SelectionDAGNodes.h revision 5ac03f1786a09cc3c7d268b24e70f76be00b32ac
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Constants.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/ilist_node.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/System/DataTypes.h"
32#include "llvm/Support/DebugLoc.h"
33#include <cassert>
34
35namespace llvm {
36
37class SelectionDAG;
38class GlobalValue;
39class MachineBasicBlock;
40class MachineConstantPoolValue;
41class SDNode;
42class Value;
43template <typename T> struct DenseMapInfo;
44template <typename T> struct simplify_type;
45template <typename T> struct ilist_traits;
46
47void checkForCycles(const SDNode *N);
48
49/// SDVTList - This represents a list of ValueType's that has been intern'd by
50/// a SelectionDAG.  Instances of this simple value class are returned by
51/// SelectionDAG::getVTList(...).
52///
53struct SDVTList {
54  const EVT *VTs;
55  unsigned int NumVTs;
56};
57
58/// ISD namespace - This namespace contains an enum which represents all of the
59/// SelectionDAG node types and value types.
60///
61namespace ISD {
62
63  //===--------------------------------------------------------------------===//
64  /// ISD::NodeType enum - This enum defines the target-independent operators
65  /// for a SelectionDAG.
66  ///
67  /// Targets may also define target-dependent operator codes for SDNodes. For
68  /// example, on x86, these are the enum values in the X86ISD namespace.
69  /// Targets should aim to use target-independent operators to model their
70  /// instruction sets as much as possible, and only use target-dependent
71  /// operators when they have special requirements.
72  ///
73  /// Finally, during and after selection proper, SNodes may use special
74  /// operator codes that correspond directly with MachineInstr opcodes. These
75  /// are used to represent selected instructions. See the isMachineOpcode()
76  /// and getMachineOpcode() member functions of SDNode.
77  ///
78  enum NodeType {
79    // DELETED_NODE - This is an illegal value that is used to catch
80    // errors.  This opcode is not a legal opcode for any node.
81    DELETED_NODE,
82
83    // EntryToken - This is the marker used to indicate the start of the region.
84    EntryToken,
85
86    // TokenFactor - This node takes multiple tokens as input and produces a
87    // single token result.  This is used to represent the fact that the operand
88    // operators are independent of each other.
89    TokenFactor,
90
91    // AssertSext, AssertZext - These nodes record if a register contains a
92    // value that has already been zero or sign extended from a narrower type.
93    // These nodes take two operands.  The first is the node that has already
94    // been extended, and the second is a value type node indicating the width
95    // of the extension
96    AssertSext, AssertZext,
97
98    // Various leaf nodes.
99    BasicBlock, VALUETYPE, CONDCODE, Register,
100    Constant, ConstantFP,
101    GlobalAddress, GlobalTLSAddress, FrameIndex,
102    JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
103
104    // The address of the GOT
105    GLOBAL_OFFSET_TABLE,
106
107    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
108    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
109    // of the frame or return address to return.  An index of zero corresponds
110    // to the current function's frame or return address, an index of one to the
111    // parent's frame or return address, and so on.
112    FRAMEADDR, RETURNADDR,
113
114    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
115    // first (possible) on-stack argument. This is needed for correct stack
116    // adjustment during unwind.
117    FRAME_TO_ARGS_OFFSET,
118
119    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
120    // address of the exception block on entry to an landing pad block.
121    EXCEPTIONADDR,
122
123    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
124    // address of the Language Specific Data Area for the enclosing function.
125    LSDAADDR,
126
127    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
128    // the selection index of the exception thrown.
129    EHSELECTION,
130
131    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
132    // 'eh_return' gcc dwarf builtin, which is used to return from
133    // exception. The general meaning is: adjust stack by OFFSET and pass
134    // execution to HANDLER. Many platform-related details also :)
135    EH_RETURN,
136
137    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
138    // simplification of the constant.
139    TargetConstant,
140    TargetConstantFP,
141
142    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
143    // anything else with this node, and this is valid in the target-specific
144    // dag, turning into a GlobalAddress operand.
145    TargetGlobalAddress,
146    TargetGlobalTLSAddress,
147    TargetFrameIndex,
148    TargetJumpTable,
149    TargetConstantPool,
150    TargetExternalSymbol,
151    TargetBlockAddress,
152
153    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
154    /// This node represents a target intrinsic function with no side effects.
155    /// The first operand is the ID number of the intrinsic from the
156    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
157    /// node has returns the result of the intrinsic.
158    INTRINSIC_WO_CHAIN,
159
160    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
161    /// This node represents a target intrinsic function with side effects that
162    /// returns a result.  The first operand is a chain pointer.  The second is
163    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
164    /// operands to the intrinsic follow.  The node has two results, the result
165    /// of the intrinsic and an output chain.
166    INTRINSIC_W_CHAIN,
167
168    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
169    /// This node represents a target intrinsic function with side effects that
170    /// does not return a result.  The first operand is a chain pointer.  The
171    /// second is the ID number of the intrinsic from the llvm::Intrinsic
172    /// namespace.  The operands to the intrinsic follow.
173    INTRINSIC_VOID,
174
175    // CopyToReg - This node has three operands: a chain, a register number to
176    // set to this value, and a value.
177    CopyToReg,
178
179    // CopyFromReg - This node indicates that the input value is a virtual or
180    // physical register that is defined outside of the scope of this
181    // SelectionDAG.  The register is available from the RegisterSDNode object.
182    CopyFromReg,
183
184    // UNDEF - An undefined node
185    UNDEF,
186
187    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
188    // a Constant, which is required to be operand #1) half of the integer or
189    // float value specified as operand #0.  This is only for use before
190    // legalization, for values that will be broken into multiple registers.
191    EXTRACT_ELEMENT,
192
193    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
194    // two values of the same integer value type, this produces a value twice as
195    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
196    BUILD_PAIR,
197
198    // MERGE_VALUES - This node takes multiple discrete operands and returns
199    // them all as its individual results.  This nodes has exactly the same
200    // number of inputs and outputs. This node is useful for some pieces of the
201    // code generator that want to think about a single node with multiple
202    // results, not multiple nodes.
203    MERGE_VALUES,
204
205    // Simple integer binary arithmetic operators.
206    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
207
208    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
209    // a signed/unsigned value of type i[2*N], and return the full value as
210    // two results, each of type iN.
211    SMUL_LOHI, UMUL_LOHI,
212
213    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
214    // remainder result.
215    SDIVREM, UDIVREM,
216
217    // CARRY_FALSE - This node is used when folding other nodes,
218    // like ADDC/SUBC, which indicate the carry result is always false.
219    CARRY_FALSE,
220
221    // Carry-setting nodes for multiple precision addition and subtraction.
222    // These nodes take two operands of the same value type, and produce two
223    // results.  The first result is the normal add or sub result, the second
224    // result is the carry flag result.
225    ADDC, SUBC,
226
227    // Carry-using nodes for multiple precision addition and subtraction.  These
228    // nodes take three operands: The first two are the normal lhs and rhs to
229    // the add or sub, and the third is the input carry flag.  These nodes
230    // produce two results; the normal result of the add or sub, and the output
231    // carry flag.  These nodes both read and write a carry flag to allow them
232    // to them to be chained together for add and sub of arbitrarily large
233    // values.
234    ADDE, SUBE,
235
236    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
237    // These nodes take two operands: the normal LHS and RHS to the add. They
238    // produce two results: the normal result of the add, and a boolean that
239    // indicates if an overflow occured (*not* a flag, because it may be stored
240    // to memory, etc.).  If the type of the boolean is not i1 then the high
241    // bits conform to getBooleanContents.
242    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
243    SADDO, UADDO,
244
245    // Same for subtraction
246    SSUBO, USUBO,
247
248    // Same for multiplication
249    SMULO, UMULO,
250
251    // Simple binary floating point operators.
252    FADD, FSUB, FMUL, FDIV, FREM,
253
254    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
255    // DAG node does not require that X and Y have the same type, just that they
256    // are both floating point.  X and the result must have the same type.
257    // FCOPYSIGN(f32, f64) is allowed.
258    FCOPYSIGN,
259
260    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
261    // value as an integer 0/1 value.
262    FGETSIGN,
263
264    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
265    /// specified, possibly variable, elements.  The number of elements is
266    /// required to be a power of two.  The types of the operands must all be
267    /// the same and must match the vector element type, except that integer
268    /// types are allowed to be larger than the element type, in which case
269    /// the operands are implicitly truncated.
270    BUILD_VECTOR,
271
272    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
273    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
274    /// element type then VAL is truncated before replacement.
275    INSERT_VECTOR_ELT,
276
277    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
278    /// identified by the (potentially variable) element number IDX.  If the
279    /// return type is an integer type larger than the element type of the
280    /// vector, the result is extended to the width of the return type.
281    EXTRACT_VECTOR_ELT,
282
283    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
284    /// vector type with the same length and element type, this produces a
285    /// concatenated vector result value, with length equal to the sum of the
286    /// lengths of the input vectors.
287    CONCAT_VECTORS,
288
289    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
290    /// vector value) starting with the (potentially variable) element number
291    /// IDX, which must be a multiple of the result vector length.
292    EXTRACT_SUBVECTOR,
293
294    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
295    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
296    /// values that indicate which value (or undef) each result element will
297    /// get.  These constant ints are accessible through the
298    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
299    /// 'vperm' instruction, except that the indices must be constants and are
300    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
301    VECTOR_SHUFFLE,
302
303    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
304    /// scalar value into element 0 of the resultant vector type.  The top
305    /// elements 1 to N-1 of the N-element vector are undefined.  The type
306    /// of the operand must match the vector element type, except when they
307    /// are integer types.  In this case the operand is allowed to be wider
308    /// than the vector element type, and is implicitly truncated to it.
309    SCALAR_TO_VECTOR,
310
311    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
312    // an unsigned/signed value of type i[2*N], then return the top part.
313    MULHU, MULHS,
314
315    // Bitwise operators - logical and, logical or, logical xor, shift left,
316    // shift right algebraic (shift in sign bits), shift right logical (shift in
317    // zeroes), rotate left, rotate right, and byteswap.
318    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
319
320    // Counting operators
321    CTTZ, CTLZ, CTPOP,
322
323    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
324    // i1 then the high bits must conform to getBooleanContents.
325    SELECT,
326
327    // Select with condition operator - This selects between a true value and
328    // a false value (ops #2 and #3) based on the boolean result of comparing
329    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
330    // condition code in op #4, a CondCodeSDNode.
331    SELECT_CC,
332
333    // SetCC operator - This evaluates to a true value iff the condition is
334    // true.  If the result value type is not i1 then the high bits conform
335    // to getBooleanContents.  The operands to this are the left and right
336    // operands to compare (ops #0, and #1) and the condition code to compare
337    // them with (op #2) as a CondCodeSDNode.
338    SETCC,
339
340    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
341    // integer elements with all bits of the result elements set to true if the
342    // comparison is true or all cleared if the comparison is false.  The
343    // operands to this are the left and right operands to compare (LHS/RHS) and
344    // the condition code to compare them with (COND) as a CondCodeSDNode.
345    VSETCC,
346
347    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
348    // integer shift operations, just like ADD/SUB_PARTS.  The operation
349    // ordering is:
350    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
351    SHL_PARTS, SRA_PARTS, SRL_PARTS,
352
353    // Conversion operators.  These are all single input single output
354    // operations.  For all of these, the result type must be strictly
355    // wider or narrower (depending on the operation) than the source
356    // type.
357
358    // SIGN_EXTEND - Used for integer types, replicating the sign bit
359    // into new bits.
360    SIGN_EXTEND,
361
362    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
363    ZERO_EXTEND,
364
365    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
366    ANY_EXTEND,
367
368    // TRUNCATE - Completely drop the high bits.
369    TRUNCATE,
370
371    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
372    // depends on the first letter) to floating point.
373    SINT_TO_FP,
374    UINT_TO_FP,
375
376    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
377    // sign extend a small value in a large integer register (e.g. sign
378    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
379    // with the 7th bit).  The size of the smaller type is indicated by the 1th
380    // operand, a ValueType node.
381    SIGN_EXTEND_INREG,
382
383    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
384    /// integer.
385    FP_TO_SINT,
386    FP_TO_UINT,
387
388    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
389    /// down to the precision of the destination VT.  TRUNC is a flag, which is
390    /// always an integer that is zero or one.  If TRUNC is 0, this is a
391    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
392    /// value of Y.
393    ///
394    /// The TRUNC = 1 case is used in cases where we know that the value will
395    /// not be modified by the node, because Y is not using any of the extra
396    /// precision of source type.  This allows certain transformations like
397    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
398    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
399    FP_ROUND,
400
401    // FLT_ROUNDS_ - Returns current rounding mode:
402    // -1 Undefined
403    //  0 Round to 0
404    //  1 Round to nearest
405    //  2 Round to +inf
406    //  3 Round to -inf
407    FLT_ROUNDS_,
408
409    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
410    /// rounds it to a floating point value.  It then promotes it and returns it
411    /// in a register of the same size.  This operation effectively just
412    /// discards excess precision.  The type to round down to is specified by
413    /// the VT operand, a VTSDNode.
414    FP_ROUND_INREG,
415
416    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
417    FP_EXTEND,
418
419    // BIT_CONVERT - This operator converts between integer, vector and FP
420    // values, as if the value was stored to memory with one type and loaded
421    // from the same address with the other type (or equivalently for vector
422    // format conversions, etc).  The source and result are required to have
423    // the same bit size (e.g.  f32 <-> i32).  This can also be used for
424    // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
425    // getNode().
426    BIT_CONVERT,
427
428    // CONVERT_RNDSAT - This operator is used to support various conversions
429    // between various types (float, signed, unsigned and vectors of those
430    // types) with rounding and saturation. NOTE: Avoid using this operator as
431    // most target don't support it and the operator might be removed in the
432    // future. It takes the following arguments:
433    //   0) value
434    //   1) dest type (type to convert to)
435    //   2) src type (type to convert from)
436    //   3) rounding imm
437    //   4) saturation imm
438    //   5) ISD::CvtCode indicating the type of conversion to do
439    CONVERT_RNDSAT,
440
441    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
442    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
443    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
444    // point operations. These are inspired by libm.
445    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
446    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
447    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
448
449    // LOAD and STORE have token chains as their first operand, then the same
450    // operands as an LLVM load/store instruction, then an offset node that
451    // is added / subtracted from the base pointer to form the address (for
452    // indexed memory ops).
453    LOAD, STORE,
454
455    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
456    // to a specified boundary.  This node always has two return values: a new
457    // stack pointer value and a chain. The first operand is the token chain,
458    // the second is the number of bytes to allocate, and the third is the
459    // alignment boundary.  The size is guaranteed to be a multiple of the stack
460    // alignment, and the alignment is guaranteed to be bigger than the stack
461    // alignment (if required) or 0 to get standard stack alignment.
462    DYNAMIC_STACKALLOC,
463
464    // Control flow instructions.  These all have token chains.
465
466    // BR - Unconditional branch.  The first operand is the chain
467    // operand, the second is the MBB to branch to.
468    BR,
469
470    // BRIND - Indirect branch.  The first operand is the chain, the second
471    // is the value to branch to, which must be of the same type as the target's
472    // pointer type.
473    BRIND,
474
475    // BR_JT - Jumptable branch. The first operand is the chain, the second
476    // is the jumptable index, the last one is the jumptable entry index.
477    BR_JT,
478
479    // BRCOND - Conditional branch.  The first operand is the chain, the
480    // second is the condition, the third is the block to branch to if the
481    // condition is true.  If the type of the condition is not i1, then the
482    // high bits must conform to getBooleanContents.
483    BRCOND,
484
485    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
486    // that the condition is represented as condition code, and two nodes to
487    // compare, rather than as a combined SetCC node.  The operands in order are
488    // chain, cc, lhs, rhs, block to branch to if condition is true.
489    BR_CC,
490
491    // INLINEASM - Represents an inline asm block.  This node always has two
492    // return values: a chain and a flag result.  The inputs are as follows:
493    //   Operand #0   : Input chain.
494    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
495    //   Operand #2n+2: A RegisterNode.
496    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
497    //   Operand #last: Optional, an incoming flag.
498    INLINEASM,
499
500    // EH_LABEL - Represents a label in mid basic block used to track
501    // locations needed for debug and exception handling tables.  These nodes
502    // take a chain as input and return a chain.
503    EH_LABEL,
504
505    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
506    // value, the same type as the pointer type for the system, and an output
507    // chain.
508    STACKSAVE,
509
510    // STACKRESTORE has two operands, an input chain and a pointer to restore to
511    // it returns an output chain.
512    STACKRESTORE,
513
514    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
515    // a call sequence, and carry arbitrary information that target might want
516    // to know.  The first operand is a chain, the rest are specified by the
517    // target and not touched by the DAG optimizers.
518    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
519    CALLSEQ_START,  // Beginning of a call sequence
520    CALLSEQ_END,    // End of a call sequence
521
522    // VAARG - VAARG has three operands: an input chain, a pointer, and a
523    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
524    VAARG,
525
526    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
527    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
528    // source.
529    VACOPY,
530
531    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
532    // pointer, and a SRCVALUE.
533    VAEND, VASTART,
534
535    // SRCVALUE - This is a node type that holds a Value* that is used to
536    // make reference to a value in the LLVM IR.
537    SRCVALUE,
538
539    // PCMARKER - This corresponds to the pcmarker intrinsic.
540    PCMARKER,
541
542    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
543    // The only operand is a chain and a value and a chain are produced.  The
544    // value is the contents of the architecture specific cycle counter like
545    // register (or other high accuracy low latency clock source)
546    READCYCLECOUNTER,
547
548    // HANDLENODE node - Used as a handle for various purposes.
549    HANDLENODE,
550
551    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
552    // It takes as input a token chain, the pointer to the trampoline,
553    // the pointer to the nested function, the pointer to pass for the
554    // 'nest' parameter, a SRCVALUE for the trampoline and another for
555    // the nested function (allowing targets to access the original
556    // Function*).  It produces the result of the intrinsic and a token
557    // chain as output.
558    TRAMPOLINE,
559
560    // TRAP - Trapping instruction
561    TRAP,
562
563    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
564    // their first operand. The other operands are the address to prefetch,
565    // read / write specifier, and locality specifier.
566    PREFETCH,
567
568    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
569    //                       store-store, device)
570    // This corresponds to the memory.barrier intrinsic.
571    // it takes an input chain, 4 operands to specify the type of barrier, an
572    // operand specifying if the barrier applies to device and uncached memory
573    // and produces an output chain.
574    MEMBARRIER,
575
576    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
577    // this corresponds to the atomic.lcs intrinsic.
578    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
579    // the return is always the original value in *ptr
580    ATOMIC_CMP_SWAP,
581
582    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
583    // this corresponds to the atomic.swap intrinsic.
584    // amt is stored to *ptr atomically.
585    // the return is always the original value in *ptr
586    ATOMIC_SWAP,
587
588    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
589    // this corresponds to the atomic.load.[OpName] intrinsic.
590    // op(*ptr, amt) is stored to *ptr atomically.
591    // the return is always the original value in *ptr
592    ATOMIC_LOAD_ADD,
593    ATOMIC_LOAD_SUB,
594    ATOMIC_LOAD_AND,
595    ATOMIC_LOAD_OR,
596    ATOMIC_LOAD_XOR,
597    ATOMIC_LOAD_NAND,
598    ATOMIC_LOAD_MIN,
599    ATOMIC_LOAD_MAX,
600    ATOMIC_LOAD_UMIN,
601    ATOMIC_LOAD_UMAX,
602
603    /// BUILTIN_OP_END - This must be the last enum value in this list.
604    /// The target-specific pre-isel opcode values start here.
605    BUILTIN_OP_END
606  };
607
608  /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
609  /// which do not reference a specific memory location should be less than
610  /// this value. Those that do must not be less than this value, and can
611  /// be used with SelectionDAG::getMemIntrinsicNode.
612  static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+80;
613
614  /// Node predicates
615
616  /// isBuildVectorAllOnes - Return true if the specified node is a
617  /// BUILD_VECTOR where all of the elements are ~0 or undef.
618  bool isBuildVectorAllOnes(const SDNode *N);
619
620  /// isBuildVectorAllZeros - Return true if the specified node is a
621  /// BUILD_VECTOR where all of the elements are 0 or undef.
622  bool isBuildVectorAllZeros(const SDNode *N);
623
624  /// isScalarToVector - Return true if the specified node is a
625  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
626  /// element is not an undef.
627  bool isScalarToVector(const SDNode *N);
628
629  //===--------------------------------------------------------------------===//
630  /// MemIndexedMode enum - This enum defines the load / store indexed
631  /// addressing modes.
632  ///
633  /// UNINDEXED    "Normal" load / store. The effective address is already
634  ///              computed and is available in the base pointer. The offset
635  ///              operand is always undefined. In addition to producing a
636  ///              chain, an unindexed load produces one value (result of the
637  ///              load); an unindexed store does not produce a value.
638  ///
639  /// PRE_INC      Similar to the unindexed mode where the effective address is
640  /// PRE_DEC      the value of the base pointer add / subtract the offset.
641  ///              It considers the computation as being folded into the load /
642  ///              store operation (i.e. the load / store does the address
643  ///              computation as well as performing the memory transaction).
644  ///              The base operand is always undefined. In addition to
645  ///              producing a chain, pre-indexed load produces two values
646  ///              (result of the load and the result of the address
647  ///              computation); a pre-indexed store produces one value (result
648  ///              of the address computation).
649  ///
650  /// POST_INC     The effective address is the value of the base pointer. The
651  /// POST_DEC     value of the offset operand is then added to / subtracted
652  ///              from the base after memory transaction. In addition to
653  ///              producing a chain, post-indexed load produces two values
654  ///              (the result of the load and the result of the base +/- offset
655  ///              computation); a post-indexed store produces one value (the
656  ///              the result of the base +/- offset computation).
657  ///
658  enum MemIndexedMode {
659    UNINDEXED = 0,
660    PRE_INC,
661    PRE_DEC,
662    POST_INC,
663    POST_DEC,
664    LAST_INDEXED_MODE
665  };
666
667  //===--------------------------------------------------------------------===//
668  /// LoadExtType enum - This enum defines the three variants of LOADEXT
669  /// (load with extension).
670  ///
671  /// SEXTLOAD loads the integer operand and sign extends it to a larger
672  ///          integer result type.
673  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
674  ///          integer result type.
675  /// EXTLOAD  is used for three things: floating point extending loads,
676  ///          integer extending loads [the top bits are undefined], and vector
677  ///          extending loads [load into low elt].
678  ///
679  enum LoadExtType {
680    NON_EXTLOAD = 0,
681    EXTLOAD,
682    SEXTLOAD,
683    ZEXTLOAD,
684    LAST_LOADEXT_TYPE
685  };
686
687  //===--------------------------------------------------------------------===//
688  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
689  /// below work out, when considering SETFALSE (something that never exists
690  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
691  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
692  /// to.  If the "N" column is 1, the result of the comparison is undefined if
693  /// the input is a NAN.
694  ///
695  /// All of these (except for the 'always folded ops') should be handled for
696  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
697  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
698  ///
699  /// Note that these are laid out in a specific order to allow bit-twiddling
700  /// to transform conditions.
701  enum CondCode {
702    // Opcode          N U L G E       Intuitive operation
703    SETFALSE,      //    0 0 0 0       Always false (always folded)
704    SETOEQ,        //    0 0 0 1       True if ordered and equal
705    SETOGT,        //    0 0 1 0       True if ordered and greater than
706    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
707    SETOLT,        //    0 1 0 0       True if ordered and less than
708    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
709    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
710    SETO,          //    0 1 1 1       True if ordered (no nans)
711    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
712    SETUEQ,        //    1 0 0 1       True if unordered or equal
713    SETUGT,        //    1 0 1 0       True if unordered or greater than
714    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
715    SETULT,        //    1 1 0 0       True if unordered or less than
716    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
717    SETUNE,        //    1 1 1 0       True if unordered or not equal
718    SETTRUE,       //    1 1 1 1       Always true (always folded)
719    // Don't care operations: undefined if the input is a nan.
720    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
721    SETEQ,         //  1 X 0 0 1       True if equal
722    SETGT,         //  1 X 0 1 0       True if greater than
723    SETGE,         //  1 X 0 1 1       True if greater than or equal
724    SETLT,         //  1 X 1 0 0       True if less than
725    SETLE,         //  1 X 1 0 1       True if less than or equal
726    SETNE,         //  1 X 1 1 0       True if not equal
727    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
728
729    SETCC_INVALID       // Marker value.
730  };
731
732  /// isSignedIntSetCC - Return true if this is a setcc instruction that
733  /// performs a signed comparison when used with integer operands.
734  inline bool isSignedIntSetCC(CondCode Code) {
735    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
736  }
737
738  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
739  /// performs an unsigned comparison when used with integer operands.
740  inline bool isUnsignedIntSetCC(CondCode Code) {
741    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
742  }
743
744  /// isTrueWhenEqual - Return true if the specified condition returns true if
745  /// the two operands to the condition are equal.  Note that if one of the two
746  /// operands is a NaN, this value is meaningless.
747  inline bool isTrueWhenEqual(CondCode Cond) {
748    return ((int)Cond & 1) != 0;
749  }
750
751  /// getUnorderedFlavor - This function returns 0 if the condition is always
752  /// false if an operand is a NaN, 1 if the condition is always true if the
753  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
754  /// NaN.
755  inline unsigned getUnorderedFlavor(CondCode Cond) {
756    return ((int)Cond >> 3) & 3;
757  }
758
759  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
760  /// 'op' is a valid SetCC operation.
761  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
762
763  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
764  /// when given the operation for (X op Y).
765  CondCode getSetCCSwappedOperands(CondCode Operation);
766
767  /// getSetCCOrOperation - Return the result of a logical OR between different
768  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
769  /// function returns SETCC_INVALID if it is not possible to represent the
770  /// resultant comparison.
771  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
772
773  /// getSetCCAndOperation - Return the result of a logical AND between
774  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
775  /// function returns SETCC_INVALID if it is not possible to represent the
776  /// resultant comparison.
777  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
778
779  //===--------------------------------------------------------------------===//
780  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
781  /// supports.
782  enum CvtCode {
783    CVT_FF,     // Float from Float
784    CVT_FS,     // Float from Signed
785    CVT_FU,     // Float from Unsigned
786    CVT_SF,     // Signed from Float
787    CVT_UF,     // Unsigned from Float
788    CVT_SS,     // Signed from Signed
789    CVT_SU,     // Signed from Unsigned
790    CVT_US,     // Unsigned from Signed
791    CVT_UU,     // Unsigned from Unsigned
792    CVT_INVALID // Marker - Invalid opcode
793  };
794}  // end llvm::ISD namespace
795
796
797//===----------------------------------------------------------------------===//
798/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
799/// values as the result of a computation.  Many nodes return multiple values,
800/// from loads (which define a token and a return value) to ADDC (which returns
801/// a result and a carry value), to calls (which may return an arbitrary number
802/// of values).
803///
804/// As such, each use of a SelectionDAG computation must indicate the node that
805/// computes it as well as which return value to use from that node.  This pair
806/// of information is represented with the SDValue value type.
807///
808class SDValue {
809  SDNode *Node;       // The node defining the value we are using.
810  unsigned ResNo;     // Which return value of the node we are using.
811public:
812  SDValue() : Node(0), ResNo(0) {}
813  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
814
815  /// get the index which selects a specific result in the SDNode
816  unsigned getResNo() const { return ResNo; }
817
818  /// get the SDNode which holds the desired result
819  SDNode *getNode() const { return Node; }
820
821  /// set the SDNode
822  void setNode(SDNode *N) { Node = N; }
823
824  bool operator==(const SDValue &O) const {
825    return Node == O.Node && ResNo == O.ResNo;
826  }
827  bool operator!=(const SDValue &O) const {
828    return !operator==(O);
829  }
830  bool operator<(const SDValue &O) const {
831    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
832  }
833
834  SDValue getValue(unsigned R) const {
835    return SDValue(Node, R);
836  }
837
838  // isOperandOf - Return true if this node is an operand of N.
839  bool isOperandOf(SDNode *N) const;
840
841  /// getValueType - Return the ValueType of the referenced return value.
842  ///
843  inline EVT getValueType() const;
844
845  /// getValueSizeInBits - Returns the size of the value in bits.
846  ///
847  unsigned getValueSizeInBits() const {
848    return getValueType().getSizeInBits();
849  }
850
851  // Forwarding methods - These forward to the corresponding methods in SDNode.
852  inline unsigned getOpcode() const;
853  inline unsigned getNumOperands() const;
854  inline const SDValue &getOperand(unsigned i) const;
855  inline uint64_t getConstantOperandVal(unsigned i) const;
856  inline bool isTargetMemoryOpcode() const;
857  inline bool isTargetOpcode() const;
858  inline bool isMachineOpcode() const;
859  inline unsigned getMachineOpcode() const;
860  inline const DebugLoc getDebugLoc() const;
861
862
863  /// reachesChainWithoutSideEffects - Return true if this operand (which must
864  /// be a chain) reaches the specified operand without crossing any
865  /// side-effecting instructions.  In practice, this looks through token
866  /// factors and non-volatile loads.  In order to remain efficient, this only
867  /// looks a couple of nodes in, it does not do an exhaustive search.
868  bool reachesChainWithoutSideEffects(SDValue Dest,
869                                      unsigned Depth = 2) const;
870
871  /// use_empty - Return true if there are no nodes using value ResNo
872  /// of Node.
873  ///
874  inline bool use_empty() const;
875
876  /// hasOneUse - Return true if there is exactly one node using value
877  /// ResNo of Node.
878  ///
879  inline bool hasOneUse() const;
880};
881
882
883template<> struct DenseMapInfo<SDValue> {
884  static inline SDValue getEmptyKey() {
885    return SDValue((SDNode*)-1, -1U);
886  }
887  static inline SDValue getTombstoneKey() {
888    return SDValue((SDNode*)-1, 0);
889  }
890  static unsigned getHashValue(const SDValue &Val) {
891    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
892            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
893  }
894  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
895    return LHS == RHS;
896  }
897};
898template <> struct isPodLike<SDValue> { static const bool value = true; };
899
900
901/// simplify_type specializations - Allow casting operators to work directly on
902/// SDValues as if they were SDNode*'s.
903template<> struct simplify_type<SDValue> {
904  typedef SDNode* SimpleType;
905  static SimpleType getSimplifiedValue(const SDValue &Val) {
906    return static_cast<SimpleType>(Val.getNode());
907  }
908};
909template<> struct simplify_type<const SDValue> {
910  typedef SDNode* SimpleType;
911  static SimpleType getSimplifiedValue(const SDValue &Val) {
912    return static_cast<SimpleType>(Val.getNode());
913  }
914};
915
916/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
917/// which records the SDNode being used and the result number, a
918/// pointer to the SDNode using the value, and Next and Prev pointers,
919/// which link together all the uses of an SDNode.
920///
921class SDUse {
922  /// Val - The value being used.
923  SDValue Val;
924  /// User - The user of this value.
925  SDNode *User;
926  /// Prev, Next - Pointers to the uses list of the SDNode referred by
927  /// this operand.
928  SDUse **Prev, *Next;
929
930  SDUse(const SDUse &U);          // Do not implement
931  void operator=(const SDUse &U); // Do not implement
932
933public:
934  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
935
936  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
937  operator const SDValue&() const { return Val; }
938
939  /// If implicit conversion to SDValue doesn't work, the get() method returns
940  /// the SDValue.
941  const SDValue &get() const { return Val; }
942
943  /// getUser - This returns the SDNode that contains this Use.
944  SDNode *getUser() { return User; }
945
946  /// getNext - Get the next SDUse in the use list.
947  SDUse *getNext() const { return Next; }
948
949  /// getNode - Convenience function for get().getNode().
950  SDNode *getNode() const { return Val.getNode(); }
951  /// getResNo - Convenience function for get().getResNo().
952  unsigned getResNo() const { return Val.getResNo(); }
953  /// getValueType - Convenience function for get().getValueType().
954  EVT getValueType() const { return Val.getValueType(); }
955
956  /// operator== - Convenience function for get().operator==
957  bool operator==(const SDValue &V) const {
958    return Val == V;
959  }
960
961  /// operator!= - Convenience function for get().operator!=
962  bool operator!=(const SDValue &V) const {
963    return Val != V;
964  }
965
966  /// operator< - Convenience function for get().operator<
967  bool operator<(const SDValue &V) const {
968    return Val < V;
969  }
970
971private:
972  friend class SelectionDAG;
973  friend class SDNode;
974
975  void setUser(SDNode *p) { User = p; }
976
977  /// set - Remove this use from its existing use list, assign it the
978  /// given value, and add it to the new value's node's use list.
979  inline void set(const SDValue &V);
980  /// setInitial - like set, but only supports initializing a newly-allocated
981  /// SDUse with a non-null value.
982  inline void setInitial(const SDValue &V);
983  /// setNode - like set, but only sets the Node portion of the value,
984  /// leaving the ResNo portion unmodified.
985  inline void setNode(SDNode *N);
986
987  void addToList(SDUse **List) {
988    Next = *List;
989    if (Next) Next->Prev = &Next;
990    Prev = List;
991    *List = this;
992  }
993
994  void removeFromList() {
995    *Prev = Next;
996    if (Next) Next->Prev = Prev;
997  }
998};
999
1000/// simplify_type specializations - Allow casting operators to work directly on
1001/// SDValues as if they were SDNode*'s.
1002template<> struct simplify_type<SDUse> {
1003  typedef SDNode* SimpleType;
1004  static SimpleType getSimplifiedValue(const SDUse &Val) {
1005    return static_cast<SimpleType>(Val.getNode());
1006  }
1007};
1008template<> struct simplify_type<const SDUse> {
1009  typedef SDNode* SimpleType;
1010  static SimpleType getSimplifiedValue(const SDUse &Val) {
1011    return static_cast<SimpleType>(Val.getNode());
1012  }
1013};
1014
1015
1016/// SDNode - Represents one node in the SelectionDAG.
1017///
1018class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1019private:
1020  /// NodeType - The operation that this node performs.
1021  ///
1022  int16_t NodeType;
1023
1024  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1025  /// then they will be delete[]'d when the node is destroyed.
1026  uint16_t OperandsNeedDelete : 1;
1027
1028protected:
1029  /// SubclassData - This member is defined by this class, but is not used for
1030  /// anything.  Subclasses can use it to hold whatever state they find useful.
1031  /// This field is initialized to zero by the ctor.
1032  uint16_t SubclassData : 15;
1033
1034private:
1035  /// NodeId - Unique id per SDNode in the DAG.
1036  int NodeId;
1037
1038  /// OperandList - The values that are used by this operation.
1039  ///
1040  SDUse *OperandList;
1041
1042  /// ValueList - The types of the values this node defines.  SDNode's may
1043  /// define multiple values simultaneously.
1044  const EVT *ValueList;
1045
1046  /// UseList - List of uses for this SDNode.
1047  SDUse *UseList;
1048
1049  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1050  unsigned short NumOperands, NumValues;
1051
1052  /// debugLoc - source line information.
1053  DebugLoc debugLoc;
1054
1055  /// getValueTypeList - Return a pointer to the specified value type.
1056  static const EVT *getValueTypeList(EVT VT);
1057
1058  friend class SelectionDAG;
1059  friend struct ilist_traits<SDNode>;
1060
1061public:
1062  //===--------------------------------------------------------------------===//
1063  //  Accessors
1064  //
1065
1066  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1067  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1068  /// are the opcode values in the ISD and <target>ISD namespaces. For
1069  /// post-isel opcodes, see getMachineOpcode.
1070  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1071
1072  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1073  /// \<target\>ISD namespace).
1074  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1075
1076  /// isTargetMemoryOpcode - Test if this node has a target-specific
1077  /// memory-referencing opcode (in the \<target\>ISD namespace and
1078  /// greater than FIRST_TARGET_MEMORY_OPCODE).
1079  bool isTargetMemoryOpcode() const {
1080    return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
1081  }
1082
1083  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1084  /// corresponding to a MachineInstr opcode.
1085  bool isMachineOpcode() const { return NodeType < 0; }
1086
1087  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1088  /// true. It returns the MachineInstr opcode value that the node's opcode
1089  /// corresponds to.
1090  unsigned getMachineOpcode() const {
1091    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1092    return ~NodeType;
1093  }
1094
1095  /// use_empty - Return true if there are no uses of this node.
1096  ///
1097  bool use_empty() const { return UseList == NULL; }
1098
1099  /// hasOneUse - Return true if there is exactly one use of this node.
1100  ///
1101  bool hasOneUse() const {
1102    return !use_empty() && llvm::next(use_begin()) == use_end();
1103  }
1104
1105  /// use_size - Return the number of uses of this node. This method takes
1106  /// time proportional to the number of uses.
1107  ///
1108  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1109
1110  /// getNodeId - Return the unique node id.
1111  ///
1112  int getNodeId() const { return NodeId; }
1113
1114  /// setNodeId - Set unique node id.
1115  void setNodeId(int Id) { NodeId = Id; }
1116
1117  /// getDebugLoc - Return the source location info.
1118  const DebugLoc getDebugLoc() const { return debugLoc; }
1119
1120  /// setDebugLoc - Set source location info.  Try to avoid this, putting
1121  /// it in the constructor is preferable.
1122  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1123
1124  /// use_iterator - This class provides iterator support for SDUse
1125  /// operands that use a specific SDNode.
1126  class use_iterator
1127    : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
1128    SDUse *Op;
1129    explicit use_iterator(SDUse *op) : Op(op) {
1130    }
1131    friend class SDNode;
1132  public:
1133    typedef std::iterator<std::forward_iterator_tag,
1134                          SDUse, ptrdiff_t>::reference reference;
1135    typedef std::iterator<std::forward_iterator_tag,
1136                          SDUse, ptrdiff_t>::pointer pointer;
1137
1138    use_iterator(const use_iterator &I) : Op(I.Op) {}
1139    use_iterator() : Op(0) {}
1140
1141    bool operator==(const use_iterator &x) const {
1142      return Op == x.Op;
1143    }
1144    bool operator!=(const use_iterator &x) const {
1145      return !operator==(x);
1146    }
1147
1148    /// atEnd - return true if this iterator is at the end of uses list.
1149    bool atEnd() const { return Op == 0; }
1150
1151    // Iterator traversal: forward iteration only.
1152    use_iterator &operator++() {          // Preincrement
1153      assert(Op && "Cannot increment end iterator!");
1154      Op = Op->getNext();
1155      return *this;
1156    }
1157
1158    use_iterator operator++(int) {        // Postincrement
1159      use_iterator tmp = *this; ++*this; return tmp;
1160    }
1161
1162    /// Retrieve a pointer to the current user node.
1163    SDNode *operator*() const {
1164      assert(Op && "Cannot dereference end iterator!");
1165      return Op->getUser();
1166    }
1167
1168    SDNode *operator->() const { return operator*(); }
1169
1170    SDUse &getUse() const { return *Op; }
1171
1172    /// getOperandNo - Retrieve the operand # of this use in its user.
1173    ///
1174    unsigned getOperandNo() const {
1175      assert(Op && "Cannot dereference end iterator!");
1176      return (unsigned)(Op - Op->getUser()->OperandList);
1177    }
1178  };
1179
1180  /// use_begin/use_end - Provide iteration support to walk over all uses
1181  /// of an SDNode.
1182
1183  use_iterator use_begin() const {
1184    return use_iterator(UseList);
1185  }
1186
1187  static use_iterator use_end() { return use_iterator(0); }
1188
1189
1190  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1191  /// indicated value.  This method ignores uses of other values defined by this
1192  /// operation.
1193  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1194
1195  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1196  /// value. This method ignores uses of other values defined by this operation.
1197  bool hasAnyUseOfValue(unsigned Value) const;
1198
1199  /// isOnlyUserOf - Return true if this node is the only use of N.
1200  ///
1201  bool isOnlyUserOf(SDNode *N) const;
1202
1203  /// isOperandOf - Return true if this node is an operand of N.
1204  ///
1205  bool isOperandOf(SDNode *N) const;
1206
1207  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1208  /// node is either an operand of N or it can be reached by recursively
1209  /// traversing up the operands.
1210  /// NOTE: this is an expensive method. Use it carefully.
1211  bool isPredecessorOf(SDNode *N) const;
1212
1213  /// getNumOperands - Return the number of values used by this operation.
1214  ///
1215  unsigned getNumOperands() const { return NumOperands; }
1216
1217  /// getConstantOperandVal - Helper method returns the integer value of a
1218  /// ConstantSDNode operand.
1219  uint64_t getConstantOperandVal(unsigned Num) const;
1220
1221  const SDValue &getOperand(unsigned Num) const {
1222    assert(Num < NumOperands && "Invalid child # of SDNode!");
1223    return OperandList[Num];
1224  }
1225
1226  typedef SDUse* op_iterator;
1227  op_iterator op_begin() const { return OperandList; }
1228  op_iterator op_end() const { return OperandList+NumOperands; }
1229
1230  SDVTList getVTList() const {
1231    SDVTList X = { ValueList, NumValues };
1232    return X;
1233  }
1234
1235  /// getFlaggedNode - If this node has a flag operand, return the node
1236  /// to which the flag operand points. Otherwise return NULL.
1237  SDNode *getFlaggedNode() const {
1238    if (getNumOperands() != 0 &&
1239      getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
1240      return getOperand(getNumOperands()-1).getNode();
1241    return 0;
1242  }
1243
1244  // If this is a pseudo op, like copyfromreg, look to see if there is a
1245  // real target node flagged to it.  If so, return the target node.
1246  const SDNode *getFlaggedMachineNode() const {
1247    const SDNode *FoundNode = this;
1248
1249    // Climb up flag edges until a machine-opcode node is found, or the
1250    // end of the chain is reached.
1251    while (!FoundNode->isMachineOpcode()) {
1252      const SDNode *N = FoundNode->getFlaggedNode();
1253      if (!N) break;
1254      FoundNode = N;
1255    }
1256
1257    return FoundNode;
1258  }
1259
1260  /// getNumValues - Return the number of values defined/returned by this
1261  /// operator.
1262  ///
1263  unsigned getNumValues() const { return NumValues; }
1264
1265  /// getValueType - Return the type of a specified result.
1266  ///
1267  EVT getValueType(unsigned ResNo) const {
1268    assert(ResNo < NumValues && "Illegal result number!");
1269    return ValueList[ResNo];
1270  }
1271
1272  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1273  ///
1274  unsigned getValueSizeInBits(unsigned ResNo) const {
1275    return getValueType(ResNo).getSizeInBits();
1276  }
1277
1278  typedef const EVT* value_iterator;
1279  value_iterator value_begin() const { return ValueList; }
1280  value_iterator value_end() const { return ValueList+NumValues; }
1281
1282  /// getOperationName - Return the opcode of this operation for printing.
1283  ///
1284  std::string getOperationName(const SelectionDAG *G = 0) const;
1285  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1286  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1287  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1288  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1289  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1290
1291  /// printrFull - Print a SelectionDAG node and all children down to
1292  /// the leaves.  The given SelectionDAG allows target-specific nodes
1293  /// to be printed in human-readable form.  Unlike printr, this will
1294  /// print the whole DAG, including children that appear multiple
1295  /// times.
1296  ///
1297  void printrFull(raw_ostream &O, const SelectionDAG *G = 0) const;
1298
1299  /// printrWithDepth - Print a SelectionDAG node and children up to
1300  /// depth "depth."  The given SelectionDAG allows target-specific
1301  /// nodes to be printed in human-readable form.  Unlike printr, this
1302  /// will print children that appear multiple times wherever they are
1303  /// used.
1304  ///
1305  void printrWithDepth(raw_ostream &O, const SelectionDAG *G = 0,
1306                       unsigned depth = 100) const;
1307
1308
1309  /// dump - Dump this node, for debugging.
1310  void dump() const;
1311
1312  /// dumpr - Dump (recursively) this node and its use-def subgraph.
1313  void dumpr() const;
1314
1315  /// dump - Dump this node, for debugging.
1316  /// The given SelectionDAG allows target-specific nodes to be printed
1317  /// in human-readable form.
1318  void dump(const SelectionDAG *G) const;
1319
1320  /// dumpr - Dump (recursively) this node and its use-def subgraph.
1321  /// The given SelectionDAG allows target-specific nodes to be printed
1322  /// in human-readable form.
1323  void dumpr(const SelectionDAG *G) const;
1324
1325  /// dumprFull - printrFull to dbgs().  The given SelectionDAG allows
1326  /// target-specific nodes to be printed in human-readable form.
1327  /// Unlike dumpr, this will print the whole DAG, including children
1328  /// that appear multiple times.
1329  ///
1330  void dumprFull(const SelectionDAG *G = 0) const;
1331
1332  /// dumprWithDepth - printrWithDepth to dbgs().  The given
1333  /// SelectionDAG allows target-specific nodes to be printed in
1334  /// human-readable form.  Unlike dumpr, this will print children
1335  /// that appear multiple times wherever they are used.
1336  ///
1337  void dumprWithDepth(const SelectionDAG *G = 0, unsigned depth = 100) const;
1338
1339
1340  static bool classof(const SDNode *) { return true; }
1341
1342  /// Profile - Gather unique data for the node.
1343  ///
1344  void Profile(FoldingSetNodeID &ID) const;
1345
1346  /// addUse - This method should only be used by the SDUse class.
1347  ///
1348  void addUse(SDUse &U) { U.addToList(&UseList); }
1349
1350protected:
1351  static SDVTList getSDVTList(EVT VT) {
1352    SDVTList Ret = { getValueTypeList(VT), 1 };
1353    return Ret;
1354  }
1355
1356  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1357         unsigned NumOps)
1358    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1359      NodeId(-1),
1360      OperandList(NumOps ? new SDUse[NumOps] : 0),
1361      ValueList(VTs.VTs), UseList(NULL),
1362      NumOperands(NumOps), NumValues(VTs.NumVTs),
1363      debugLoc(dl) {
1364    for (unsigned i = 0; i != NumOps; ++i) {
1365      OperandList[i].setUser(this);
1366      OperandList[i].setInitial(Ops[i]);
1367    }
1368    checkForCycles(this);
1369  }
1370
1371  /// This constructor adds no operands itself; operands can be
1372  /// set later with InitOperands.
1373  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1374    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1375      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1376      NumOperands(0), NumValues(VTs.NumVTs),
1377      debugLoc(dl) {}
1378
1379  /// InitOperands - Initialize the operands list of this with 1 operand.
1380  void InitOperands(SDUse *Ops, const SDValue &Op0) {
1381    Ops[0].setUser(this);
1382    Ops[0].setInitial(Op0);
1383    NumOperands = 1;
1384    OperandList = Ops;
1385    checkForCycles(this);
1386  }
1387
1388  /// InitOperands - Initialize the operands list of this with 2 operands.
1389  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1390    Ops[0].setUser(this);
1391    Ops[0].setInitial(Op0);
1392    Ops[1].setUser(this);
1393    Ops[1].setInitial(Op1);
1394    NumOperands = 2;
1395    OperandList = Ops;
1396    checkForCycles(this);
1397  }
1398
1399  /// InitOperands - Initialize the operands list of this with 3 operands.
1400  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1401                    const SDValue &Op2) {
1402    Ops[0].setUser(this);
1403    Ops[0].setInitial(Op0);
1404    Ops[1].setUser(this);
1405    Ops[1].setInitial(Op1);
1406    Ops[2].setUser(this);
1407    Ops[2].setInitial(Op2);
1408    NumOperands = 3;
1409    OperandList = Ops;
1410    checkForCycles(this);
1411  }
1412
1413  /// InitOperands - Initialize the operands list of this with 4 operands.
1414  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1415                    const SDValue &Op2, const SDValue &Op3) {
1416    Ops[0].setUser(this);
1417    Ops[0].setInitial(Op0);
1418    Ops[1].setUser(this);
1419    Ops[1].setInitial(Op1);
1420    Ops[2].setUser(this);
1421    Ops[2].setInitial(Op2);
1422    Ops[3].setUser(this);
1423    Ops[3].setInitial(Op3);
1424    NumOperands = 4;
1425    OperandList = Ops;
1426    checkForCycles(this);
1427  }
1428
1429  /// InitOperands - Initialize the operands list of this with N operands.
1430  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1431    for (unsigned i = 0; i != N; ++i) {
1432      Ops[i].setUser(this);
1433      Ops[i].setInitial(Vals[i]);
1434    }
1435    NumOperands = N;
1436    OperandList = Ops;
1437    checkForCycles(this);
1438  }
1439
1440  /// DropOperands - Release the operands and set this node to have
1441  /// zero operands.
1442  void DropOperands();
1443};
1444
1445
1446// Define inline functions from the SDValue class.
1447
1448inline unsigned SDValue::getOpcode() const {
1449  return Node->getOpcode();
1450}
1451inline EVT SDValue::getValueType() const {
1452  return Node->getValueType(ResNo);
1453}
1454inline unsigned SDValue::getNumOperands() const {
1455  return Node->getNumOperands();
1456}
1457inline const SDValue &SDValue::getOperand(unsigned i) const {
1458  return Node->getOperand(i);
1459}
1460inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1461  return Node->getConstantOperandVal(i);
1462}
1463inline bool SDValue::isTargetOpcode() const {
1464  return Node->isTargetOpcode();
1465}
1466inline bool SDValue::isTargetMemoryOpcode() const {
1467  return Node->isTargetMemoryOpcode();
1468}
1469inline bool SDValue::isMachineOpcode() const {
1470  return Node->isMachineOpcode();
1471}
1472inline unsigned SDValue::getMachineOpcode() const {
1473  return Node->getMachineOpcode();
1474}
1475inline bool SDValue::use_empty() const {
1476  return !Node->hasAnyUseOfValue(ResNo);
1477}
1478inline bool SDValue::hasOneUse() const {
1479  return Node->hasNUsesOfValue(1, ResNo);
1480}
1481inline const DebugLoc SDValue::getDebugLoc() const {
1482  return Node->getDebugLoc();
1483}
1484
1485// Define inline functions from the SDUse class.
1486
1487inline void SDUse::set(const SDValue &V) {
1488  if (Val.getNode()) removeFromList();
1489  Val = V;
1490  if (V.getNode()) V.getNode()->addUse(*this);
1491}
1492
1493inline void SDUse::setInitial(const SDValue &V) {
1494  Val = V;
1495  V.getNode()->addUse(*this);
1496}
1497
1498inline void SDUse::setNode(SDNode *N) {
1499  if (Val.getNode()) removeFromList();
1500  Val.setNode(N);
1501  if (N) N->addUse(*this);
1502}
1503
1504/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1505/// to allow co-allocation of node operands with the node itself.
1506class UnarySDNode : public SDNode {
1507  SDUse Op;
1508public:
1509  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1510    : SDNode(Opc, dl, VTs) {
1511    InitOperands(&Op, X);
1512  }
1513};
1514
1515/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1516/// to allow co-allocation of node operands with the node itself.
1517class BinarySDNode : public SDNode {
1518  SDUse Ops[2];
1519public:
1520  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1521    : SDNode(Opc, dl, VTs) {
1522    InitOperands(Ops, X, Y);
1523  }
1524};
1525
1526/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1527/// to allow co-allocation of node operands with the node itself.
1528class TernarySDNode : public SDNode {
1529  SDUse Ops[3];
1530public:
1531  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1532                SDValue Z)
1533    : SDNode(Opc, dl, VTs) {
1534    InitOperands(Ops, X, Y, Z);
1535  }
1536};
1537
1538
1539/// HandleSDNode - This class is used to form a handle around another node that
1540/// is persistant and is updated across invocations of replaceAllUsesWith on its
1541/// operand.  This node should be directly created by end-users and not added to
1542/// the AllNodes list.
1543class HandleSDNode : public SDNode {
1544  SDUse Op;
1545public:
1546  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1547  // fixed.
1548#ifdef __GNUC__
1549  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1550#else
1551  explicit HandleSDNode(SDValue X)
1552#endif
1553    : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
1554             getSDVTList(MVT::Other)) {
1555    InitOperands(&Op, X);
1556  }
1557  ~HandleSDNode();
1558  const SDValue &getValue() const { return Op; }
1559};
1560
1561/// Abstact virtual class for operations for memory operations
1562class MemSDNode : public SDNode {
1563private:
1564  // MemoryVT - VT of in-memory value.
1565  EVT MemoryVT;
1566
1567protected:
1568  /// MMO - Memory reference information.
1569  MachineMemOperand *MMO;
1570
1571public:
1572  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
1573            MachineMemOperand *MMO);
1574
1575  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1576            unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
1577
1578  bool readMem() const { return MMO->isLoad(); }
1579  bool writeMem() const { return MMO->isStore(); }
1580
1581  /// Returns alignment and volatility of the memory access
1582  unsigned getOriginalAlignment() const {
1583    return MMO->getBaseAlignment();
1584  }
1585  unsigned getAlignment() const {
1586    return MMO->getAlignment();
1587  }
1588
1589  /// getRawSubclassData - Return the SubclassData value, which contains an
1590  /// encoding of the volatile flag, as well as bits used by subclasses. This
1591  /// function should only be used to compute a FoldingSetNodeID value.
1592  unsigned getRawSubclassData() const {
1593    return SubclassData;
1594  }
1595
1596  bool isVolatile() const { return (SubclassData >> 5) & 1; }
1597
1598  /// Returns the SrcValue and offset that describes the location of the access
1599  const Value *getSrcValue() const { return MMO->getValue(); }
1600  int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1601
1602  /// getMemoryVT - Return the type of the in-memory value.
1603  EVT getMemoryVT() const { return MemoryVT; }
1604
1605  /// getMemOperand - Return a MachineMemOperand object describing the memory
1606  /// reference performed by operation.
1607  MachineMemOperand *getMemOperand() const { return MMO; }
1608
1609  /// refineAlignment - Update this MemSDNode's MachineMemOperand information
1610  /// to reflect the alignment of NewMMO, if it has a greater alignment.
1611  /// This must only be used when the new alignment applies to all users of
1612  /// this MachineMemOperand.
1613  void refineAlignment(const MachineMemOperand *NewMMO) {
1614    MMO->refineAlignment(NewMMO);
1615  }
1616
1617  const SDValue &getChain() const { return getOperand(0); }
1618  const SDValue &getBasePtr() const {
1619    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1620  }
1621
1622  // Methods to support isa and dyn_cast
1623  static bool classof(const MemSDNode *) { return true; }
1624  static bool classof(const SDNode *N) {
1625    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1626    // with either an intrinsic or a target opcode.
1627    return N->getOpcode() == ISD::LOAD                ||
1628           N->getOpcode() == ISD::STORE               ||
1629           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1630           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1631           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1632           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1633           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1634           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1635           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1636           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1637           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1638           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1639           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1640           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1641           N->isTargetMemoryOpcode();
1642  }
1643};
1644
1645/// AtomicSDNode - A SDNode reprenting atomic operations.
1646///
1647class AtomicSDNode : public MemSDNode {
1648  SDUse Ops[4];
1649
1650public:
1651  // Opc:   opcode for atomic
1652  // VTL:    value type list
1653  // Chain:  memory chain for operaand
1654  // Ptr:    address to update as a SDValue
1655  // Cmp:    compare value
1656  // Swp:    swap value
1657  // SrcVal: address to update as a Value (used for MemOperand)
1658  // Align:  alignment of memory
1659  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1660               SDValue Chain, SDValue Ptr,
1661               SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
1662    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
1663    assert(readMem() && "Atomic MachineMemOperand is not a load!");
1664    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1665    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1666  }
1667  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1668               SDValue Chain, SDValue Ptr,
1669               SDValue Val, MachineMemOperand *MMO)
1670    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
1671    assert(readMem() && "Atomic MachineMemOperand is not a load!");
1672    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1673    InitOperands(Ops, Chain, Ptr, Val);
1674  }
1675
1676  const SDValue &getBasePtr() const { return getOperand(1); }
1677  const SDValue &getVal() const { return getOperand(2); }
1678
1679  bool isCompareAndSwap() const {
1680    unsigned Op = getOpcode();
1681    return Op == ISD::ATOMIC_CMP_SWAP;
1682  }
1683
1684  // Methods to support isa and dyn_cast
1685  static bool classof(const AtomicSDNode *) { return true; }
1686  static bool classof(const SDNode *N) {
1687    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1688           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1689           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1690           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1691           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1692           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1693           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1694           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1695           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1696           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1697           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1698           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1699  }
1700};
1701
1702/// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
1703/// memory and need an associated MachineMemOperand. Its opcode may be
1704/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
1705/// value not less than FIRST_TARGET_MEMORY_OPCODE.
1706class MemIntrinsicSDNode : public MemSDNode {
1707public:
1708  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1709                     const SDValue *Ops, unsigned NumOps,
1710                     EVT MemoryVT, MachineMemOperand *MMO)
1711    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
1712  }
1713
1714  // Methods to support isa and dyn_cast
1715  static bool classof(const MemIntrinsicSDNode *) { return true; }
1716  static bool classof(const SDNode *N) {
1717    // We lower some target intrinsics to their target opcode
1718    // early a node with a target opcode can be of this class
1719    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1720           N->getOpcode() == ISD::INTRINSIC_VOID ||
1721           N->isTargetMemoryOpcode();
1722  }
1723};
1724
1725/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
1726/// support for the llvm IR shufflevector instruction.  It combines elements
1727/// from two input vectors into a new input vector, with the selection and
1728/// ordering of elements determined by an array of integers, referred to as
1729/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1730/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1731/// An index of -1 is treated as undef, such that the code generator may put
1732/// any value in the corresponding element of the result.
1733class ShuffleVectorSDNode : public SDNode {
1734  SDUse Ops[2];
1735
1736  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1737  // is freed when the SelectionDAG object is destroyed.
1738  const int *Mask;
1739protected:
1740  friend class SelectionDAG;
1741  ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2,
1742                      const int *M)
1743    : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
1744    InitOperands(Ops, N1, N2);
1745  }
1746public:
1747
1748  void getMask(SmallVectorImpl<int> &M) const {
1749    EVT VT = getValueType(0);
1750    M.clear();
1751    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1752      M.push_back(Mask[i]);
1753  }
1754  int getMaskElt(unsigned Idx) const {
1755    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1756    return Mask[Idx];
1757  }
1758
1759  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1760  int  getSplatIndex() const {
1761    assert(isSplat() && "Cannot get splat index for non-splat!");
1762    return Mask[0];
1763  }
1764  static bool isSplatMask(const int *Mask, EVT VT);
1765
1766  static bool classof(const ShuffleVectorSDNode *) { return true; }
1767  static bool classof(const SDNode *N) {
1768    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1769  }
1770};
1771
1772class ConstantSDNode : public SDNode {
1773  const ConstantInt *Value;
1774  friend class SelectionDAG;
1775  ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
1776    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1777             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1778  }
1779public:
1780
1781  const ConstantInt *getConstantIntValue() const { return Value; }
1782  const APInt &getAPIntValue() const { return Value->getValue(); }
1783  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1784  int64_t getSExtValue() const { return Value->getSExtValue(); }
1785
1786  bool isNullValue() const { return Value->isNullValue(); }
1787  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1788
1789  static bool classof(const ConstantSDNode *) { return true; }
1790  static bool classof(const SDNode *N) {
1791    return N->getOpcode() == ISD::Constant ||
1792           N->getOpcode() == ISD::TargetConstant;
1793  }
1794};
1795
1796class ConstantFPSDNode : public SDNode {
1797  const ConstantFP *Value;
1798  friend class SelectionDAG;
1799  ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1800    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1801             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1802  }
1803public:
1804
1805  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1806  const ConstantFP *getConstantFPValue() const { return Value; }
1807
1808  /// isExactlyValue - We don't rely on operator== working on double values, as
1809  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1810  /// As such, this method can be used to do an exact bit-for-bit comparison of
1811  /// two floating point values.
1812
1813  /// We leave the version with the double argument here because it's just so
1814  /// convenient to write "2.0" and the like.  Without this function we'd
1815  /// have to duplicate its logic everywhere it's called.
1816  bool isExactlyValue(double V) const {
1817    bool ignored;
1818    // convert is not supported on this type
1819    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1820      return false;
1821    APFloat Tmp(V);
1822    Tmp.convert(Value->getValueAPF().getSemantics(),
1823                APFloat::rmNearestTiesToEven, &ignored);
1824    return isExactlyValue(Tmp);
1825  }
1826  bool isExactlyValue(const APFloat& V) const;
1827
1828  bool isValueValidForType(EVT VT, const APFloat& Val);
1829
1830  static bool classof(const ConstantFPSDNode *) { return true; }
1831  static bool classof(const SDNode *N) {
1832    return N->getOpcode() == ISD::ConstantFP ||
1833           N->getOpcode() == ISD::TargetConstantFP;
1834  }
1835};
1836
1837class GlobalAddressSDNode : public SDNode {
1838  GlobalValue *TheGlobal;
1839  int64_t Offset;
1840  unsigned char TargetFlags;
1841  friend class SelectionDAG;
1842  GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
1843                      int64_t o, unsigned char TargetFlags);
1844public:
1845
1846  GlobalValue *getGlobal() const { return TheGlobal; }
1847  int64_t getOffset() const { return Offset; }
1848  unsigned char getTargetFlags() const { return TargetFlags; }
1849  // Return the address space this GlobalAddress belongs to.
1850  unsigned getAddressSpace() const;
1851
1852  static bool classof(const GlobalAddressSDNode *) { return true; }
1853  static bool classof(const SDNode *N) {
1854    return N->getOpcode() == ISD::GlobalAddress ||
1855           N->getOpcode() == ISD::TargetGlobalAddress ||
1856           N->getOpcode() == ISD::GlobalTLSAddress ||
1857           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1858  }
1859};
1860
1861class FrameIndexSDNode : public SDNode {
1862  int FI;
1863  friend class SelectionDAG;
1864  FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1865    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1866      DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
1867  }
1868public:
1869
1870  int getIndex() const { return FI; }
1871
1872  static bool classof(const FrameIndexSDNode *) { return true; }
1873  static bool classof(const SDNode *N) {
1874    return N->getOpcode() == ISD::FrameIndex ||
1875           N->getOpcode() == ISD::TargetFrameIndex;
1876  }
1877};
1878
1879class JumpTableSDNode : public SDNode {
1880  int JTI;
1881  unsigned char TargetFlags;
1882  friend class SelectionDAG;
1883  JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1884    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1885      DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1886  }
1887public:
1888
1889  int getIndex() const { return JTI; }
1890  unsigned char getTargetFlags() const { return TargetFlags; }
1891
1892  static bool classof(const JumpTableSDNode *) { return true; }
1893  static bool classof(const SDNode *N) {
1894    return N->getOpcode() == ISD::JumpTable ||
1895           N->getOpcode() == ISD::TargetJumpTable;
1896  }
1897};
1898
1899class ConstantPoolSDNode : public SDNode {
1900  union {
1901    Constant *ConstVal;
1902    MachineConstantPoolValue *MachineCPVal;
1903  } Val;
1904  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1905  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1906  unsigned char TargetFlags;
1907  friend class SelectionDAG;
1908  ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
1909                     unsigned char TF)
1910    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1911             DebugLoc::getUnknownLoc(),
1912             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1913    assert((int)Offset >= 0 && "Offset is too large");
1914    Val.ConstVal = c;
1915  }
1916  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1917                     EVT VT, int o, unsigned Align, unsigned char TF)
1918    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1919             DebugLoc::getUnknownLoc(),
1920             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1921    assert((int)Offset >= 0 && "Offset is too large");
1922    Val.MachineCPVal = v;
1923    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1924  }
1925public:
1926
1927
1928  bool isMachineConstantPoolEntry() const {
1929    return (int)Offset < 0;
1930  }
1931
1932  Constant *getConstVal() const {
1933    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1934    return Val.ConstVal;
1935  }
1936
1937  MachineConstantPoolValue *getMachineCPVal() const {
1938    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1939    return Val.MachineCPVal;
1940  }
1941
1942  int getOffset() const {
1943    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1944  }
1945
1946  // Return the alignment of this constant pool object, which is either 0 (for
1947  // default alignment) or the desired value.
1948  unsigned getAlignment() const { return Alignment; }
1949  unsigned char getTargetFlags() const { return TargetFlags; }
1950
1951  const Type *getType() const;
1952
1953  static bool classof(const ConstantPoolSDNode *) { return true; }
1954  static bool classof(const SDNode *N) {
1955    return N->getOpcode() == ISD::ConstantPool ||
1956           N->getOpcode() == ISD::TargetConstantPool;
1957  }
1958};
1959
1960class BasicBlockSDNode : public SDNode {
1961  MachineBasicBlock *MBB;
1962  friend class SelectionDAG;
1963  /// Debug info is meaningful and potentially useful here, but we create
1964  /// blocks out of order when they're jumped to, which makes it a bit
1965  /// harder.  Let's see if we need it first.
1966  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1967    : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
1968             getSDVTList(MVT::Other)), MBB(mbb) {
1969  }
1970public:
1971
1972  MachineBasicBlock *getBasicBlock() const { return MBB; }
1973
1974  static bool classof(const BasicBlockSDNode *) { return true; }
1975  static bool classof(const SDNode *N) {
1976    return N->getOpcode() == ISD::BasicBlock;
1977  }
1978};
1979
1980/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1981/// BUILD_VECTORs.
1982class BuildVectorSDNode : public SDNode {
1983  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1984  explicit BuildVectorSDNode();        // Do not implement
1985public:
1986  /// isConstantSplat - Check if this is a constant splat, and if so, find the
1987  /// smallest element size that splats the vector.  If MinSplatBits is
1988  /// nonzero, the element size must be at least that large.  Note that the
1989  /// splat element may be the entire vector (i.e., a one element vector).
1990  /// Returns the splat element value in SplatValue.  Any undefined bits in
1991  /// that value are zero, and the corresponding bits in the SplatUndef mask
1992  /// are set.  The SplatBitSize value is set to the splat element size in
1993  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1994  /// undefined.  isBigEndian describes the endianness of the target.
1995  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1996                       unsigned &SplatBitSize, bool &HasAnyUndefs,
1997                       unsigned MinSplatBits = 0, bool isBigEndian = false);
1998
1999  static inline bool classof(const BuildVectorSDNode *) { return true; }
2000  static inline bool classof(const SDNode *N) {
2001    return N->getOpcode() == ISD::BUILD_VECTOR;
2002  }
2003};
2004
2005/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
2006/// used when the SelectionDAG needs to make a simple reference to something
2007/// in the LLVM IR representation.
2008///
2009class SrcValueSDNode : public SDNode {
2010  const Value *V;
2011  friend class SelectionDAG;
2012  /// Create a SrcValue for a general value.
2013  explicit SrcValueSDNode(const Value *v)
2014    : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
2015             getSDVTList(MVT::Other)), V(v) {}
2016
2017public:
2018  /// getValue - return the contained Value.
2019  const Value *getValue() const { return V; }
2020
2021  static bool classof(const SrcValueSDNode *) { return true; }
2022  static bool classof(const SDNode *N) {
2023    return N->getOpcode() == ISD::SRCVALUE;
2024  }
2025};
2026
2027
2028class RegisterSDNode : public SDNode {
2029  unsigned Reg;
2030  friend class SelectionDAG;
2031  RegisterSDNode(unsigned reg, EVT VT)
2032    : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
2033             getSDVTList(VT)), Reg(reg) {
2034  }
2035public:
2036
2037  unsigned getReg() const { return Reg; }
2038
2039  static bool classof(const RegisterSDNode *) { return true; }
2040  static bool classof(const SDNode *N) {
2041    return N->getOpcode() == ISD::Register;
2042  }
2043};
2044
2045class BlockAddressSDNode : public SDNode {
2046  BlockAddress *BA;
2047  unsigned char TargetFlags;
2048  friend class SelectionDAG;
2049  BlockAddressSDNode(unsigned NodeTy, EVT VT, BlockAddress *ba,
2050                     unsigned char Flags)
2051    : SDNode(NodeTy, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
2052             BA(ba), TargetFlags(Flags) {
2053  }
2054public:
2055  BlockAddress *getBlockAddress() const { return BA; }
2056  unsigned char getTargetFlags() const { return TargetFlags; }
2057
2058  static bool classof(const BlockAddressSDNode *) { return true; }
2059  static bool classof(const SDNode *N) {
2060    return N->getOpcode() == ISD::BlockAddress ||
2061           N->getOpcode() == ISD::TargetBlockAddress;
2062  }
2063};
2064
2065class LabelSDNode : public SDNode {
2066  SDUse Chain;
2067  unsigned LabelID;
2068  friend class SelectionDAG;
2069  LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2070    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2071    InitOperands(&Chain, ch);
2072  }
2073public:
2074  unsigned getLabelID() const { return LabelID; }
2075
2076  static bool classof(const LabelSDNode *) { return true; }
2077  static bool classof(const SDNode *N) {
2078    return N->getOpcode() == ISD::EH_LABEL;
2079  }
2080};
2081
2082class ExternalSymbolSDNode : public SDNode {
2083  const char *Symbol;
2084  unsigned char TargetFlags;
2085
2086  friend class SelectionDAG;
2087  ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
2088    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2089             DebugLoc::getUnknownLoc(),
2090             getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
2091  }
2092public:
2093
2094  const char *getSymbol() const { return Symbol; }
2095  unsigned char getTargetFlags() const { return TargetFlags; }
2096
2097  static bool classof(const ExternalSymbolSDNode *) { return true; }
2098  static bool classof(const SDNode *N) {
2099    return N->getOpcode() == ISD::ExternalSymbol ||
2100           N->getOpcode() == ISD::TargetExternalSymbol;
2101  }
2102};
2103
2104class CondCodeSDNode : public SDNode {
2105  ISD::CondCode Condition;
2106  friend class SelectionDAG;
2107  explicit CondCodeSDNode(ISD::CondCode Cond)
2108    : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
2109             getSDVTList(MVT::Other)), Condition(Cond) {
2110  }
2111public:
2112
2113  ISD::CondCode get() const { return Condition; }
2114
2115  static bool classof(const CondCodeSDNode *) { return true; }
2116  static bool classof(const SDNode *N) {
2117    return N->getOpcode() == ISD::CONDCODE;
2118  }
2119};
2120
2121/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2122/// future and most targets don't support it.
2123class CvtRndSatSDNode : public SDNode {
2124  ISD::CvtCode CvtCode;
2125  friend class SelectionDAG;
2126  explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
2127                           unsigned NumOps, ISD::CvtCode Code)
2128    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2129      CvtCode(Code) {
2130    assert(NumOps == 5 && "wrong number of operations");
2131  }
2132public:
2133  ISD::CvtCode getCvtCode() const { return CvtCode; }
2134
2135  static bool classof(const CvtRndSatSDNode *) { return true; }
2136  static bool classof(const SDNode *N) {
2137    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2138  }
2139};
2140
2141namespace ISD {
2142  struct ArgFlagsTy {
2143  private:
2144    static const uint64_t NoFlagSet      = 0ULL;
2145    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2146    static const uint64_t ZExtOffs       = 0;
2147    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2148    static const uint64_t SExtOffs       = 1;
2149    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2150    static const uint64_t InRegOffs      = 2;
2151    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2152    static const uint64_t SRetOffs       = 3;
2153    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2154    static const uint64_t ByValOffs      = 4;
2155    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2156    static const uint64_t NestOffs       = 5;
2157    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2158    static const uint64_t ByValAlignOffs = 6;
2159    static const uint64_t Split          = 1ULL << 10;
2160    static const uint64_t SplitOffs      = 10;
2161    static const uint64_t OrigAlign      = 0x1FULL<<27;
2162    static const uint64_t OrigAlignOffs  = 27;
2163    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2164    static const uint64_t ByValSizeOffs  = 32;
2165
2166    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2167
2168    uint64_t Flags;
2169  public:
2170    ArgFlagsTy() : Flags(0) { }
2171
2172    bool isZExt()   const { return Flags & ZExt; }
2173    void setZExt()  { Flags |= One << ZExtOffs; }
2174
2175    bool isSExt()   const { return Flags & SExt; }
2176    void setSExt()  { Flags |= One << SExtOffs; }
2177
2178    bool isInReg()  const { return Flags & InReg; }
2179    void setInReg() { Flags |= One << InRegOffs; }
2180
2181    bool isSRet()   const { return Flags & SRet; }
2182    void setSRet()  { Flags |= One << SRetOffs; }
2183
2184    bool isByVal()  const { return Flags & ByVal; }
2185    void setByVal() { Flags |= One << ByValOffs; }
2186
2187    bool isNest()   const { return Flags & Nest; }
2188    void setNest()  { Flags |= One << NestOffs; }
2189
2190    unsigned getByValAlign() const {
2191      return (unsigned)
2192        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2193    }
2194    void setByValAlign(unsigned A) {
2195      Flags = (Flags & ~ByValAlign) |
2196        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2197    }
2198
2199    bool isSplit()   const { return Flags & Split; }
2200    void setSplit()  { Flags |= One << SplitOffs; }
2201
2202    unsigned getOrigAlign() const {
2203      return (unsigned)
2204        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2205    }
2206    void setOrigAlign(unsigned A) {
2207      Flags = (Flags & ~OrigAlign) |
2208        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2209    }
2210
2211    unsigned getByValSize() const {
2212      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2213    }
2214    void setByValSize(unsigned S) {
2215      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2216    }
2217
2218    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2219    std::string getArgFlagsString();
2220
2221    /// getRawBits - Represent the flags as a bunch of bits.
2222    uint64_t getRawBits() const { return Flags; }
2223  };
2224
2225  /// InputArg - This struct carries flags and type information about a
2226  /// single incoming (formal) argument or incoming (from the perspective
2227  /// of the caller) return value virtual register.
2228  ///
2229  struct InputArg {
2230    ArgFlagsTy Flags;
2231    EVT VT;
2232    bool Used;
2233
2234    InputArg() : VT(MVT::Other), Used(false) {}
2235    InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
2236      : Flags(flags), VT(vt), Used(used) {
2237      assert(VT.isSimple() &&
2238             "InputArg value type must be Simple!");
2239    }
2240  };
2241
2242  /// OutputArg - This struct carries flags and a value for a
2243  /// single outgoing (actual) argument or outgoing (from the perspective
2244  /// of the caller) return value virtual register.
2245  ///
2246  struct OutputArg {
2247    ArgFlagsTy Flags;
2248    SDValue Val;
2249    bool IsFixed;
2250
2251    OutputArg() : IsFixed(false) {}
2252    OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
2253      : Flags(flags), Val(val), IsFixed(isfixed) {
2254      assert(Val.getValueType().isSimple() &&
2255             "OutputArg value type must be Simple!");
2256    }
2257  };
2258}
2259
2260/// VTSDNode - This class is used to represent EVT's, which are used
2261/// to parameterize some operations.
2262class VTSDNode : public SDNode {
2263  EVT ValueType;
2264  friend class SelectionDAG;
2265  explicit VTSDNode(EVT VT)
2266    : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
2267             getSDVTList(MVT::Other)), ValueType(VT) {
2268  }
2269public:
2270
2271  EVT getVT() const { return ValueType; }
2272
2273  static bool classof(const VTSDNode *) { return true; }
2274  static bool classof(const SDNode *N) {
2275    return N->getOpcode() == ISD::VALUETYPE;
2276  }
2277};
2278
2279/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2280///
2281class LSBaseSDNode : public MemSDNode {
2282  //! Operand array for load and store
2283  /*!
2284    \note Moving this array to the base class captures more
2285    common functionality shared between LoadSDNode and
2286    StoreSDNode
2287   */
2288  SDUse Ops[4];
2289public:
2290  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2291               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2292               EVT MemVT, MachineMemOperand *MMO)
2293    : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
2294    SubclassData |= AM << 2;
2295    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2296    InitOperands(Ops, Operands, numOperands);
2297    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2298           "Only indexed loads and stores have a non-undef offset operand");
2299  }
2300
2301  const SDValue &getOffset() const {
2302    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2303  }
2304
2305  /// getAddressingMode - Return the addressing mode for this load or store:
2306  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2307  ISD::MemIndexedMode getAddressingMode() const {
2308    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2309  }
2310
2311  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2312  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2313
2314  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2315  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2316
2317  static bool classof(const LSBaseSDNode *) { return true; }
2318  static bool classof(const SDNode *N) {
2319    return N->getOpcode() == ISD::LOAD ||
2320           N->getOpcode() == ISD::STORE;
2321  }
2322};
2323
2324/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2325///
2326class LoadSDNode : public LSBaseSDNode {
2327  friend class SelectionDAG;
2328  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2329             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2330             MachineMemOperand *MMO)
2331    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2332                   VTs, AM, MemVT, MMO) {
2333    SubclassData |= (unsigned short)ETy;
2334    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2335    assert(readMem() && "Load MachineMemOperand is not a load!");
2336    assert(!writeMem() && "Load MachineMemOperand is a store!");
2337  }
2338public:
2339
2340  /// getExtensionType - Return whether this is a plain node,
2341  /// or one of the varieties of value-extending loads.
2342  ISD::LoadExtType getExtensionType() const {
2343    return ISD::LoadExtType(SubclassData & 3);
2344  }
2345
2346  const SDValue &getBasePtr() const { return getOperand(1); }
2347  const SDValue &getOffset() const { return getOperand(2); }
2348
2349  static bool classof(const LoadSDNode *) { return true; }
2350  static bool classof(const SDNode *N) {
2351    return N->getOpcode() == ISD::LOAD;
2352  }
2353};
2354
2355/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2356///
2357class StoreSDNode : public LSBaseSDNode {
2358  friend class SelectionDAG;
2359  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2360              ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2361              MachineMemOperand *MMO)
2362    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2363                   VTs, AM, MemVT, MMO) {
2364    SubclassData |= (unsigned short)isTrunc;
2365    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2366    assert(!readMem() && "Store MachineMemOperand is a load!");
2367    assert(writeMem() && "Store MachineMemOperand is not a store!");
2368  }
2369public:
2370
2371  /// isTruncatingStore - Return true if the op does a truncation before store.
2372  /// For integers this is the same as doing a TRUNCATE and storing the result.
2373  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2374  bool isTruncatingStore() const { return SubclassData & 1; }
2375
2376  const SDValue &getValue() const { return getOperand(1); }
2377  const SDValue &getBasePtr() const { return getOperand(2); }
2378  const SDValue &getOffset() const { return getOperand(3); }
2379
2380  static bool classof(const StoreSDNode *) { return true; }
2381  static bool classof(const SDNode *N) {
2382    return N->getOpcode() == ISD::STORE;
2383  }
2384};
2385
2386/// MachineSDNode - An SDNode that represents everything that will be needed
2387/// to construct a MachineInstr. These nodes are created during the
2388/// instruction selection proper phase.
2389///
2390class MachineSDNode : public SDNode {
2391public:
2392  typedef MachineMemOperand **mmo_iterator;
2393
2394private:
2395  friend class SelectionDAG;
2396  MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
2397    : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
2398
2399  /// LocalOperands - Operands for this instruction, if they fit here. If
2400  /// they don't, this field is unused.
2401  SDUse LocalOperands[4];
2402
2403  /// MemRefs - Memory reference descriptions for this instruction.
2404  mmo_iterator MemRefs;
2405  mmo_iterator MemRefsEnd;
2406
2407public:
2408  mmo_iterator memoperands_begin() const { return MemRefs; }
2409  mmo_iterator memoperands_end() const { return MemRefsEnd; }
2410  bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
2411
2412  /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
2413  /// list. This does not transfer ownership.
2414  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
2415    MemRefs = NewMemRefs;
2416    MemRefsEnd = NewMemRefsEnd;
2417  }
2418
2419  static bool classof(const MachineSDNode *) { return true; }
2420  static bool classof(const SDNode *N) {
2421    return N->isMachineOpcode();
2422  }
2423};
2424
2425class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2426                                            SDNode, ptrdiff_t> {
2427  SDNode *Node;
2428  unsigned Operand;
2429
2430  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2431public:
2432  bool operator==(const SDNodeIterator& x) const {
2433    return Operand == x.Operand;
2434  }
2435  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2436
2437  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2438    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2439    Operand = I.Operand;
2440    return *this;
2441  }
2442
2443  pointer operator*() const {
2444    return Node->getOperand(Operand).getNode();
2445  }
2446  pointer operator->() const { return operator*(); }
2447
2448  SDNodeIterator& operator++() {                // Preincrement
2449    ++Operand;
2450    return *this;
2451  }
2452  SDNodeIterator operator++(int) { // Postincrement
2453    SDNodeIterator tmp = *this; ++*this; return tmp;
2454  }
2455  size_t operator-(SDNodeIterator Other) const {
2456    assert(Node == Other.Node &&
2457           "Cannot compare iterators of two different nodes!");
2458    return Operand - Other.Operand;
2459  }
2460
2461  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2462  static SDNodeIterator end  (SDNode *N) {
2463    return SDNodeIterator(N, N->getNumOperands());
2464  }
2465
2466  unsigned getOperand() const { return Operand; }
2467  const SDNode *getNode() const { return Node; }
2468};
2469
2470template <> struct GraphTraits<SDNode*> {
2471  typedef SDNode NodeType;
2472  typedef SDNodeIterator ChildIteratorType;
2473  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2474  static inline ChildIteratorType child_begin(NodeType *N) {
2475    return SDNodeIterator::begin(N);
2476  }
2477  static inline ChildIteratorType child_end(NodeType *N) {
2478    return SDNodeIterator::end(N);
2479  }
2480};
2481
2482/// LargestSDNode - The largest SDNode class.
2483///
2484typedef LoadSDNode LargestSDNode;
2485
2486/// MostAlignedSDNode - The SDNode class with the greatest alignment
2487/// requirement.
2488///
2489typedef GlobalAddressSDNode MostAlignedSDNode;
2490
2491namespace ISD {
2492  /// isNormalLoad - Returns true if the specified node is a non-extending
2493  /// and unindexed load.
2494  inline bool isNormalLoad(const SDNode *N) {
2495    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2496    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2497      Ld->getAddressingMode() == ISD::UNINDEXED;
2498  }
2499
2500  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2501  /// load.
2502  inline bool isNON_EXTLoad(const SDNode *N) {
2503    return isa<LoadSDNode>(N) &&
2504      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2505  }
2506
2507  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2508  ///
2509  inline bool isEXTLoad(const SDNode *N) {
2510    return isa<LoadSDNode>(N) &&
2511      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2512  }
2513
2514  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2515  ///
2516  inline bool isSEXTLoad(const SDNode *N) {
2517    return isa<LoadSDNode>(N) &&
2518      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2519  }
2520
2521  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2522  ///
2523  inline bool isZEXTLoad(const SDNode *N) {
2524    return isa<LoadSDNode>(N) &&
2525      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2526  }
2527
2528  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2529  ///
2530  inline bool isUNINDEXEDLoad(const SDNode *N) {
2531    return isa<LoadSDNode>(N) &&
2532      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2533  }
2534
2535  /// isNormalStore - Returns true if the specified node is a non-truncating
2536  /// and unindexed store.
2537  inline bool isNormalStore(const SDNode *N) {
2538    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2539    return St && !St->isTruncatingStore() &&
2540      St->getAddressingMode() == ISD::UNINDEXED;
2541  }
2542
2543  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2544  /// store.
2545  inline bool isNON_TRUNCStore(const SDNode *N) {
2546    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2547  }
2548
2549  /// isTRUNCStore - Returns true if the specified node is a truncating
2550  /// store.
2551  inline bool isTRUNCStore(const SDNode *N) {
2552    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2553  }
2554
2555  /// isUNINDEXEDStore - Returns true if the specified node is an
2556  /// unindexed store.
2557  inline bool isUNINDEXEDStore(const SDNode *N) {
2558    return isa<StoreSDNode>(N) &&
2559      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2560  }
2561}
2562
2563
2564} // end llvm namespace
2565
2566#endif
2567