ValueType *ValueList;
677
678  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
679  unsigned short NumOperands, NumValues;
680
681  /// Prev/Next pointers - These pointers form the linked list of of the
682  /// AllNodes list in the current DAG.
683  SDNode *Prev, *Next;
684  friend struct ilist_traits<SDNode>;
685
686  /// Uses - These are all of the SDNode's that use a value produced by this
687  /// node.
688  std::vector<SDNode*> Uses;
689public:
690  virtual ~SDNode() {
691    assert(NumOperands == 0 && "Operand list not cleared before deletion");
692  }
693
694  //===--------------------------------------------------------------------===//
695  //  Accessors
696  //
697  unsigned getOpcode()  const { return NodeType; }
698  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
699  unsigned getTargetOpcode() const {
700    assert(isTargetOpcode() && "Not a target opcode!");
701    return NodeType - ISD::BUILTIN_OP_END;
702  }
703
704  size_t use_size() const { return Uses.size(); }
705  bool use_empty() const { return Uses.empty(); }
706  bool hasOneUse() const { return Uses.size() == 1; }
707
708  /// getNodeDepth - Return the distance from this node to the leaves in the
709  /// graph.  The leaves have a depth of 1.
710  unsigned getNodeDepth() const { return NodeDepth; }
711
712  typedef std::vector<SDNode*>::const_iterator use_iterator;
713  use_iterator use_begin() const { return Uses.begin(); }
714  use_iterator use_end() const { return Uses.end(); }
715
716  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
717  /// indicated value.  This method ignores uses of other values defined by this
718  /// operation.
719  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
720
721  // isOnlyUse - Return true if this node is the only use of N.
722  bool isOnlyUse(SDNode *N) const;
723
724  // isOperand - Return true if this node is an operand of N.
725  bool isOperand(SDNode *N) const;
726
727  /// getNumOperands - Return the number of values used by this operation.
728  ///
729  unsigned getNumOperands() const { return NumOperands; }
730
731  const SDOperand &getOperand(unsigned Num) const {
732    assert(Num < NumOperands && "Invalid child # of SDNode!");
733    return OperandList[Num];
734  }
735  typedef const SDOperand* op_iterator;
736  op_iterator op_begin() const { return OperandList; }
737  op_iterator op_end() const { return OperandList+NumOperands; }
738
739
740  /// getNumValues - Return the number of values defined/returned by this
741  /// operator.
742  ///
743  unsigned getNumValues() const { return NumValues; }
744
745  /// getValueType - Return the type of a specified result.
746  ///
747  MVT::ValueType getValueType(unsigned ResNo) const {
748    assert(ResNo < NumValues && "Illegal result number!");
749    return ValueList[ResNo];
750  }
751
752  typedef const MVT::ValueType* value_iterator;
753  value_iterator value_begin() const { return ValueList; }
754  value_iterator value_end() const { return ValueList+NumValues; }
755
756  /// getOperationName - Return the opcode of this operation for printing.
757  ///
758  const char* getOperationName(const SelectionDAG *G = 0) const;
759  void dump() const;
760  void dump(const SelectionDAG *G) const;
761
762  static bool classof(const SDNode *) { return true; }
763
764protected:
765  friend class SelectionDAG;
766
767  /// getValueTypeList - Return a pointer to the specified value type.
768  ///
769  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
770
771  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
772    OperandList = 0; NumOperands = 0;
773    ValueList = getValueTypeList(VT);
774    NumValues = 1;
775    Prev = 0; Next = 0;
776  }
777  SDNode(unsigned NT, SDOperand Op)
778    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
779    OperandList = new SDOperand[1];
780    OperandList[0] = Op;
781    NumOperands = 1;
782    Op.Val->Uses.push_back(this);
783    ValueList = 0;
784    NumValues = 0;
785    Prev = 0; Next = 0;
786  }
787  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
788    : NodeType(NT) {
789    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
790      NodeDepth = N1.Val->getNodeDepth()+1;
791    else
792      NodeDepth = N2.Val->getNodeDepth()+1;
793    OperandList = new SDOperand[2];
794    OperandList[0] = N1;
795    OperandList[1] = N2;
796    NumOperands = 2;
797    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
798    ValueList = 0;
799    NumValues = 0;
800    Prev = 0; Next = 0;
801  }
802  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
803    : NodeType(NT) {
804    unsigned ND = N1.Val->getNodeDepth();
805    if (ND < N2.Val->getNodeDepth())
806      ND = N2.Val->getNodeDepth();
807    if (ND < N3.Val->getNodeDepth())
808      ND = N3.Val->getNodeDepth();
809    NodeDepth = ND+1;
810
811    OperandList = new SDOperand[3];
812    OperandList[0] = N1;
813    OperandList[1] = N2;
814    OperandList[2] = N3;
815    NumOperands = 3;
816
817    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
818    N3.Val->Uses.push_back(this);
819    ValueList = 0;
820    NumValues = 0;
821    Prev = 0; Next = 0;
822  }
823  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
824    : NodeType(NT) {
825    unsigned ND = N1.Val->getNodeDepth();
826    if (ND < N2.Val->getNodeDepth())
827      ND = N2.Val->getNodeDepth();
828    if (ND < N3.Val->getNodeDepth())
829      ND = N3.Val->getNodeDepth();
830    if (ND < N4.Val->getNodeDepth())
831      ND = N4.Val->getNodeDepth();
832    NodeDepth = ND+1;
833
834    OperandList = new SDOperand[4];
835    OperandList[0] = N1;
836    OperandList[1] = N2;
837    OperandList[2] = N3;
838    OperandList[3] = N4;
839    NumOperands = 4;
840
841    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
842    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
843    ValueList = 0;
844    NumValues = 0;
845    Prev = 0; Next = 0;
846  }
847  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
848    NumOperands = Nodes.size();
849    OperandList = new SDOperand[NumOperands];
850
851    unsigned ND = 0;
852    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
853      OperandList[i] = Nodes[i];
854      SDNode *N = OperandList[i].Val;
855      N->Uses.push_back(this);
856      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
857    }
858    NodeDepth = ND+1;
859    ValueList = 0;
860    NumValues = 0;
861    Prev = 0; Next = 0;
862  }
863
864  /// MorphNodeTo - This clears the return value and operands list, and sets the
865  /// opcode of the node to the specified value.  This should only be used by
866  /// the SelectionDAG class.
867  void MorphNodeTo(unsigned Opc) {
868    NodeType = Opc;
869    ValueList = 0;
870    NumValues = 0;
871
872    // Clear the operands list, updating used nodes to remove this from their
873    // use list.
874    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
875      I->Val->removeUser(this);
876    delete [] OperandList;
877    OperandList = 0;
878    NumOperands = 0;
879  }
880
881  void setValueTypes(MVT::ValueType VT) {
882    assert(NumValues == 0 && "Should not have values yet!");
883    ValueList = getValueTypeList(VT);
884    NumValues = 1;
885  }
886  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
887    assert(NumValues == 0 && "Should not have values yet!");
888    ValueList = List;
889    NumValues = NumVal;
890  }
891
892  void setOperands(SDOperand Op0) {
893    assert(NumOperands == 0 && "Should not have operands yet!");
894    OperandList = new SDOperand[1];
895    OperandList[0] = Op0;
896    NumOperands = 1;
897    Op0.Val->Uses.push_back(this);
898  }
899  void setOperands(SDOperand Op0, SDOperand Op1) {
900    assert(NumOperands == 0 && "Should not have operands yet!");
901    OperandList = new SDOperand[2];
902    OperandList[0] = Op0;
903    OperandList[1] = Op1;
904    NumOperands = 2;
905    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
906  }
907  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
908    assert(NumOperands == 0 && "Should not have operands yet!");
909    OperandList = new SDOperand[3];
910    OperandList[0] = Op0;
911    OperandList[1] = Op1;
912    OperandList[2] = Op2;
913    NumOperands = 3;
914    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
915    Op2.Val->Uses.push_back(this);
916  }
917  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
918    assert(NumOperands == 0 && "Should not have operands yet!");
919    OperandList = new SDOperand[4];
920    OperandList[0] = Op0;
921    OperandList[1] = Op1;
922    OperandList[2] = Op2;
923    OperandList[3] = Op3;
924    NumOperands = 4;
925    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
926    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
927  }
928  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
929                   SDOperand Op4) {
930    assert(NumOperands == 0 && "Should not have operands yet!");
931    OperandList = new SDOperand[5];
932    OperandList[0] = Op0;
933    OperandList[1] = Op1;
934    OperandList[2] = Op2;
935    OperandList[3] = Op3;
936    OperandList[4] = Op4;
937    NumOperands = 5;
938    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
939    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
940    Op4.Val->Uses.push_back(this);
941  }
942  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
943                   SDOperand Op4, SDOperand Op5) {
944    assert(NumOperands == 0 && "Should not have operands yet!");
945    OperandList = new SDOperand[6];
946    OperandList[0] = Op0;
947    OperandList[1] = Op1;
948    OperandList[2] = Op2;
949    OperandList[3] = Op3;
950    OperandList[4] = Op4;
951    OperandList[5] = Op5;
952    NumOperands = 6;
953    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
954    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
955    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
956  }
957  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
958                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
959    assert(NumOperands == 0 && "Should not have operands yet!");
960    OperandList = new SDOperand[7];
961    OperandList[0] = Op0;
962    OperandList[1] = Op1;
963    OperandList[2] = Op2;
964    OperandList[3] = Op3;
965    OperandList[4] = Op4;
966    OperandList[5] = Op5;
967    OperandList[6] = Op6;
968    NumOperands = 7;
969    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
970    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
971    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
972    Op6.Val->Uses.push_back(this);
973  }
974  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
975                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
976    assert(NumOperands == 0 && "Should not have operands yet!");
977    OperandList = new SDOperand[8];
978    OperandList[0] = Op0;
979    OperandList[1] = Op1;
980    OperandList[2] = Op2;
981    OperandList[3] = Op3;
982    OperandList[4] = Op4;
983    OperandList[5] = Op5;
984    OperandList[6] = Op6;
985    OperandList[7] = Op7;
986    NumOperands = 8;
987    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
988    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
989    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
990    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
991  }
992
993  void addUser(SDNode *User) {
994    Uses.push_back(User);
995  }
996  void removeUser(SDNode *User) {
997    // Remove this user from the operand's use list.
998    for (unsigned i = Uses.size(); ; --i) {
999      assert(i != 0 && "Didn't find user!");
1000      if (Uses[i-1] == User) {
1001        Uses[i-1] = Uses.back();
1002        Uses.pop_back();
1003        return;
1004      }
1005    }
1006  }
1007};
1008
1009
1010// Define inline functions from the SDOperand class.
1011
1012inline unsigned SDOperand::getOpcode() const {
1013  return Val->getOpcode();
1014}
1015inline unsigned SDOperand::getNodeDepth() const {
1016  return Val->getNodeDepth();
1017}
1018inline MVT::ValueType SDOperand::getValueType() const {
1019  return Val->getValueType(ResNo);
1020}
1021inline unsigned SDOperand::getNumOperands() const {
1022  return Val->getNumOperands();
1023}
1024inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1025  return Val->getOperand(i);
1026}
1027inline bool SDOperand::isTargetOpcode() const {
1028  return Val->isTargetOpcode();
1029}
1030inline unsigned SDOperand::getTargetOpcode() const {
1031  return Val->getTargetOpcode();
1032}
1033inline bool SDOperand::hasOneUse() const {
1034  return Val->hasNUsesOfValue(1, ResNo);
1035}
1036
1037/// HandleSDNode - This class is used to form a handle around another node that
1038/// is persistant and is updated across invocations of replaceAllUsesWith on its
1039/// operand.  This node should be directly created by end-users and not added to
1040/// the AllNodes list.
1041class HandleSDNode : public SDNode {
1042public:
1043  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
1044  ~HandleSDNode() {
1045    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
1046  }
1047
1048  SDOperand getValue() const { return getOperand(0); }
1049};
1050
1051class StringSDNode : public SDNode {
1052  std::string Value;
1053protected:
1054  friend class SelectionDAG;
1055  StringSDNode(const std::string &val)
1056    : SDNode(ISD::STRING, MVT::Other), Value(val) {
1057  }
1058public:
1059  const std::string &getValue() const { return Value; }
1060  static bool classof(const StringSDNode *) { return true; }
1061  static bool classof(const SDNode *N) {
1062    return N->getOpcode() == ISD::STRING;
1063  }
1064};
1065
1066class ConstantSDNode : public SDNode {
1067  uint64_t Value;
1068protected:
1069  friend class SelectionDAG;
1070  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1071    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
1072  }
1073public:
1074
1075  uint64_t getValue() const { return Value; }
1076
1077  int64_t getSignExtended() const {
1078    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1079    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1080  }
1081
1082  bool isNullValue() const { return Value == 0; }
1083  bool isAllOnesValue() const {
1084    return Value == MVT::getIntVTBitMask(getValueType(0));
1085  }
1086
1087  static bool classof(const ConstantSDNode *) { return true; }
1088  static bool classof(const SDNode *N) {
1089    return N->getOpcode() == ISD::Constant ||
1090           N->getOpcode() == ISD::TargetConstant;
1091  }
1092};
1093
1094class ConstantFPSDNode : public SDNode {
1095  double Value;
1096protected:
1097  friend class SelectionDAG;
1098  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1099    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
1100      Value(val) {
1101  }
1102public:
1103
1104  double getValue() const { return Value; }
1105
1106  /// isExactlyValue - We don't rely on operator== working on double values, as
1107  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1108  /// As such, this method can be used to do an exact bit-for-bit comparison of
1109  /// two floating point values.
1110  bool isExactlyValue(double V) const;
1111
1112  static bool classof(const ConstantFPSDNode *) { return true; }
1113  static bool classof(const SDNode *N) {
1114    return N->getOpcode() == ISD::ConstantFP ||
1115           N->getOpcode() == ISD::TargetConstantFP;
1116  }
1117};
1118
1119class GlobalAddressSDNode : public SDNode {
1120  GlobalValue *TheGlobal;
1121  int Offset;
1122protected:
1123  friend class SelectionDAG;
1124  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1125                      int o=0)
1126    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
1127      Offset(o) {
1128    TheGlobal = const_cast<GlobalValue*>(GA);
1129  }
1130public:
1131
1132  GlobalValue *getGlobal() const { return TheGlobal; }
1133  int getOffset() const { return Offset; }
1134
1135  static bool classof(const GlobalAddressSDNode *) { return true; }
1136  static bool classof(const SDNode *N) {
1137    return N->getOpcode() == ISD::GlobalAddress ||
1138           N->getOpcode() == ISD::TargetGlobalAddress;
1139  }
1140};
1141
1142
1143class FrameIndexSDNode : public SDNode {
1144  int FI;
1145protected:
1146  friend class SelectionDAG;
1147  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1148    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1149public:
1150
1151  int getIndex() const { return FI; }
1152
1153  static bool classof(const FrameIndexSDNode *) { return true; }
1154  static bool classof(const SDNode *N) {
1155    return N->getOpcode() == ISD::FrameIndex ||
1156           N->getOpcode() == ISD::TargetFrameIndex;
1157  }
1158};
1159
1160class ConstantPoolSDNode : public SDNode {
1161  Constant *C;
1162  int Offset;
1163  unsigned Alignment;
1164protected:
1165  friend class SelectionDAG;
1166  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1167                     int o=0)
1168    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1169      C(c), Offset(o), Alignment(0) {}
1170  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1171                     unsigned Align)
1172    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1173      C(c), Offset(o), Alignment(Align) {}
1174public:
1175
1176  Constant *get() const { return C; }
1177  int getOffset() const { return Offset; }
1178
1179  // Return the alignment of this constant pool object, which is either 0 (for
1180  // default alignment) or log2 of the desired value.
1181  unsigned getAlignment() const { return Alignment; }
1182
1183  static bool classof(const ConstantPoolSDNode *) { return true; }
1184  static bool classof(const SDNode *N) {
1185    return N->getOpcode() == ISD::ConstantPool ||
1186           N->getOpcode() == ISD::TargetConstantPool;
1187  }
1188};
1189
1190class BasicBlockSDNode : public SDNode {
1191  MachineBasicBlock *MBB;
1192protected:
1193  friend class SelectionDAG;
1194  BasicBlockSDNode(MachineBasicBlock *mbb)
1195    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1196public:
1197
1198  MachineBasicBlock *getBasicBlock() const { return MBB; }
1199
1200  static bool classof(const BasicBlockSDNode *) { return true; }
1201  static bool classof(const SDNode *N) {
1202    return N->getOpcode() == ISD::BasicBlock;
1203  }
1204};
1205
1206class SrcValueSDNode : public SDNode {
1207  const Value *V;
1208  int offset;
1209protected:
1210  friend class SelectionDAG;
1211  SrcValueSDNode(const Value* v, int o)
1212    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1213
1214public:
1215  const Value *getValue() const { return V; }
1216  int getOffset() const { return offset; }
1217
1218  static bool classof(const SrcValueSDNode *) { return true; }
1219  static bool classof(const SDNode *N) {
1220    return N->getOpcode() == ISD::SRCVALUE;
1221  }
1222};
1223
1224
1225class RegisterSDNode : public SDNode {
1226  unsigned Reg;
1227protected:
1228  friend class SelectionDAG;
1229  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1230    : SDNode(ISD::Register, VT), Reg(reg) {}
1231public:
1232
1233  unsigned getReg() const { return Reg; }
1234
1235  static bool classof(const RegisterSDNode *) { return true; }
1236  static bool classof(const SDNode *N) {
1237    return N->getOpcode() == ISD::Register;
1238  }
1239};
1240
1241class ExternalSymbolSDNode : public SDNode {
1242  const char *Symbol;
1243protected:
1244  friend class SelectionDAG;
1245  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1246    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1247      Symbol(Sym) {
1248    }
1249public:
1250
1251  const char *getSymbol() const { return Symbol; }
1252
1253  static bool classof(const ExternalSymbolSDNode *) { return true; }
1254  static bool classof(const SDNode *N) {
1255    return N->getOpcode() == ISD::ExternalSymbol ||
1256           N->getOpcode() == ISD::TargetExternalSymbol;
1257  }
1258};
1259
1260class CondCodeSDNode : public SDNode {
1261  ISD::CondCode Condition;
1262protected:
1263  friend class SelectionDAG;
1264  CondCodeSDNode(ISD::CondCode Cond)
1265    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1266  }
1267public:
1268
1269  ISD::CondCode get() const { return Condition; }
1270
1271  static bool classof(const CondCodeSDNode *) { return true; }
1272  static bool classof(const SDNode *N) {
1273    return N->getOpcode() == ISD::CONDCODE;
1274  }
1275};
1276
1277/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1278/// to parameterize some operations.
1279class VTSDNode : public SDNode {
1280  MVT::ValueType ValueType;
1281protected:
1282  friend class SelectionDAG;
1283  VTSDNode(MVT::ValueType VT)
1284    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1285public:
1286
1287  MVT::ValueType getVT() const { return ValueType; }
1288
1289  static bool classof(const VTSDNode *) { return true; }
1290  static bool classof(const SDNode *N) {
1291    return N->getOpcode() == ISD::VALUETYPE;
1292  }
1293};
1294
1295
1296class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1297  SDNode *Node;
1298  unsigned Operand;
1299
1300  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1301public:
1302  bool operator==(const SDNodeIterator& x) const {
1303    return Operand == x.Operand;
1304  }
1305  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1306
1307  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1308    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1309    Operand = I.Operand;
1310    return *this;
1311  }
1312
1313  pointer operator*() const {
1314    return Node->getOperand(Operand).Val;
1315  }
1316  pointer operator->() const { return operator*(); }
1317
1318  SDNodeIterator& operator++() {                // Preincrement
1319    ++Operand;
1320    return *this;
1321  }
1322  SDNodeIterator operator++(int) { // Postincrement
1323    SDNodeIterator tmp = *this; ++*this; return tmp;
1324  }
1325
1326  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1327  static SDNodeIterator end  (SDNode *N) {
1328    return SDNodeIterator(N, N->getNumOperands());
1329  }
1330
1331  unsigned getOperand() const { return Operand; }
1332  const SDNode *getNode() const { return Node; }
1333};
1334
1335template <> struct GraphTraits<SDNode*> {
1336  typedef SDNode NodeType;
1337  typedef SDNodeIterator ChildIteratorType;
1338  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1339  static inline ChildIteratorType child_begin(NodeType *N) {
1340    return SDNodeIterator::begin(N);
1341  }
1342  static inline ChildIteratorType child_end(NodeType *N) {
1343    return SDNodeIterator::end(N);
1344  }
1345};
1346
1347template<>
1348struct ilist_traits<SDNode> {
1349  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1350  static SDNode *getNext(const SDNode *N) { return N->Next; }
1351
1352  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1353  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1354
1355  static SDNode *createSentinel() {
1356    return new SDNode(ISD::EntryToken, MVT::Other);
1357  }
1358  static void destroySentinel(SDNode *N) { delete N; }
1359  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1360
1361
1362  void addNodeToList(SDNode *NTy) {}
1363  void removeNodeFromList(SDNode *NTy) {}
1364  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1365                             const ilist_iterator<SDNode> &X,
1366                             const ilist_iterator<SDNode> &Y) {}
1367};
1368
1369} // end llvm namespace
1370
1371#endif
1372