SelectionDAGNodes.h revision 4fc3d5dac255120e2f0c0b537044fcf56a30fa34
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/APInt.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MemOperand.h"
30#include "llvm/Support/DataTypes.h"
31#include <cassert>
32
33namespace llvm {
34
35class SelectionDAG;
36class GlobalValue;
37class MachineBasicBlock;
38class MachineConstantPoolValue;
39class SDNode;
40template <typename T> struct DenseMapInfo;
41template <typename T> struct simplify_type;
42template <typename T> struct ilist_traits;
43template<typename NodeTy, typename Traits> class iplist;
44template<typename NodeTy> class ilist_iterator;
45
46/// SDVTList - This represents a list of ValueType's that has been intern'd by
47/// a SelectionDAG.  Instances of this simple value class are returned by
48/// SelectionDAG::getVTList(...).
49///
50struct SDVTList {
51  const MVT::ValueType *VTs;
52  unsigned short NumVTs;
53};
54
55/// ISD namespace - This namespace contains an enum which represents all of the
56/// SelectionDAG node types and value types.
57///
58namespace ISD {
59  namespace ParamFlags {
60  enum Flags {
61    NoFlagSet         = 0,
62    ZExt              = 1<<0,  ///< Parameter should be zero extended
63    ZExtOffs          = 0,
64    SExt              = 1<<1,  ///< Parameter should be sign extended
65    SExtOffs          = 1,
66    InReg             = 1<<2,  ///< Parameter should be passed in register
67    InRegOffs         = 2,
68    StructReturn      = 1<<3,  ///< Hidden struct-return pointer
69    StructReturnOffs  = 3,
70    ByVal             = 1<<4,  ///< Struct passed by value
71    ByValOffs         = 4,
72    Nest              = 1<<5,  ///< Parameter is nested function static chain
73    NestOffs          = 5,
74    ByValAlign        = 0xF << 6, //< The alignment of the struct
75    ByValAlignOffs    = 6,
76    ByValSize         = 0x1ffff << 10, //< The size of the struct
77    ByValSizeOffs     = 10,
78    OrigAlignment     = 0x1F<<27,
79    OrigAlignmentOffs = 27
80  };
81  }
82
83  //===--------------------------------------------------------------------===//
84  /// ISD::NodeType enum - This enum defines all of the operators valid in a
85  /// SelectionDAG.
86  ///
87  enum NodeType {
88    // DELETED_NODE - This is an illegal flag value that is used to catch
89    // errors.  This opcode is not a legal opcode for any node.
90    DELETED_NODE,
91
92    // EntryToken - This is the marker used to indicate the start of the region.
93    EntryToken,
94
95    // Token factor - This node takes multiple tokens as input and produces a
96    // single token result.  This is used to represent the fact that the operand
97    // operators are independent of each other.
98    TokenFactor,
99
100    // AssertSext, AssertZext - These nodes record if a register contains a
101    // value that has already been zero or sign extended from a narrower type.
102    // These nodes take two operands.  The first is the node that has already
103    // been extended, and the second is a value type node indicating the width
104    // of the extension
105    AssertSext, AssertZext,
106
107    // Various leaf nodes.
108    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
109    Constant, ConstantFP,
110    GlobalAddress, GlobalTLSAddress, FrameIndex,
111    JumpTable, ConstantPool, ExternalSymbol,
112
113    // The address of the GOT
114    GLOBAL_OFFSET_TABLE,
115
116    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
117    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
118    // of the frame or return address to return.  An index of zero corresponds
119    // to the current function's frame or return address, an index of one to the
120    // parent's frame or return address, and so on.
121    FRAMEADDR, RETURNADDR,
122
123    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
124    // first (possible) on-stack argument. This is needed for correct stack
125    // adjustment during unwind.
126    FRAME_TO_ARGS_OFFSET,
127
128    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
129    // address of the exception block on entry to an landing pad block.
130    EXCEPTIONADDR,
131
132    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
133    // the selection index of the exception thrown.
134    EHSELECTION,
135
136    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
137    // 'eh_return' gcc dwarf builtin, which is used to return from
138    // exception. The general meaning is: adjust stack by OFFSET and pass
139    // execution to HANDLER. Many platform-related details also :)
140    EH_RETURN,
141
142    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
143    // simplification of the constant.
144    TargetConstant,
145    TargetConstantFP,
146
147    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
148    // anything else with this node, and this is valid in the target-specific
149    // dag, turning into a GlobalAddress operand.
150    TargetGlobalAddress,
151    TargetGlobalTLSAddress,
152    TargetFrameIndex,
153    TargetJumpTable,
154    TargetConstantPool,
155    TargetExternalSymbol,
156
157    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
158    /// This node represents a target intrinsic function with no side effects.
159    /// The first operand is the ID number of the intrinsic from the
160    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
161    /// node has returns the result of the intrinsic.
162    INTRINSIC_WO_CHAIN,
163
164    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
165    /// This node represents a target intrinsic function with side effects that
166    /// returns a result.  The first operand is a chain pointer.  The second is
167    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
168    /// operands to the intrinsic follow.  The node has two results, the result
169    /// of the intrinsic and an output chain.
170    INTRINSIC_W_CHAIN,
171
172    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
173    /// This node represents a target intrinsic function with side effects that
174    /// does not return a result.  The first operand is a chain pointer.  The
175    /// second is the ID number of the intrinsic from the llvm::Intrinsic
176    /// namespace.  The operands to the intrinsic follow.
177    INTRINSIC_VOID,
178
179    // CopyToReg - This node has three operands: a chain, a register number to
180    // set to this value, and a value.
181    CopyToReg,
182
183    // CopyFromReg - This node indicates that the input value is a virtual or
184    // physical register that is defined outside of the scope of this
185    // SelectionDAG.  The register is available from the RegisterSDNode object.
186    CopyFromReg,
187
188    // UNDEF - An undefined node
189    UNDEF,
190
191    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
192    /// represents the formal arguments for a function.  CC# is a Constant value
193    /// indicating the calling convention of the function, and ISVARARG is a
194    /// flag that indicates whether the function is varargs or not. This node
195    /// has one result value for each incoming argument, plus one for the output
196    /// chain. It must be custom legalized. See description of CALL node for
197    /// FLAG argument contents explanation.
198    ///
199    FORMAL_ARGUMENTS,
200
201    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
202    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
203    /// This node represents a fully general function call, before the legalizer
204    /// runs.  This has one result value for each argument / flag pair, plus
205    /// a chain result. It must be custom legalized. Flag argument indicates
206    /// misc. argument attributes. Currently:
207    /// Bit 0 - signness
208    /// Bit 1 - 'inreg' attribute
209    /// Bit 2 - 'sret' attribute
210    /// Bit 4 - 'byval' attribute
211    /// Bit 5 - 'nest' attribute
212    /// Bit 6-9 - alignment of byval structures
213    /// Bit 10-26 - size of byval structures
214    /// Bits 31:27 - argument ABI alignment in the first argument piece and
215    /// alignment '1' in other argument pieces.
216    CALL,
217
218    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
219    // a Constant, which is required to be operand #1), element of the aggregate
220    // value specified as operand #0.  This is only for use before legalization,
221    // for values that will be broken into multiple registers.
222    EXTRACT_ELEMENT,
223
224    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
225    // two values of the same integer value type, this produces a value twice as
226    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
227    BUILD_PAIR,
228
229    // MERGE_VALUES - This node takes multiple discrete operands and returns
230    // them all as its individual results.  This nodes has exactly the same
231    // number of inputs and outputs, and is only valid before legalization.
232    // This node is useful for some pieces of the code generator that want to
233    // think about a single node with multiple results, not multiple nodes.
234    MERGE_VALUES,
235
236    // Simple integer binary arithmetic operators.
237    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
238
239    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
240    // a signed/unsigned value of type i[2*N], and return the full value as
241    // two results, each of type iN.
242    SMUL_LOHI, UMUL_LOHI,
243
244    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
245    // remainder result.
246    SDIVREM, UDIVREM,
247
248    // CARRY_FALSE - This node is used when folding other nodes,
249    // like ADDC/SUBC, which indicate the carry result is always false.
250    CARRY_FALSE,
251
252    // Carry-setting nodes for multiple precision addition and subtraction.
253    // These nodes take two operands of the same value type, and produce two
254    // results.  The first result is the normal add or sub result, the second
255    // result is the carry flag result.
256    ADDC, SUBC,
257
258    // Carry-using nodes for multiple precision addition and subtraction.  These
259    // nodes take three operands: The first two are the normal lhs and rhs to
260    // the add or sub, and the third is the input carry flag.  These nodes
261    // produce two results; the normal result of the add or sub, and the output
262    // carry flag.  These nodes both read and write a carry flag to allow them
263    // to them to be chained together for add and sub of arbitrarily large
264    // values.
265    ADDE, SUBE,
266
267    // Simple binary floating point operators.
268    FADD, FSUB, FMUL, FDIV, FREM,
269
270    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
271    // DAG node does not require that X and Y have the same type, just that they
272    // are both floating point.  X and the result must have the same type.
273    // FCOPYSIGN(f32, f64) is allowed.
274    FCOPYSIGN,
275
276    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
277    // value as an integer 0/1 value.
278    FGETSIGN,
279
280    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
281    /// with the specified, possibly variable, elements.  The number of elements
282    /// is required to be a power of two.
283    BUILD_VECTOR,
284
285    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
286    /// at IDX replaced with VAL.
287    INSERT_VECTOR_ELT,
288
289    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
290    /// identified by the (potentially variable) element number IDX.
291    EXTRACT_VECTOR_ELT,
292
293    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
294    /// vector type with the same length and element type, this produces a
295    /// concatenated vector result value, with length equal to the sum of the
296    /// lengths of the input vectors.
297    CONCAT_VECTORS,
298
299    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
300    /// vector value) starting with the (potentially variable) element number
301    /// IDX, which must be a multiple of the result vector length.
302    EXTRACT_SUBVECTOR,
303
304    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
305    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
306    /// (regardless of whether its datatype is legal or not) that indicate
307    /// which value each result element will get.  The elements of VEC1/VEC2 are
308    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
309    /// instruction, except that the indices must be constants and are in terms
310    /// of the element size of VEC1/VEC2, not in terms of bytes.
311    VECTOR_SHUFFLE,
312
313    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
314    /// scalar value into element 0 of the resultant vector type.  The top
315    /// elements 1 to N-1 of the N-element vector are undefined.
316    SCALAR_TO_VECTOR,
317
318    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
319    // This node takes a superreg and a constant sub-register index as operands.
320    EXTRACT_SUBREG,
321
322    // INSERT_SUBREG - This node is used to insert a sub-register value.
323    // This node takes a superreg, a subreg value, and a constant sub-register
324    // index as operands.
325    INSERT_SUBREG,
326
327    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
328    // an unsigned/signed value of type i[2*N], then return the top part.
329    MULHU, MULHS,
330
331    // Bitwise operators - logical and, logical or, logical xor, shift left,
332    // shift right algebraic (shift in sign bits), shift right logical (shift in
333    // zeroes), rotate left, rotate right, and byteswap.
334    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
335
336    // Counting operators
337    CTTZ, CTLZ, CTPOP,
338
339    // Select(COND, TRUEVAL, FALSEVAL)
340    SELECT,
341
342    // Select with condition operator - This selects between a true value and
343    // a false value (ops #2 and #3) based on the boolean result of comparing
344    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
345    // condition code in op #4, a CondCodeSDNode.
346    SELECT_CC,
347
348    // SetCC operator - This evaluates to a boolean (i1) true value if the
349    // condition is true.  The operands to this are the left and right operands
350    // to compare (ops #0, and #1) and the condition code to compare them with
351    // (op #2) as a CondCodeSDNode.
352    SETCC,
353
354    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
355    // integer shift operations, just like ADD/SUB_PARTS.  The operation
356    // ordering is:
357    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
358    SHL_PARTS, SRA_PARTS, SRL_PARTS,
359
360    // Conversion operators.  These are all single input single output
361    // operations.  For all of these, the result type must be strictly
362    // wider or narrower (depending on the operation) than the source
363    // type.
364
365    // SIGN_EXTEND - Used for integer types, replicating the sign bit
366    // into new bits.
367    SIGN_EXTEND,
368
369    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
370    ZERO_EXTEND,
371
372    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
373    ANY_EXTEND,
374
375    // TRUNCATE - Completely drop the high bits.
376    TRUNCATE,
377
378    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
379    // depends on the first letter) to floating point.
380    SINT_TO_FP,
381    UINT_TO_FP,
382
383    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
384    // sign extend a small value in a large integer register (e.g. sign
385    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
386    // with the 7th bit).  The size of the smaller type is indicated by the 1th
387    // operand, a ValueType node.
388    SIGN_EXTEND_INREG,
389
390    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
391    /// integer.
392    FP_TO_SINT,
393    FP_TO_UINT,
394
395    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
396    /// down to the precision of the destination VT.  TRUNC is a flag, which is
397    /// always an integer that is zero or one.  If TRUNC is 0, this is a
398    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
399    /// value of Y.
400    ///
401    /// The TRUNC = 1 case is used in cases where we know that the value will
402    /// not be modified by the node, because Y is not using any of the extra
403    /// precision of source type.  This allows certain transformations like
404    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
405    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
406    FP_ROUND,
407
408    // FLT_ROUNDS_ - Returns current rounding mode:
409    // -1 Undefined
410    //  0 Round to 0
411    //  1 Round to nearest
412    //  2 Round to +inf
413    //  3 Round to -inf
414    FLT_ROUNDS_,
415
416    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
417    /// rounds it to a floating point value.  It then promotes it and returns it
418    /// in a register of the same size.  This operation effectively just
419    /// discards excess precision.  The type to round down to is specified by
420    /// the VT operand, a VTSDNode.
421    FP_ROUND_INREG,
422
423    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
424    FP_EXTEND,
425
426    // BIT_CONVERT - Theis operator converts between integer and FP values, as
427    // if one was stored to memory as integer and the other was loaded from the
428    // same address (or equivalently for vector format conversions, etc).  The
429    // source and result are required to have the same bit size (e.g.
430    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
431    // conversions, but that is a noop, deleted by getNode().
432    BIT_CONVERT,
433
434    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
435    // negation, absolute value, square root, sine and cosine, powi, and pow
436    // operations.
437    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
438
439    // LOAD and STORE have token chains as their first operand, then the same
440    // operands as an LLVM load/store instruction, then an offset node that
441    // is added / subtracted from the base pointer to form the address (for
442    // indexed memory ops).
443    LOAD, STORE,
444
445    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
446    // to a specified boundary.  This node always has two return values: a new
447    // stack pointer value and a chain. The first operand is the token chain,
448    // the second is the number of bytes to allocate, and the third is the
449    // alignment boundary.  The size is guaranteed to be a multiple of the stack
450    // alignment, and the alignment is guaranteed to be bigger than the stack
451    // alignment (if required) or 0 to get standard stack alignment.
452    DYNAMIC_STACKALLOC,
453
454    // Control flow instructions.  These all have token chains.
455
456    // BR - Unconditional branch.  The first operand is the chain
457    // operand, the second is the MBB to branch to.
458    BR,
459
460    // BRIND - Indirect branch.  The first operand is the chain, the second
461    // is the value to branch to, which must be of the same type as the target's
462    // pointer type.
463    BRIND,
464
465    // BR_JT - Jumptable branch. The first operand is the chain, the second
466    // is the jumptable index, the last one is the jumptable entry index.
467    BR_JT,
468
469    // BRCOND - Conditional branch.  The first operand is the chain,
470    // the second is the condition, the third is the block to branch
471    // to if the condition is true.
472    BRCOND,
473
474    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
475    // that the condition is represented as condition code, and two nodes to
476    // compare, rather than as a combined SetCC node.  The operands in order are
477    // chain, cc, lhs, rhs, block to branch to if condition is true.
478    BR_CC,
479
480    // RET - Return from function.  The first operand is the chain,
481    // and any subsequent operands are pairs of return value and return value
482    // signness for the function.  This operation can have variable number of
483    // operands.
484    RET,
485
486    // INLINEASM - Represents an inline asm block.  This node always has two
487    // return values: a chain and a flag result.  The inputs are as follows:
488    //   Operand #0   : Input chain.
489    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
490    //   Operand #2n+2: A RegisterNode.
491    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
492    //   Operand #last: Optional, an incoming flag.
493    INLINEASM,
494
495    // LABEL - Represents a label in mid basic block used to track
496    // locations needed for debug and exception handling tables.  This node
497    // returns a chain.
498    //   Operand #0 : input chain.
499    //   Operand #1 : module unique number use to identify the label.
500    //   Operand #2 : 0 indicates a debug label (e.g. stoppoint), 1 indicates
501    //                a EH label, 2 indicates unknown label type.
502    LABEL,
503
504    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
505    // local variable declarations for debugging information. First operand is
506    // a chain, while the next two operands are first two arguments (address
507    // and variable) of a llvm.dbg.declare instruction.
508    DECLARE,
509
510    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
511    // value, the same type as the pointer type for the system, and an output
512    // chain.
513    STACKSAVE,
514
515    // STACKRESTORE has two operands, an input chain and a pointer to restore to
516    // it returns an output chain.
517    STACKRESTORE,
518
519    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain. The following
520    // correspond to the operands of the LLVM intrinsic functions and the last
521    // one is AlwaysInline.  The only result is a token chain.  The alignment
522    // argument is guaranteed to be a Constant node.
523    MEMSET,
524    MEMMOVE,
525    MEMCPY,
526
527    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
528    // a call sequence, and carry arbitrary information that target might want
529    // to know.  The first operand is a chain, the rest are specified by the
530    // target and not touched by the DAG optimizers.
531    CALLSEQ_START,  // Beginning of a call sequence
532    CALLSEQ_END,    // End of a call sequence
533
534    // VAARG - VAARG has three operands: an input chain, a pointer, and a
535    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
536    VAARG,
537
538    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
539    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
540    // source.
541    VACOPY,
542
543    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
544    // pointer, and a SRCVALUE.
545    VAEND, VASTART,
546
547    // SRCVALUE - This is a node type that holds a Value* that is used to
548    // make reference to a value in the LLVM IR.
549    SRCVALUE,
550
551    // MEMOPERAND - This is a node that contains a MemOperand which records
552    // information about a memory reference. This is used to make AliasAnalysis
553    // queries from the backend.
554    MEMOPERAND,
555
556    // PCMARKER - This corresponds to the pcmarker intrinsic.
557    PCMARKER,
558
559    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
560    // The only operand is a chain and a value and a chain are produced.  The
561    // value is the contents of the architecture specific cycle counter like
562    // register (or other high accuracy low latency clock source)
563    READCYCLECOUNTER,
564
565    // HANDLENODE node - Used as a handle for various purposes.
566    HANDLENODE,
567
568    // LOCATION - This node is used to represent a source location for debug
569    // info.  It takes token chain as input, then a line number, then a column
570    // number, then a filename, then a working dir.  It produces a token chain
571    // as output.
572    LOCATION,
573
574    // DEBUG_LOC - This node is used to represent source line information
575    // embedded in the code.  It takes a token chain as input, then a line
576    // number, then a column then a file id (provided by MachineModuleInfo.) It
577    // produces a token chain as output.
578    DEBUG_LOC,
579
580    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
581    // It takes as input a token chain, the pointer to the trampoline,
582    // the pointer to the nested function, the pointer to pass for the
583    // 'nest' parameter, a SRCVALUE for the trampoline and another for
584    // the nested function (allowing targets to access the original
585    // Function*).  It produces the result of the intrinsic and a token
586    // chain as output.
587    TRAMPOLINE,
588
589    // TRAP - Trapping instruction
590    TRAP,
591
592    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
593    //                       store-store, device)
594    // This corresponds to the memory.barrier intrinsic.
595    // it takes an input chain, 4 operands to specify the type of barrier, an
596    // operand specifying if the barrier applies to device and uncached memory
597    // and produces an output chain.
598    MEMBARRIER,
599
600    // Val, OUTCHAIN = ATOMIC_LCS(INCHAIN, ptr, cmp, swap)
601    // this corresponds to the atomic.lcs intrinsic.
602    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
603    // the return is always the original value in *ptr
604    ATOMIC_LCS,
605
606    // Val, OUTCHAIN = ATOMIC_LAS(INCHAIN, ptr, amt)
607    // this corresponds to the atomic.las intrinsic.
608    // *ptr + amt is stored to *ptr atomically.
609    // the return is always the original value in *ptr
610    ATOMIC_LAS,
611
612    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
613    // this corresponds to the atomic.swap intrinsic.
614    // amt is stored to *ptr atomically.
615    // the return is always the original value in *ptr
616    ATOMIC_SWAP,
617
618    // BUILTIN_OP_END - This must be the last enum value in this list.
619    BUILTIN_OP_END
620  };
621
622  /// Node predicates
623
624  /// isBuildVectorAllOnes - Return true if the specified node is a
625  /// BUILD_VECTOR where all of the elements are ~0 or undef.
626  bool isBuildVectorAllOnes(const SDNode *N);
627
628  /// isBuildVectorAllZeros - Return true if the specified node is a
629  /// BUILD_VECTOR where all of the elements are 0 or undef.
630  bool isBuildVectorAllZeros(const SDNode *N);
631
632  /// isScalarToVector - Return true if the specified node is a
633  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
634  /// element is not an undef.
635  bool isScalarToVector(const SDNode *N);
636
637  /// isDebugLabel - Return true if the specified node represents a debug
638  /// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
639  /// is 0).
640  bool isDebugLabel(const SDNode *N);
641
642  //===--------------------------------------------------------------------===//
643  /// MemIndexedMode enum - This enum defines the load / store indexed
644  /// addressing modes.
645  ///
646  /// UNINDEXED    "Normal" load / store. The effective address is already
647  ///              computed and is available in the base pointer. The offset
648  ///              operand is always undefined. In addition to producing a
649  ///              chain, an unindexed load produces one value (result of the
650  ///              load); an unindexed store does not produces a value.
651  ///
652  /// PRE_INC      Similar to the unindexed mode where the effective address is
653  /// PRE_DEC      the value of the base pointer add / subtract the offset.
654  ///              It considers the computation as being folded into the load /
655  ///              store operation (i.e. the load / store does the address
656  ///              computation as well as performing the memory transaction).
657  ///              The base operand is always undefined. In addition to
658  ///              producing a chain, pre-indexed load produces two values
659  ///              (result of the load and the result of the address
660  ///              computation); a pre-indexed store produces one value (result
661  ///              of the address computation).
662  ///
663  /// POST_INC     The effective address is the value of the base pointer. The
664  /// POST_DEC     value of the offset operand is then added to / subtracted
665  ///              from the base after memory transaction. In addition to
666  ///              producing a chain, post-indexed load produces two values
667  ///              (the result of the load and the result of the base +/- offset
668  ///              computation); a post-indexed store produces one value (the
669  ///              the result of the base +/- offset computation).
670  ///
671  enum MemIndexedMode {
672    UNINDEXED = 0,
673    PRE_INC,
674    PRE_DEC,
675    POST_INC,
676    POST_DEC,
677    LAST_INDEXED_MODE
678  };
679
680  //===--------------------------------------------------------------------===//
681  /// LoadExtType enum - This enum defines the three variants of LOADEXT
682  /// (load with extension).
683  ///
684  /// SEXTLOAD loads the integer operand and sign extends it to a larger
685  ///          integer result type.
686  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
687  ///          integer result type.
688  /// EXTLOAD  is used for three things: floating point extending loads,
689  ///          integer extending loads [the top bits are undefined], and vector
690  ///          extending loads [load into low elt].
691  ///
692  enum LoadExtType {
693    NON_EXTLOAD = 0,
694    EXTLOAD,
695    SEXTLOAD,
696    ZEXTLOAD,
697    LAST_LOADX_TYPE
698  };
699
700  //===--------------------------------------------------------------------===//
701  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
702  /// below work out, when considering SETFALSE (something that never exists
703  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
704  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
705  /// to.  If the "N" column is 1, the result of the comparison is undefined if
706  /// the input is a NAN.
707  ///
708  /// All of these (except for the 'always folded ops') should be handled for
709  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
710  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
711  ///
712  /// Note that these are laid out in a specific order to allow bit-twiddling
713  /// to transform conditions.
714  enum CondCode {
715    // Opcode          N U L G E       Intuitive operation
716    SETFALSE,      //    0 0 0 0       Always false (always folded)
717    SETOEQ,        //    0 0 0 1       True if ordered and equal
718    SETOGT,        //    0 0 1 0       True if ordered and greater than
719    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
720    SETOLT,        //    0 1 0 0       True if ordered and less than
721    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
722    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
723    SETO,          //    0 1 1 1       True if ordered (no nans)
724    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
725    SETUEQ,        //    1 0 0 1       True if unordered or equal
726    SETUGT,        //    1 0 1 0       True if unordered or greater than
727    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
728    SETULT,        //    1 1 0 0       True if unordered or less than
729    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
730    SETUNE,        //    1 1 1 0       True if unordered or not equal
731    SETTRUE,       //    1 1 1 1       Always true (always folded)
732    // Don't care operations: undefined if the input is a nan.
733    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
734    SETEQ,         //  1 X 0 0 1       True if equal
735    SETGT,         //  1 X 0 1 0       True if greater than
736    SETGE,         //  1 X 0 1 1       True if greater than or equal
737    SETLT,         //  1 X 1 0 0       True if less than
738    SETLE,         //  1 X 1 0 1       True if less than or equal
739    SETNE,         //  1 X 1 1 0       True if not equal
740    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
741
742    SETCC_INVALID       // Marker value.
743  };
744
745  /// isSignedIntSetCC - Return true if this is a setcc instruction that
746  /// performs a signed comparison when used with integer operands.
747  inline bool isSignedIntSetCC(CondCode Code) {
748    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
749  }
750
751  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
752  /// performs an unsigned comparison when used with integer operands.
753  inline bool isUnsignedIntSetCC(CondCode Code) {
754    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
755  }
756
757  /// isTrueWhenEqual - Return true if the specified condition returns true if
758  /// the two operands to the condition are equal.  Note that if one of the two
759  /// operands is a NaN, this value is meaningless.
760  inline bool isTrueWhenEqual(CondCode Cond) {
761    return ((int)Cond & 1) != 0;
762  }
763
764  /// getUnorderedFlavor - This function returns 0 if the condition is always
765  /// false if an operand is a NaN, 1 if the condition is always true if the
766  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
767  /// NaN.
768  inline unsigned getUnorderedFlavor(CondCode Cond) {
769    return ((int)Cond >> 3) & 3;
770  }
771
772  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
773  /// 'op' is a valid SetCC operation.
774  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
775
776  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
777  /// when given the operation for (X op Y).
778  CondCode getSetCCSwappedOperands(CondCode Operation);
779
780  /// getSetCCOrOperation - Return the result of a logical OR between different
781  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
782  /// function returns SETCC_INVALID if it is not possible to represent the
783  /// resultant comparison.
784  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
785
786  /// getSetCCAndOperation - Return the result of a logical AND between
787  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
788  /// function returns SETCC_INVALID if it is not possible to represent the
789  /// resultant comparison.
790  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
791}  // end llvm::ISD namespace
792
793
794//===----------------------------------------------------------------------===//
795/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
796/// values as the result of a computation.  Many nodes return multiple values,
797/// from loads (which define a token and a return value) to ADDC (which returns
798/// a result and a carry value), to calls (which may return an arbitrary number
799/// of values).
800///
801/// As such, each use of a SelectionDAG computation must indicate the node that
802/// computes it as well as which return value to use from that node.  This pair
803/// of information is represented with the SDOperand value type.
804///
805class SDOperand {
806public:
807  SDNode *Val;        // The node defining the value we are using.
808  unsigned ResNo;     // Which return value of the node we are using.
809
810  SDOperand() : Val(0), ResNo(0) {}
811  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
812
813  bool operator==(const SDOperand &O) const {
814    return Val == O.Val && ResNo == O.ResNo;
815  }
816  bool operator!=(const SDOperand &O) const {
817    return !operator==(O);
818  }
819  bool operator<(const SDOperand &O) const {
820    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
821  }
822
823  SDOperand getValue(unsigned R) const {
824    return SDOperand(Val, R);
825  }
826
827  // isOperand - Return true if this node is an operand of N.
828  bool isOperand(SDNode *N) const;
829
830  /// getValueType - Return the ValueType of the referenced return value.
831  ///
832  inline MVT::ValueType getValueType() const;
833
834  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType()).
835  ///
836  unsigned getValueSizeInBits() const {
837    return MVT::getSizeInBits(getValueType());
838  }
839
840  // Forwarding methods - These forward to the corresponding methods in SDNode.
841  inline unsigned getOpcode() const;
842  inline unsigned getNumOperands() const;
843  inline const SDOperand &getOperand(unsigned i) const;
844  inline uint64_t getConstantOperandVal(unsigned i) const;
845  inline bool isTargetOpcode() const;
846  inline unsigned getTargetOpcode() const;
847
848
849  /// reachesChainWithoutSideEffects - Return true if this operand (which must
850  /// be a chain) reaches the specified operand without crossing any
851  /// side-effecting instructions.  In practice, this looks through token
852  /// factors and non-volatile loads.  In order to remain efficient, this only
853  /// looks a couple of nodes in, it does not do an exhaustive search.
854  bool reachesChainWithoutSideEffects(SDOperand Dest, unsigned Depth = 2) const;
855
856  /// hasOneUse - Return true if there is exactly one operation using this
857  /// result value of the defining operator.
858  inline bool hasOneUse() const;
859
860  /// use_empty - Return true if there are no operations using this
861  /// result value of the defining operator.
862  inline bool use_empty() const;
863};
864
865
866template<> struct DenseMapInfo<SDOperand> {
867  static inline SDOperand getEmptyKey() { return SDOperand((SDNode*)-1, -1U); }
868  static inline SDOperand getTombstoneKey() { return SDOperand((SDNode*)-1, 0);}
869  static unsigned getHashValue(const SDOperand &Val) {
870    return ((unsigned)((uintptr_t)Val.Val >> 4) ^
871            (unsigned)((uintptr_t)Val.Val >> 9)) + Val.ResNo;
872  }
873  static bool isEqual(const SDOperand &LHS, const SDOperand &RHS) {
874    return LHS == RHS;
875  }
876  static bool isPod() { return true; }
877};
878
879/// simplify_type specializations - Allow casting operators to work directly on
880/// SDOperands as if they were SDNode*'s.
881template<> struct simplify_type<SDOperand> {
882  typedef SDNode* SimpleType;
883  static SimpleType getSimplifiedValue(const SDOperand &Val) {
884    return static_cast<SimpleType>(Val.Val);
885  }
886};
887template<> struct simplify_type<const SDOperand> {
888  typedef SDNode* SimpleType;
889  static SimpleType getSimplifiedValue(const SDOperand &Val) {
890    return static_cast<SimpleType>(Val.Val);
891  }
892};
893
894
895/// SDNode - Represents one node in the SelectionDAG.
896///
897class SDNode : public FoldingSetNode {
898  /// NodeType - The operation that this node performs.
899  ///
900  unsigned short NodeType;
901
902  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
903  /// then they will be delete[]'d when the node is destroyed.
904  bool OperandsNeedDelete : 1;
905
906  /// NodeId - Unique id per SDNode in the DAG.
907  int NodeId;
908
909  /// OperandList - The values that are used by this operation.
910  ///
911  SDOperand *OperandList;
912
913  /// ValueList - The types of the values this node defines.  SDNode's may
914  /// define multiple values simultaneously.
915  const MVT::ValueType *ValueList;
916
917  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
918  unsigned short NumOperands, NumValues;
919
920  /// Prev/Next pointers - These pointers form the linked list of of the
921  /// AllNodes list in the current DAG.
922  SDNode *Prev, *Next;
923  friend struct ilist_traits<SDNode>;
924
925  /// Uses - These are all of the SDNode's that use a value produced by this
926  /// node.
927  SmallVector<SDNode*,3> Uses;
928
929  // Out-of-line virtual method to give class a home.
930  virtual void ANCHOR();
931public:
932  virtual ~SDNode() {
933    assert(NumOperands == 0 && "Operand list not cleared before deletion");
934    NodeType = ISD::DELETED_NODE;
935  }
936
937  //===--------------------------------------------------------------------===//
938  //  Accessors
939  //
940  unsigned getOpcode()  const { return NodeType; }
941  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
942  unsigned getTargetOpcode() const {
943    assert(isTargetOpcode() && "Not a target opcode!");
944    return NodeType - ISD::BUILTIN_OP_END;
945  }
946
947  size_t use_size() const { return Uses.size(); }
948  bool use_empty() const { return Uses.empty(); }
949  bool hasOneUse() const { return Uses.size() == 1; }
950
951  /// getNodeId - Return the unique node id.
952  ///
953  int getNodeId() const { return NodeId; }
954
955  /// setNodeId - Set unique node id.
956  void setNodeId(int Id) { NodeId = Id; }
957
958  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
959  use_iterator use_begin() const { return Uses.begin(); }
960  use_iterator use_end() const { return Uses.end(); }
961
962  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
963  /// indicated value.  This method ignores uses of other values defined by this
964  /// operation.
965  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
966
967  /// hasAnyUseOfValue - Return true if there are any use of the indicated
968  /// value. This method ignores uses of other values defined by this operation.
969  bool hasAnyUseOfValue(unsigned Value) const;
970
971  /// isOnlyUse - Return true if this node is the only use of N.
972  ///
973  bool isOnlyUse(SDNode *N) const;
974
975  /// isOperand - Return true if this node is an operand of N.
976  ///
977  bool isOperand(SDNode *N) const;
978
979  /// isPredecessor - Return true if this node is a predecessor of N. This node
980  /// is either an operand of N or it can be reached by recursively traversing
981  /// up the operands.
982  /// NOTE: this is an expensive method. Use it carefully.
983  bool isPredecessor(SDNode *N) const;
984
985  /// getNumOperands - Return the number of values used by this operation.
986  ///
987  unsigned getNumOperands() const { return NumOperands; }
988
989  /// getConstantOperandVal - Helper method returns the integer value of a
990  /// ConstantSDNode operand.
991  uint64_t getConstantOperandVal(unsigned Num) const;
992
993  const SDOperand &getOperand(unsigned Num) const {
994    assert(Num < NumOperands && "Invalid child # of SDNode!");
995    return OperandList[Num];
996  }
997
998  typedef const SDOperand* op_iterator;
999  op_iterator op_begin() const { return OperandList; }
1000  op_iterator op_end() const { return OperandList+NumOperands; }
1001
1002
1003  SDVTList getVTList() const {
1004    SDVTList X = { ValueList, NumValues };
1005    return X;
1006  };
1007
1008  /// getNumValues - Return the number of values defined/returned by this
1009  /// operator.
1010  ///
1011  unsigned getNumValues() const { return NumValues; }
1012
1013  /// getValueType - Return the type of a specified result.
1014  ///
1015  MVT::ValueType getValueType(unsigned ResNo) const {
1016    assert(ResNo < NumValues && "Illegal result number!");
1017    return ValueList[ResNo];
1018  }
1019
1020  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1021  ///
1022  unsigned getValueSizeInBits(unsigned ResNo) const {
1023    return MVT::getSizeInBits(getValueType(ResNo));
1024  }
1025
1026  typedef const MVT::ValueType* value_iterator;
1027  value_iterator value_begin() const { return ValueList; }
1028  value_iterator value_end() const { return ValueList+NumValues; }
1029
1030  /// getOperationName - Return the opcode of this operation for printing.
1031  ///
1032  std::string getOperationName(const SelectionDAG *G = 0) const;
1033  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1034  void dump() const;
1035  void dump(const SelectionDAG *G) const;
1036
1037  static bool classof(const SDNode *) { return true; }
1038
1039  /// Profile - Gather unique data for the node.
1040  ///
1041  void Profile(FoldingSetNodeID &ID);
1042
1043protected:
1044  friend class SelectionDAG;
1045
1046  /// getValueTypeList - Return a pointer to the specified value type.
1047  ///
1048  static const MVT::ValueType *getValueTypeList(MVT::ValueType VT);
1049  static SDVTList getSDVTList(MVT::ValueType VT) {
1050    SDVTList Ret = { getValueTypeList(VT), 1 };
1051    return Ret;
1052  }
1053
1054  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
1055    : NodeType(Opc), NodeId(-1) {
1056    OperandsNeedDelete = true;
1057    NumOperands = NumOps;
1058    OperandList = NumOps ? new SDOperand[NumOperands] : 0;
1059
1060    for (unsigned i = 0; i != NumOps; ++i) {
1061      OperandList[i] = Ops[i];
1062      Ops[i].Val->Uses.push_back(this);
1063    }
1064
1065    ValueList = VTs.VTs;
1066    NumValues = VTs.NumVTs;
1067    Prev = 0; Next = 0;
1068  }
1069  SDNode(unsigned Opc, SDVTList VTs) : NodeType(Opc), NodeId(-1) {
1070    OperandsNeedDelete = false;  // Operands set with InitOperands.
1071    NumOperands = 0;
1072    OperandList = 0;
1073
1074    ValueList = VTs.VTs;
1075    NumValues = VTs.NumVTs;
1076    Prev = 0; Next = 0;
1077  }
1078
1079  /// InitOperands - Initialize the operands list of this node with the
1080  /// specified values, which are part of the node (thus they don't need to be
1081  /// copied in or allocated).
1082  void InitOperands(SDOperand *Ops, unsigned NumOps) {
1083    assert(OperandList == 0 && "Operands already set!");
1084    NumOperands = NumOps;
1085    OperandList = Ops;
1086
1087    for (unsigned i = 0; i != NumOps; ++i)
1088      Ops[i].Val->Uses.push_back(this);
1089  }
1090
1091  /// MorphNodeTo - This frees the operands of the current node, resets the
1092  /// opcode, types, and operands to the specified value.  This should only be
1093  /// used by the SelectionDAG class.
1094  void MorphNodeTo(unsigned Opc, SDVTList L,
1095                   const SDOperand *Ops, unsigned NumOps);
1096
1097  void addUser(SDNode *User) {
1098    Uses.push_back(User);
1099  }
1100  void removeUser(SDNode *User) {
1101    // Remove this user from the operand's use list.
1102    for (unsigned i = Uses.size(); ; --i) {
1103      assert(i != 0 && "Didn't find user!");
1104      if (Uses[i-1] == User) {
1105        Uses[i-1] = Uses.back();
1106        Uses.pop_back();
1107        return;
1108      }
1109    }
1110  }
1111};
1112
1113
1114// Define inline functions from the SDOperand class.
1115
1116inline unsigned SDOperand::getOpcode() const {
1117  return Val->getOpcode();
1118}
1119inline MVT::ValueType SDOperand::getValueType() const {
1120  return Val->getValueType(ResNo);
1121}
1122inline unsigned SDOperand::getNumOperands() const {
1123  return Val->getNumOperands();
1124}
1125inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1126  return Val->getOperand(i);
1127}
1128inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1129  return Val->getConstantOperandVal(i);
1130}
1131inline bool SDOperand::isTargetOpcode() const {
1132  return Val->isTargetOpcode();
1133}
1134inline unsigned SDOperand::getTargetOpcode() const {
1135  return Val->getTargetOpcode();
1136}
1137inline bool SDOperand::hasOneUse() const {
1138  return Val->hasNUsesOfValue(1, ResNo);
1139}
1140inline bool SDOperand::use_empty() const {
1141  return !Val->hasAnyUseOfValue(ResNo);
1142}
1143
1144/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1145/// to allow co-allocation of node operands with the node itself.
1146class UnarySDNode : public SDNode {
1147  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1148  SDOperand Op;
1149public:
1150  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1151    : SDNode(Opc, VTs), Op(X) {
1152    InitOperands(&Op, 1);
1153  }
1154};
1155
1156/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1157/// to allow co-allocation of node operands with the node itself.
1158class BinarySDNode : public SDNode {
1159  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1160  SDOperand Ops[2];
1161public:
1162  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1163    : SDNode(Opc, VTs) {
1164    Ops[0] = X;
1165    Ops[1] = Y;
1166    InitOperands(Ops, 2);
1167  }
1168};
1169
1170/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1171/// to allow co-allocation of node operands with the node itself.
1172class TernarySDNode : public SDNode {
1173  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1174  SDOperand Ops[3];
1175public:
1176  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1177                SDOperand Z)
1178    : SDNode(Opc, VTs) {
1179    Ops[0] = X;
1180    Ops[1] = Y;
1181    Ops[2] = Z;
1182    InitOperands(Ops, 3);
1183  }
1184};
1185
1186
1187/// HandleSDNode - This class is used to form a handle around another node that
1188/// is persistant and is updated across invocations of replaceAllUsesWith on its
1189/// operand.  This node should be directly created by end-users and not added to
1190/// the AllNodes list.
1191class HandleSDNode : public SDNode {
1192  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1193  SDOperand Op;
1194public:
1195  explicit HandleSDNode(SDOperand X)
1196    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) {
1197    InitOperands(&Op, 1);
1198  }
1199  ~HandleSDNode();
1200  SDOperand getValue() const { return Op; }
1201};
1202
1203class AtomicSDNode : public SDNode {
1204  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1205  SDOperand Ops[4];
1206  MVT::ValueType OrigVT;
1207public:
1208  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1209               SDOperand Cmp, SDOperand Swp, MVT::ValueType VT)
1210    : SDNode(Opc, VTL) {
1211    Ops[0] = Chain;
1212    Ops[1] = Ptr;
1213    Ops[2] = Swp;
1214    Ops[3] = Cmp;
1215    InitOperands(Ops, 4);
1216    OrigVT=VT;
1217  }
1218  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1219               SDOperand Val, MVT::ValueType VT)
1220    : SDNode(Opc, VTL) {
1221    Ops[0] = Chain;
1222    Ops[1] = Ptr;
1223    Ops[2] = Val;
1224    InitOperands(Ops, 3);
1225    OrigVT=VT;
1226  }
1227  MVT::ValueType getVT() const { return OrigVT; }
1228  bool isCompareAndSwap() const { return getOpcode() == ISD::ATOMIC_LCS; }
1229};
1230
1231class StringSDNode : public SDNode {
1232  std::string Value;
1233  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1234protected:
1235  friend class SelectionDAG;
1236  explicit StringSDNode(const std::string &val)
1237    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
1238  }
1239public:
1240  const std::string &getValue() const { return Value; }
1241  static bool classof(const StringSDNode *) { return true; }
1242  static bool classof(const SDNode *N) {
1243    return N->getOpcode() == ISD::STRING;
1244  }
1245};
1246
1247class ConstantSDNode : public SDNode {
1248  APInt Value;
1249  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1250protected:
1251  friend class SelectionDAG;
1252  ConstantSDNode(bool isTarget, const APInt &val, MVT::ValueType VT)
1253    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1254      Value(val) {
1255  }
1256public:
1257
1258  const APInt &getAPIntValue() const { return Value; }
1259  uint64_t getValue() const { return Value.getZExtValue(); }
1260
1261  int64_t getSignExtended() const {
1262    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1263    return ((int64_t)Value.getZExtValue() << (64-Bits)) >> (64-Bits);
1264  }
1265
1266  bool isNullValue() const { return Value == 0; }
1267  bool isAllOnesValue() const {
1268    return Value == MVT::getIntVTBitMask(getValueType(0));
1269  }
1270
1271  static bool classof(const ConstantSDNode *) { return true; }
1272  static bool classof(const SDNode *N) {
1273    return N->getOpcode() == ISD::Constant ||
1274           N->getOpcode() == ISD::TargetConstant;
1275  }
1276};
1277
1278class ConstantFPSDNode : public SDNode {
1279  APFloat Value;
1280  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1281protected:
1282  friend class SelectionDAG;
1283  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT::ValueType VT)
1284    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1285             getSDVTList(VT)), Value(val) {
1286  }
1287public:
1288
1289  const APFloat& getValueAPF() const { return Value; }
1290
1291  /// isExactlyValue - We don't rely on operator== working on double values, as
1292  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1293  /// As such, this method can be used to do an exact bit-for-bit comparison of
1294  /// two floating point values.
1295
1296  /// We leave the version with the double argument here because it's just so
1297  /// convenient to write "2.0" and the like.  Without this function we'd
1298  /// have to duplicate its logic everywhere it's called.
1299  bool isExactlyValue(double V) const {
1300    APFloat Tmp(V);
1301    Tmp.convert(Value.getSemantics(), APFloat::rmNearestTiesToEven);
1302    return isExactlyValue(Tmp);
1303  }
1304  bool isExactlyValue(const APFloat& V) const;
1305
1306  bool isValueValidForType(MVT::ValueType VT, const APFloat& Val);
1307
1308  static bool classof(const ConstantFPSDNode *) { return true; }
1309  static bool classof(const SDNode *N) {
1310    return N->getOpcode() == ISD::ConstantFP ||
1311           N->getOpcode() == ISD::TargetConstantFP;
1312  }
1313};
1314
1315class GlobalAddressSDNode : public SDNode {
1316  GlobalValue *TheGlobal;
1317  int Offset;
1318  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1319protected:
1320  friend class SelectionDAG;
1321  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1322                      int o = 0);
1323public:
1324
1325  GlobalValue *getGlobal() const { return TheGlobal; }
1326  int getOffset() const { return Offset; }
1327
1328  static bool classof(const GlobalAddressSDNode *) { return true; }
1329  static bool classof(const SDNode *N) {
1330    return N->getOpcode() == ISD::GlobalAddress ||
1331           N->getOpcode() == ISD::TargetGlobalAddress ||
1332           N->getOpcode() == ISD::GlobalTLSAddress ||
1333           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1334  }
1335};
1336
1337class FrameIndexSDNode : public SDNode {
1338  int FI;
1339  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1340protected:
1341  friend class SelectionDAG;
1342  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1343    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1344      FI(fi) {
1345  }
1346public:
1347
1348  int getIndex() const { return FI; }
1349
1350  static bool classof(const FrameIndexSDNode *) { return true; }
1351  static bool classof(const SDNode *N) {
1352    return N->getOpcode() == ISD::FrameIndex ||
1353           N->getOpcode() == ISD::TargetFrameIndex;
1354  }
1355};
1356
1357class JumpTableSDNode : public SDNode {
1358  int JTI;
1359  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1360protected:
1361  friend class SelectionDAG;
1362  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1363    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1364      JTI(jti) {
1365  }
1366public:
1367
1368  int getIndex() const { return JTI; }
1369
1370  static bool classof(const JumpTableSDNode *) { return true; }
1371  static bool classof(const SDNode *N) {
1372    return N->getOpcode() == ISD::JumpTable ||
1373           N->getOpcode() == ISD::TargetJumpTable;
1374  }
1375};
1376
1377class ConstantPoolSDNode : public SDNode {
1378  union {
1379    Constant *ConstVal;
1380    MachineConstantPoolValue *MachineCPVal;
1381  } Val;
1382  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1383  unsigned Alignment;
1384  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1385protected:
1386  friend class SelectionDAG;
1387  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1388                     int o=0)
1389    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1390             getSDVTList(VT)), Offset(o), Alignment(0) {
1391    assert((int)Offset >= 0 && "Offset is too large");
1392    Val.ConstVal = c;
1393  }
1394  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1395                     unsigned Align)
1396    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1397             getSDVTList(VT)), Offset(o), Alignment(Align) {
1398    assert((int)Offset >= 0 && "Offset is too large");
1399    Val.ConstVal = c;
1400  }
1401  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1402                     MVT::ValueType VT, int o=0)
1403    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1404             getSDVTList(VT)), Offset(o), Alignment(0) {
1405    assert((int)Offset >= 0 && "Offset is too large");
1406    Val.MachineCPVal = v;
1407    Offset |= 1 << (sizeof(unsigned)*8-1);
1408  }
1409  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1410                     MVT::ValueType VT, int o, unsigned Align)
1411    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1412             getSDVTList(VT)), Offset(o), Alignment(Align) {
1413    assert((int)Offset >= 0 && "Offset is too large");
1414    Val.MachineCPVal = v;
1415    Offset |= 1 << (sizeof(unsigned)*8-1);
1416  }
1417public:
1418
1419  bool isMachineConstantPoolEntry() const {
1420    return (int)Offset < 0;
1421  }
1422
1423  Constant *getConstVal() const {
1424    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1425    return Val.ConstVal;
1426  }
1427
1428  MachineConstantPoolValue *getMachineCPVal() const {
1429    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1430    return Val.MachineCPVal;
1431  }
1432
1433  int getOffset() const {
1434    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1435  }
1436
1437  // Return the alignment of this constant pool object, which is either 0 (for
1438  // default alignment) or log2 of the desired value.
1439  unsigned getAlignment() const { return Alignment; }
1440
1441  const Type *getType() const;
1442
1443  static bool classof(const ConstantPoolSDNode *) { return true; }
1444  static bool classof(const SDNode *N) {
1445    return N->getOpcode() == ISD::ConstantPool ||
1446           N->getOpcode() == ISD::TargetConstantPool;
1447  }
1448};
1449
1450class BasicBlockSDNode : public SDNode {
1451  MachineBasicBlock *MBB;
1452  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1453protected:
1454  friend class SelectionDAG;
1455  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1456    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1457  }
1458public:
1459
1460  MachineBasicBlock *getBasicBlock() const { return MBB; }
1461
1462  static bool classof(const BasicBlockSDNode *) { return true; }
1463  static bool classof(const SDNode *N) {
1464    return N->getOpcode() == ISD::BasicBlock;
1465  }
1466};
1467
1468/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1469/// used when the SelectionDAG needs to make a simple reference to something
1470/// in the LLVM IR representation.
1471///
1472/// Note that this is not used for carrying alias information; that is done
1473/// with MemOperandSDNode, which includes a Value which is required to be a
1474/// pointer, and several other fields specific to memory references.
1475///
1476class SrcValueSDNode : public SDNode {
1477  const Value *V;
1478  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1479protected:
1480  friend class SelectionDAG;
1481  /// Create a SrcValue for a general value.
1482  explicit SrcValueSDNode(const Value *v)
1483    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
1484
1485public:
1486  /// getValue - return the contained Value.
1487  const Value *getValue() const { return V; }
1488
1489  static bool classof(const SrcValueSDNode *) { return true; }
1490  static bool classof(const SDNode *N) {
1491    return N->getOpcode() == ISD::SRCVALUE;
1492  }
1493};
1494
1495
1496/// MemOperandSDNode - An SDNode that holds a MemOperand. This is
1497/// used to represent a reference to memory after ISD::LOAD
1498/// and ISD::STORE have been lowered.
1499///
1500class MemOperandSDNode : public SDNode {
1501  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1502protected:
1503  friend class SelectionDAG;
1504  /// Create a MemOperand node
1505  explicit MemOperandSDNode(const MemOperand &mo)
1506    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
1507
1508public:
1509  /// MO - The contained MemOperand.
1510  const MemOperand MO;
1511
1512  static bool classof(const MemOperandSDNode *) { return true; }
1513  static bool classof(const SDNode *N) {
1514    return N->getOpcode() == ISD::MEMOPERAND;
1515  }
1516};
1517
1518
1519class RegisterSDNode : public SDNode {
1520  unsigned Reg;
1521  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1522protected:
1523  friend class SelectionDAG;
1524  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1525    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1526  }
1527public:
1528
1529  unsigned getReg() const { return Reg; }
1530
1531  static bool classof(const RegisterSDNode *) { return true; }
1532  static bool classof(const SDNode *N) {
1533    return N->getOpcode() == ISD::Register;
1534  }
1535};
1536
1537class ExternalSymbolSDNode : public SDNode {
1538  const char *Symbol;
1539  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1540protected:
1541  friend class SelectionDAG;
1542  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1543    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1544             getSDVTList(VT)), Symbol(Sym) {
1545  }
1546public:
1547
1548  const char *getSymbol() const { return Symbol; }
1549
1550  static bool classof(const ExternalSymbolSDNode *) { return true; }
1551  static bool classof(const SDNode *N) {
1552    return N->getOpcode() == ISD::ExternalSymbol ||
1553           N->getOpcode() == ISD::TargetExternalSymbol;
1554  }
1555};
1556
1557class CondCodeSDNode : public SDNode {
1558  ISD::CondCode Condition;
1559  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1560protected:
1561  friend class SelectionDAG;
1562  explicit CondCodeSDNode(ISD::CondCode Cond)
1563    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1564  }
1565public:
1566
1567  ISD::CondCode get() const { return Condition; }
1568
1569  static bool classof(const CondCodeSDNode *) { return true; }
1570  static bool classof(const SDNode *N) {
1571    return N->getOpcode() == ISD::CONDCODE;
1572  }
1573};
1574
1575/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1576/// to parameterize some operations.
1577class VTSDNode : public SDNode {
1578  MVT::ValueType ValueType;
1579  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1580protected:
1581  friend class SelectionDAG;
1582  explicit VTSDNode(MVT::ValueType VT)
1583    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
1584  }
1585public:
1586
1587  MVT::ValueType getVT() const { return ValueType; }
1588
1589  static bool classof(const VTSDNode *) { return true; }
1590  static bool classof(const SDNode *N) {
1591    return N->getOpcode() == ISD::VALUETYPE;
1592  }
1593};
1594
1595/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
1596///
1597class LSBaseSDNode : public SDNode {
1598private:
1599  // AddrMode - unindexed, pre-indexed, post-indexed.
1600  ISD::MemIndexedMode AddrMode;
1601
1602  // MemoryVT - VT of in-memory value.
1603  MVT::ValueType MemoryVT;
1604
1605  //! SrcValue - Memory location for alias analysis.
1606  const Value *SrcValue;
1607
1608  //! SVOffset - Memory location offset.
1609  int SVOffset;
1610
1611  //! Alignment - Alignment of memory location in bytes.
1612  unsigned Alignment;
1613
1614  //! IsVolatile - True if the store is volatile.
1615  bool IsVolatile;
1616protected:
1617  //! Operand array for load and store
1618  /*!
1619    \note Moving this array to the base class captures more
1620    common functionality shared between LoadSDNode and
1621    StoreSDNode
1622   */
1623  SDOperand Ops[4];
1624public:
1625  LSBaseSDNode(ISD::NodeType NodeTy, SDOperand *Operands, unsigned NumOperands,
1626               SDVTList VTs, ISD::MemIndexedMode AM, MVT::ValueType VT,
1627               const Value *SV, int SVO, unsigned Align, bool Vol)
1628    : SDNode(NodeTy, VTs),
1629      AddrMode(AM), MemoryVT(VT),
1630      SrcValue(SV), SVOffset(SVO), Alignment(Align), IsVolatile(Vol) {
1631    for (unsigned i = 0; i != NumOperands; ++i)
1632      Ops[i] = Operands[i];
1633    InitOperands(Ops, NumOperands);
1634    assert(Align != 0 && "Loads and stores should have non-zero aligment");
1635  }
1636
1637  const SDOperand &getChain() const { return getOperand(0); }
1638  const SDOperand &getBasePtr() const {
1639    return getOperand(getOpcode() == ISD::LOAD ? 1 : 2);
1640  }
1641
1642  const Value *getSrcValue() const { return SrcValue; }
1643  int getSrcValueOffset() const { return SVOffset; }
1644  unsigned getAlignment() const { return Alignment; }
1645  MVT::ValueType getMemoryVT() const { return MemoryVT; }
1646  bool isVolatile() const { return IsVolatile; }
1647
1648  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1649
1650  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
1651  bool isIndexed() const { return AddrMode != ISD::UNINDEXED; }
1652
1653  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
1654  bool isUnindexed() const { return AddrMode == ISD::UNINDEXED; }
1655
1656  /// getMemOperand - Return a MemOperand object describing the memory
1657  /// reference performed by this load or store.
1658  MemOperand getMemOperand() const;
1659
1660  static bool classof(const LSBaseSDNode *N) { return true; }
1661  static bool classof(const SDNode *N) {
1662    return N->getOpcode() == ISD::LOAD ||
1663           N->getOpcode() == ISD::STORE;
1664  }
1665};
1666
1667/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1668///
1669class LoadSDNode : public LSBaseSDNode {
1670  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1671
1672  // ExtType - non-ext, anyext, sext, zext.
1673  ISD::LoadExtType ExtType;
1674
1675protected:
1676  friend class SelectionDAG;
1677  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
1678             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1679             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1680    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
1681                   VTs, AM, LVT, SV, O, Align, Vol),
1682      ExtType(ETy) {
1683    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
1684           "Only indexed loads and stores have a non-undef offset operand");
1685  }
1686public:
1687
1688  ISD::LoadExtType getExtensionType() const { return ExtType; }
1689  const SDOperand &getBasePtr() const { return getOperand(1); }
1690  const SDOperand &getOffset() const { return getOperand(2); }
1691
1692  static bool classof(const LoadSDNode *) { return true; }
1693  static bool classof(const SDNode *N) {
1694    return N->getOpcode() == ISD::LOAD;
1695  }
1696};
1697
1698/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1699///
1700class StoreSDNode : public LSBaseSDNode {
1701  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1702
1703  // IsTruncStore - True if the op does a truncation before store.
1704  bool IsTruncStore;
1705protected:
1706  friend class SelectionDAG;
1707  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
1708              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
1709              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1710    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
1711                   VTs, AM, SVT, SV, O, Align, Vol),
1712      IsTruncStore(isTrunc) {
1713    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
1714           "Only indexed loads and stores have a non-undef offset operand");
1715  }
1716public:
1717
1718  bool isTruncatingStore() const { return IsTruncStore; }
1719  const SDOperand &getValue() const { return getOperand(1); }
1720  const SDOperand &getBasePtr() const { return getOperand(2); }
1721  const SDOperand &getOffset() const { return getOperand(3); }
1722
1723  static bool classof(const StoreSDNode *) { return true; }
1724  static bool classof(const SDNode *N) {
1725    return N->getOpcode() == ISD::STORE;
1726  }
1727};
1728
1729
1730class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1731  SDNode *Node;
1732  unsigned Operand;
1733
1734  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1735public:
1736  bool operator==(const SDNodeIterator& x) const {
1737    return Operand == x.Operand;
1738  }
1739  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1740
1741  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1742    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1743    Operand = I.Operand;
1744    return *this;
1745  }
1746
1747  pointer operator*() const {
1748    return Node->getOperand(Operand).Val;
1749  }
1750  pointer operator->() const { return operator*(); }
1751
1752  SDNodeIterator& operator++() {                // Preincrement
1753    ++Operand;
1754    return *this;
1755  }
1756  SDNodeIterator operator++(int) { // Postincrement
1757    SDNodeIterator tmp = *this; ++*this; return tmp;
1758  }
1759
1760  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1761  static SDNodeIterator end  (SDNode *N) {
1762    return SDNodeIterator(N, N->getNumOperands());
1763  }
1764
1765  unsigned getOperand() const { return Operand; }
1766  const SDNode *getNode() const { return Node; }
1767};
1768
1769template <> struct GraphTraits<SDNode*> {
1770  typedef SDNode NodeType;
1771  typedef SDNodeIterator ChildIteratorType;
1772  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1773  static inline ChildIteratorType child_begin(NodeType *N) {
1774    return SDNodeIterator::begin(N);
1775  }
1776  static inline ChildIteratorType child_end(NodeType *N) {
1777    return SDNodeIterator::end(N);
1778  }
1779};
1780
1781template<>
1782struct ilist_traits<SDNode> {
1783  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1784  static SDNode *getNext(const SDNode *N) { return N->Next; }
1785
1786  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1787  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1788
1789  static SDNode *createSentinel() {
1790    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
1791  }
1792  static void destroySentinel(SDNode *N) { delete N; }
1793  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1794
1795
1796  void addNodeToList(SDNode *NTy) {}
1797  void removeNodeFromList(SDNode *NTy) {}
1798  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1799                             const ilist_iterator<SDNode> &X,
1800                             const ilist_iterator<SDNode> &Y) {}
1801};
1802
1803namespace ISD {
1804  /// isNormalLoad - Returns true if the specified node is a non-extending
1805  /// and unindexed load.
1806  inline bool isNormalLoad(const SDNode *N) {
1807    if (N->getOpcode() != ISD::LOAD)
1808      return false;
1809    const LoadSDNode *Ld = cast<LoadSDNode>(N);
1810    return Ld->getExtensionType() == ISD::NON_EXTLOAD &&
1811      Ld->getAddressingMode() == ISD::UNINDEXED;
1812  }
1813
1814  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1815  /// load.
1816  inline bool isNON_EXTLoad(const SDNode *N) {
1817    return N->getOpcode() == ISD::LOAD &&
1818      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1819  }
1820
1821  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1822  ///
1823  inline bool isEXTLoad(const SDNode *N) {
1824    return N->getOpcode() == ISD::LOAD &&
1825      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1826  }
1827
1828  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1829  ///
1830  inline bool isSEXTLoad(const SDNode *N) {
1831    return N->getOpcode() == ISD::LOAD &&
1832      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1833  }
1834
1835  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1836  ///
1837  inline bool isZEXTLoad(const SDNode *N) {
1838    return N->getOpcode() == ISD::LOAD &&
1839      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1840  }
1841
1842  /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
1843  ///
1844  inline bool isUNINDEXEDLoad(const SDNode *N) {
1845    return N->getOpcode() == ISD::LOAD &&
1846      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
1847  }
1848
1849  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
1850  /// store.
1851  inline bool isNON_TRUNCStore(const SDNode *N) {
1852    return N->getOpcode() == ISD::STORE &&
1853      !cast<StoreSDNode>(N)->isTruncatingStore();
1854  }
1855
1856  /// isTRUNCStore - Returns true if the specified node is a truncating
1857  /// store.
1858  inline bool isTRUNCStore(const SDNode *N) {
1859    return N->getOpcode() == ISD::STORE &&
1860      cast<StoreSDNode>(N)->isTruncatingStore();
1861  }
1862}
1863
1864
1865} // end llvm namespace
1866
1867#endif
1868