SelectionDAGNodes.h revision 5bf6f25b4a888afaf3e37acd18c43186d45cac2e
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37template <typename T> struct ilist_traits;
38template<typename NodeTy, typename Traits> class iplist;
39template<typename NodeTy> class ilist_iterator;
40
41/// ISD namespace - This namespace contains an enum which represents all of the
42/// SelectionDAG node types and value types.
43///
44namespace ISD {
45  //===--------------------------------------------------------------------===//
46  /// ISD::NodeType enum - This enum defines all of the operators valid in a
47  /// SelectionDAG.
48  ///
49  enum NodeType {
50    // EntryToken - This is the marker used to indicate the start of the region.
51    EntryToken,
52
53    // Token factor - This node takes multiple tokens as input and produces a
54    // single token result.  This is used to represent the fact that the operand
55    // operators are independent of each other.
56    TokenFactor,
57
58    // AssertSext, AssertZext - These nodes record if a register contains a
59    // value that has already been zero or sign extended from a narrower type.
60    // These nodes take two operands.  The first is the node that has already
61    // been extended, and the second is a value type node indicating the width
62    // of the extension
63    AssertSext, AssertZext,
64
65    // Various leaf nodes.
66    Constant, ConstantFP, STRING,
67    GlobalAddress, FrameIndex, ConstantPool,
68    BasicBlock, ExternalSymbol, VALUETYPE, CONDCODE, Register,
69
70    // ConstantVec works like Constant or ConstantFP, except that it is not a
71    // leaf node.  All operands are either Constant or ConstantFP nodes.
72    ConstantVec,
73
74    // TargetConstant - Like Constant, but the DAG does not do any folding or
75    // simplification of the constant.  This is used by the DAG->DAG selector.
76    TargetConstant,
77
78    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
79    // anything else with this node, and this is valid in the target-specific
80    // dag, turning into a GlobalAddress operand.
81    TargetGlobalAddress,
82    TargetFrameIndex,
83    TargetConstantPool,
84    TargetExternalSymbol,
85
86    // CopyToReg - This node has three operands: a chain, a register number to
87    // set to this value, and a value.
88    CopyToReg,
89
90    // CopyFromReg - This node indicates that the input value is a virtual or
91    // physical register that is defined outside of the scope of this
92    // SelectionDAG.  The register is available from the RegSDNode object.
93    CopyFromReg,
94
95    // UNDEF - An undefined node
96    UNDEF,
97
98    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
99    // a Constant, which is required to be operand #1), element of the aggregate
100    // value specified as operand #0.  This is only for use before legalization,
101    // for values that will be broken into multiple registers.
102    EXTRACT_ELEMENT,
103
104    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
105    // two values of the same integer value type, this produces a value twice as
106    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
107    BUILD_PAIR,
108
109    // MERGE_VALUES - This node takes multiple discrete operands and returns
110    // them all as its individual results.  This nodes has exactly the same
111    // number of inputs and outputs, and is only valid before legalization.
112    // This node is useful for some pieces of the code generator that want to
113    // think about a single node with multiple results, not multiple nodes.
114    MERGE_VALUES,
115
116    // Simple integer binary arithmetic operators.
117    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
118
119    // Simple binary floating point operators.
120    FADD, FSUB, FMUL, FDIV, FREM,
121
122    // Simple abstract vector operators.  Unlike the integer and floating point
123    // binary operators, these nodes also take two additional operands:
124    // a constant element count, and a value type node indicating the type of
125    // the elements.  The order is op0, op1, count, type.  All vector opcodes,
126    // including VLOAD, must currently have count and type as their 3rd and 4th
127    // arguments.
128    VADD, VSUB, VMUL,
129
130    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
131    // an unsigned/signed value of type i[2*n], then return the top part.
132    MULHU, MULHS,
133
134    // Bitwise operators.
135    AND, OR, XOR, SHL, SRA, SRL,
136
137    // Counting operators
138    CTTZ, CTLZ, CTPOP,
139
140    // Select
141    SELECT,
142
143    // Select with condition operator - This selects between a true value and
144    // a false value (ops #2 and #3) based on the boolean result of comparing
145    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
146    // condition code in op #4, a CondCodeSDNode.
147    SELECT_CC,
148
149    // SetCC operator - This evaluates to a boolean (i1) true value if the
150    // condition is true.  The operands to this are the left and right operands
151    // to compare (ops #0, and #1) and the condition code to compare them with
152    // (op #2) as a CondCodeSDNode.
153    SETCC,
154
155    // ADD_PARTS/SUB_PARTS - These operators take two logical operands which are
156    // broken into a multiple pieces each, and return the resulting pieces of
157    // doing an atomic add/sub operation.  This is used to handle add/sub of
158    // expanded types.  The operation ordering is:
159    //       [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS]
160    ADD_PARTS, SUB_PARTS,
161
162    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
163    // integer shift operations, just like ADD/SUB_PARTS.  The operation
164    // ordering is:
165    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
166    SHL_PARTS, SRA_PARTS, SRL_PARTS,
167
168    // Conversion operators.  These are all single input single output
169    // operations.  For all of these, the result type must be strictly
170    // wider or narrower (depending on the operation) than the source
171    // type.
172
173    // SIGN_EXTEND - Used for integer types, replicating the sign bit
174    // into new bits.
175    SIGN_EXTEND,
176
177    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
178    ZERO_EXTEND,
179
180    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
181    ANY_EXTEND,
182
183    // TRUNCATE - Completely drop the high bits.
184    TRUNCATE,
185
186    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
187    // depends on the first letter) to floating point.
188    SINT_TO_FP,
189    UINT_TO_FP,
190
191    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
192    // sign extend a small value in a large integer register (e.g. sign
193    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
194    // with the 7th bit).  The size of the smaller type is indicated by the 1th
195    // operand, a ValueType node.
196    SIGN_EXTEND_INREG,
197
198    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
199    // integer.
200    FP_TO_SINT,
201    FP_TO_UINT,
202
203    // FP_ROUND - Perform a rounding operation from the current
204    // precision down to the specified precision (currently always 64->32).
205    FP_ROUND,
206
207    // FP_ROUND_INREG - This operator takes a floating point register, and
208    // rounds it to a floating point value.  It then promotes it and returns it
209    // in a register of the same size.  This operation effectively just discards
210    // excess precision.  The type to round down to is specified by the 1th
211    // operation, a VTSDNode (currently always 64->32->64).
212    FP_ROUND_INREG,
213
214    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
215    FP_EXTEND,
216
217    // BIT_CONVERT - Theis operator converts between integer and FP values, as
218    // if one was stored to memory as integer and the other was loaded from the
219    // same address (or equivalently for vector format conversions, etc).  The
220    // source and result are required to have the same bit size (e.g.
221    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
222    // conversions, but that is a noop, deleted by getNode().
223    BIT_CONVERT,
224
225    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
226    // absolute value, square root, sine and cosine operations.
227    FNEG, FABS, FSQRT, FSIN, FCOS,
228
229    // Other operators.  LOAD and STORE have token chains as their first
230    // operand, then the same operands as an LLVM load/store instruction, then a
231    // SRCVALUE node that provides alias analysis information.
232    LOAD, STORE,
233
234    // Abstract vector version of LOAD.  VLOAD has a token chain as the first
235    // operand, followed by a pointer operand, a constant element count, a value
236    // type node indicating the type of the elements, and a SRCVALUE node.
237    VLOAD,
238
239    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
240    // memory and extend them to a larger value (e.g. load a byte into a word
241    // register).  All three of these have four operands, a token chain, a
242    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
243    // indicating the type to load.
244    //
245    // SEXTLOAD loads the integer operand and sign extends it to a larger
246    //          integer result type.
247    // ZEXTLOAD loads the integer operand and zero extends it to a larger
248    //          integer result type.
249    // EXTLOAD  is used for two things: floating point extending loads, and
250    //          integer extending loads where it doesn't matter what the high
251    //          bits are set to.  The code generator is allowed to codegen this
252    //          into whichever operation is more efficient.
253    EXTLOAD, SEXTLOAD, ZEXTLOAD,
254
255    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
256    // value and stores it to memory in one operation.  This can be used for
257    // either integer or floating point operands.  The first four operands of
258    // this are the same as a standard store.  The fifth is the ValueType to
259    // store it as (which will be smaller than the source value).
260    TRUNCSTORE,
261
262    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
263    // to a specified boundary.  The first operand is the token chain, the
264    // second is the number of bytes to allocate, and the third is the alignment
265    // boundary.  The size is guaranteed to be a multiple of the stack
266    // alignment, and the alignment is guaranteed to be bigger than the stack
267    // alignment (if required) or 0 to get standard stack alignment.
268    DYNAMIC_STACKALLOC,
269
270    // Control flow instructions.  These all have token chains.
271
272    // BR - Unconditional branch.  The first operand is the chain
273    // operand, the second is the MBB to branch to.
274    BR,
275
276    // BRCOND - Conditional branch.  The first operand is the chain,
277    // the second is the condition, the third is the block to branch
278    // to if the condition is true.
279    BRCOND,
280
281    // BRCONDTWOWAY - Two-way conditional branch.  The first operand is the
282    // chain, the second is the condition, the third is the block to branch to
283    // if true, and the forth is the block to branch to if false.  Targets
284    // usually do not implement this, preferring to have legalize demote the
285    // operation to BRCOND/BR pairs when necessary.
286    BRCONDTWOWAY,
287
288    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
289    // that the condition is represented as condition code, and two nodes to
290    // compare, rather than as a combined SetCC node.  The operands in order are
291    // chain, cc, lhs, rhs, block to branch to if condition is true.
292    BR_CC,
293
294    // BRTWOWAY_CC - Two-way conditional branch.  The operands in order are
295    // chain, cc, lhs, rhs, block to branch to if condition is true, block to
296    // branch to if condition is false.  Targets usually do not implement this,
297    // preferring to have legalize demote the operation to BRCOND/BR pairs.
298    BRTWOWAY_CC,
299
300    // RET - Return from function.  The first operand is the chain,
301    // and any subsequent operands are the return values for the
302    // function.  This operation can have variable number of operands.
303    RET,
304
305    // CALL - Call to a function pointer.  The first operand is the chain, the
306    // second is the destination function pointer (a GlobalAddress for a direct
307    // call).  Arguments have already been lowered to explicit DAGs according to
308    // the calling convention in effect here.  TAILCALL is the same as CALL, but
309    // the callee is known not to access the stack of the caller.
310    CALL,
311    TAILCALL,
312
313    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
314    // correspond to the operands of the LLVM intrinsic functions.  The only
315    // result is a token chain.  The alignment argument is guaranteed to be a
316    // Constant node.
317    MEMSET,
318    MEMMOVE,
319    MEMCPY,
320
321    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
322    // a call sequence, and carry arbitrary information that target might want
323    // to know.  The first operand is a chain, the rest are specified by the
324    // target and not touched by the DAG optimizers.
325    CALLSEQ_START,  // Beginning of a call sequence
326    CALLSEQ_END,    // End of a call sequence
327
328    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
329    // locations with their value.  This allows one use alias analysis
330    // information in the backend.
331    SRCVALUE,
332
333    // PCMARKER - This corresponds to the pcmarker intrinsic.
334    PCMARKER,
335
336    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
337    // The only operand is a chain and a value and a chain are produced.  The
338    // value is the contents of the architecture specific cycle counter like
339    // register (or other high accuracy low latency clock source)
340    READCYCLECOUNTER,
341
342    // READPORT, WRITEPORT, READIO, WRITEIO - These correspond to the LLVM
343    // intrinsics of the same name.  The first operand is a token chain, the
344    // other operands match the intrinsic.  These produce a token chain in
345    // addition to a value (if any).
346    READPORT, WRITEPORT, READIO, WRITEIO,
347
348    // HANDLENODE node - Used as a handle for various purposes.
349    HANDLENODE,
350
351    // LOCATION - This node is used to represent a source location for debug
352    // info.  It takes token chain as input, then a line number, then a column
353    // number, then a filename, then a working dir.  It produces a token chain
354    // as output.
355    LOCATION,
356
357    // DEBUG_LOC - This node is used to represent source line information
358    // embedded in the code.  It takes token chain as input, then a line number,
359    // then a column then a file id (provided by MachineDebugInfo), then a
360    // unique id (provided by MachineDebugInfo for label gen).  It produces a
361    // token chain as output.
362    DEBUG_LOC,
363
364    // BUILTIN_OP_END - This must be the last enum value in this list.
365    BUILTIN_OP_END,
366  };
367
368  //===--------------------------------------------------------------------===//
369  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
370  /// below work out, when considering SETFALSE (something that never exists
371  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
372  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
373  /// to.  If the "N" column is 1, the result of the comparison is undefined if
374  /// the input is a NAN.
375  ///
376  /// All of these (except for the 'always folded ops') should be handled for
377  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
378  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
379  ///
380  /// Note that these are laid out in a specific order to allow bit-twiddling
381  /// to transform conditions.
382  enum CondCode {
383    // Opcode          N U L G E       Intuitive operation
384    SETFALSE,      //    0 0 0 0       Always false (always folded)
385    SETOEQ,        //    0 0 0 1       True if ordered and equal
386    SETOGT,        //    0 0 1 0       True if ordered and greater than
387    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
388    SETOLT,        //    0 1 0 0       True if ordered and less than
389    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
390    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
391    SETO,          //    0 1 1 1       True if ordered (no nans)
392    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
393    SETUEQ,        //    1 0 0 1       True if unordered or equal
394    SETUGT,        //    1 0 1 0       True if unordered or greater than
395    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
396    SETULT,        //    1 1 0 0       True if unordered or less than
397    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
398    SETUNE,        //    1 1 1 0       True if unordered or not equal
399    SETTRUE,       //    1 1 1 1       Always true (always folded)
400    // Don't care operations: undefined if the input is a nan.
401    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
402    SETEQ,         //  1 X 0 0 1       True if equal
403    SETGT,         //  1 X 0 1 0       True if greater than
404    SETGE,         //  1 X 0 1 1       True if greater than or equal
405    SETLT,         //  1 X 1 0 0       True if less than
406    SETLE,         //  1 X 1 0 1       True if less than or equal
407    SETNE,         //  1 X 1 1 0       True if not equal
408    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
409
410    SETCC_INVALID,      // Marker value.
411  };
412
413  /// isSignedIntSetCC - Return true if this is a setcc instruction that
414  /// performs a signed comparison when used with integer operands.
415  inline bool isSignedIntSetCC(CondCode Code) {
416    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
417  }
418
419  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
420  /// performs an unsigned comparison when used with integer operands.
421  inline bool isUnsignedIntSetCC(CondCode Code) {
422    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
423  }
424
425  /// isTrueWhenEqual - Return true if the specified condition returns true if
426  /// the two operands to the condition are equal.  Note that if one of the two
427  /// operands is a NaN, this value is meaningless.
428  inline bool isTrueWhenEqual(CondCode Cond) {
429    return ((int)Cond & 1) != 0;
430  }
431
432  /// getUnorderedFlavor - This function returns 0 if the condition is always
433  /// false if an operand is a NaN, 1 if the condition is always true if the
434  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
435  /// NaN.
436  inline unsigned getUnorderedFlavor(CondCode Cond) {
437    return ((int)Cond >> 3) & 3;
438  }
439
440  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
441  /// 'op' is a valid SetCC operation.
442  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
443
444  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
445  /// when given the operation for (X op Y).
446  CondCode getSetCCSwappedOperands(CondCode Operation);
447
448  /// getSetCCOrOperation - Return the result of a logical OR between different
449  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
450  /// function returns SETCC_INVALID if it is not possible to represent the
451  /// resultant comparison.
452  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
453
454  /// getSetCCAndOperation - Return the result of a logical AND between
455  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
456  /// function returns SETCC_INVALID if it is not possible to represent the
457  /// resultant comparison.
458  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
459}  // end llvm::ISD namespace
460
461
462//===----------------------------------------------------------------------===//
463/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
464/// values as the result of a computation.  Many nodes return multiple values,
465/// from loads (which define a token and a return value) to ADDC (which returns
466/// a result and a carry value), to calls (which may return an arbitrary number
467/// of values).
468///
469/// As such, each use of a SelectionDAG computation must indicate the node that
470/// computes it as well as which return value to use from that node.  This pair
471/// of information is represented with the SDOperand value type.
472///
473class SDOperand {
474public:
475  SDNode *Val;        // The node defining the value we are using.
476  unsigned ResNo;     // Which return value of the node we are using.
477
478  SDOperand() : Val(0) {}
479  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
480
481  bool operator==(const SDOperand &O) const {
482    return Val == O.Val && ResNo == O.ResNo;
483  }
484  bool operator!=(const SDOperand &O) const {
485    return !operator==(O);
486  }
487  bool operator<(const SDOperand &O) const {
488    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
489  }
490
491  SDOperand getValue(unsigned R) const {
492    return SDOperand(Val, R);
493  }
494
495  /// getValueType - Return the ValueType of the referenced return value.
496  ///
497  inline MVT::ValueType getValueType() const;
498
499  // Forwarding methods - These forward to the corresponding methods in SDNode.
500  inline unsigned getOpcode() const;
501  inline unsigned getNodeDepth() const;
502  inline unsigned getNumOperands() const;
503  inline const SDOperand &getOperand(unsigned i) const;
504  inline bool isTargetOpcode() const;
505  inline unsigned getTargetOpcode() const;
506
507  /// hasOneUse - Return true if there is exactly one operation using this
508  /// result value of the defining operator.
509  inline bool hasOneUse() const;
510};
511
512
513/// simplify_type specializations - Allow casting operators to work directly on
514/// SDOperands as if they were SDNode*'s.
515template<> struct simplify_type<SDOperand> {
516  typedef SDNode* SimpleType;
517  static SimpleType getSimplifiedValue(const SDOperand &Val) {
518    return static_cast<SimpleType>(Val.Val);
519  }
520};
521template<> struct simplify_type<const SDOperand> {
522  typedef SDNode* SimpleType;
523  static SimpleType getSimplifiedValue(const SDOperand &Val) {
524    return static_cast<SimpleType>(Val.Val);
525  }
526};
527
528
529/// SDNode - Represents one node in the SelectionDAG.
530///
531class SDNode {
532  /// NodeType - The operation that this node performs.
533  ///
534  unsigned short NodeType;
535
536  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
537  /// means that leaves have a depth of 1, things that use only leaves have a
538  /// depth of 2, etc.
539  unsigned short NodeDepth;
540
541  /// OperandList - The values that are used by this operation.
542  ///
543  SDOperand *OperandList;
544
545  /// ValueList - The types of the values this node defines.  SDNode's may
546  /// define multiple values simultaneously.
547  MVT::ValueType *ValueList;
548
549  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
550  unsigned short NumOperands, NumValues;
551
552  /// Prev/Next pointers - These pointers form the linked list of of the
553  /// AllNodes list in the current DAG.
554  SDNode *Prev, *Next;
555  friend struct ilist_traits<SDNode>;
556
557  /// Uses - These are all of the SDNode's that use a value produced by this
558  /// node.
559  std::vector<SDNode*> Uses;
560public:
561  virtual ~SDNode() {
562    assert(NumOperands == 0 && "Operand list not cleared before deletion");
563  }
564
565  //===--------------------------------------------------------------------===//
566  //  Accessors
567  //
568  unsigned getOpcode()  const { return NodeType; }
569  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
570  unsigned getTargetOpcode() const {
571    assert(isTargetOpcode() && "Not a target opcode!");
572    return NodeType - ISD::BUILTIN_OP_END;
573  }
574
575  size_t use_size() const { return Uses.size(); }
576  bool use_empty() const { return Uses.empty(); }
577  bool hasOneUse() const { return Uses.size() == 1; }
578
579  /// getNodeDepth - Return the distance from this node to the leaves in the
580  /// graph.  The leaves have a depth of 1.
581  unsigned getNodeDepth() const { return NodeDepth; }
582
583  typedef std::vector<SDNode*>::const_iterator use_iterator;
584  use_iterator use_begin() const { return Uses.begin(); }
585  use_iterator use_end() const { return Uses.end(); }
586
587  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
588  /// indicated value.  This method ignores uses of other values defined by this
589  /// operation.
590  bool hasNUsesOfValue(unsigned NUses, unsigned Value);
591
592  /// getNumOperands - Return the number of values used by this operation.
593  ///
594  unsigned getNumOperands() const { return NumOperands; }
595
596  const SDOperand &getOperand(unsigned Num) const {
597    assert(Num < NumOperands && "Invalid child # of SDNode!");
598    return OperandList[Num];
599  }
600  typedef const SDOperand* op_iterator;
601  op_iterator op_begin() const { return OperandList; }
602  op_iterator op_end() const { return OperandList+NumOperands; }
603
604
605  /// getNumValues - Return the number of values defined/returned by this
606  /// operator.
607  ///
608  unsigned getNumValues() const { return NumValues; }
609
610  /// getValueType - Return the type of a specified result.
611  ///
612  MVT::ValueType getValueType(unsigned ResNo) const {
613    assert(ResNo < NumValues && "Illegal result number!");
614    return ValueList[ResNo];
615  }
616
617  typedef const MVT::ValueType* value_iterator;
618  value_iterator value_begin() const { return ValueList; }
619  value_iterator value_end() const { return ValueList+NumValues; }
620
621  /// getOperationName - Return the opcode of this operation for printing.
622  ///
623  const char* getOperationName(const SelectionDAG *G = 0) const;
624  void dump() const;
625  void dump(const SelectionDAG *G) const;
626
627  static bool classof(const SDNode *) { return true; }
628
629
630  /// setAdjCallChain - This method should only be used by the legalizer.
631  void setAdjCallChain(SDOperand N);
632
633protected:
634  friend class SelectionDAG;
635
636  /// getValueTypeList - Return a pointer to the specified value type.
637  ///
638  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
639
640  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
641    OperandList = 0; NumOperands = 0;
642    ValueList = getValueTypeList(VT);
643    NumValues = 1;
644    Prev = 0; Next = 0;
645  }
646  SDNode(unsigned NT, SDOperand Op)
647    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
648    OperandList = new SDOperand[1];
649    OperandList[0] = Op;
650    NumOperands = 1;
651    Op.Val->Uses.push_back(this);
652    ValueList = 0;
653    NumValues = 0;
654    Prev = 0; Next = 0;
655  }
656  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
657    : NodeType(NT) {
658    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
659      NodeDepth = N1.Val->getNodeDepth()+1;
660    else
661      NodeDepth = N2.Val->getNodeDepth()+1;
662    OperandList = new SDOperand[2];
663    OperandList[0] = N1;
664    OperandList[1] = N2;
665    NumOperands = 2;
666    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
667    ValueList = 0;
668    NumValues = 0;
669    Prev = 0; Next = 0;
670  }
671  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
672    : NodeType(NT) {
673    unsigned ND = N1.Val->getNodeDepth();
674    if (ND < N2.Val->getNodeDepth())
675      ND = N2.Val->getNodeDepth();
676    if (ND < N3.Val->getNodeDepth())
677      ND = N3.Val->getNodeDepth();
678    NodeDepth = ND+1;
679
680    OperandList = new SDOperand[3];
681    OperandList[0] = N1;
682    OperandList[1] = N2;
683    OperandList[2] = N3;
684    NumOperands = 3;
685
686    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
687    N3.Val->Uses.push_back(this);
688    ValueList = 0;
689    NumValues = 0;
690    Prev = 0; Next = 0;
691  }
692  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
693    : NodeType(NT) {
694    unsigned ND = N1.Val->getNodeDepth();
695    if (ND < N2.Val->getNodeDepth())
696      ND = N2.Val->getNodeDepth();
697    if (ND < N3.Val->getNodeDepth())
698      ND = N3.Val->getNodeDepth();
699    if (ND < N4.Val->getNodeDepth())
700      ND = N4.Val->getNodeDepth();
701    NodeDepth = ND+1;
702
703    OperandList = new SDOperand[4];
704    OperandList[0] = N1;
705    OperandList[1] = N2;
706    OperandList[2] = N3;
707    OperandList[3] = N4;
708    NumOperands = 4;
709
710    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
711    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
712    ValueList = 0;
713    NumValues = 0;
714    Prev = 0; Next = 0;
715  }
716  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
717    NumOperands = Nodes.size();
718    OperandList = new SDOperand[NumOperands];
719
720    unsigned ND = 0;
721    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
722      OperandList[i] = Nodes[i];
723      SDNode *N = OperandList[i].Val;
724      N->Uses.push_back(this);
725      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
726    }
727    NodeDepth = ND+1;
728    ValueList = 0;
729    NumValues = 0;
730    Prev = 0; Next = 0;
731  }
732
733  /// MorphNodeTo - This clears the return value and operands list, and sets the
734  /// opcode of the node to the specified value.  This should only be used by
735  /// the SelectionDAG class.
736  void MorphNodeTo(unsigned Opc) {
737    NodeType = Opc;
738    ValueList = 0;
739    NumValues = 0;
740
741    // Clear the operands list, updating used nodes to remove this from their
742    // use list.
743    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
744      I->Val->removeUser(this);
745    delete [] OperandList;
746    OperandList = 0;
747    NumOperands = 0;
748  }
749
750  void setValueTypes(MVT::ValueType VT) {
751    assert(NumValues == 0 && "Should not have values yet!");
752    ValueList = getValueTypeList(VT);
753    NumValues = 1;
754  }
755  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
756    assert(NumValues == 0 && "Should not have values yet!");
757    ValueList = List;
758    NumValues = NumVal;
759  }
760
761  void setOperands(SDOperand Op0) {
762    assert(NumOperands == 0 && "Should not have operands yet!");
763    OperandList = new SDOperand[1];
764    OperandList[0] = Op0;
765    NumOperands = 1;
766    Op0.Val->Uses.push_back(this);
767  }
768  void setOperands(SDOperand Op0, SDOperand Op1) {
769    assert(NumOperands == 0 && "Should not have operands yet!");
770    OperandList = new SDOperand[2];
771    OperandList[0] = Op0;
772    OperandList[1] = Op1;
773    NumOperands = 2;
774    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
775  }
776  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
777    assert(NumOperands == 0 && "Should not have operands yet!");
778    OperandList = new SDOperand[3];
779    OperandList[0] = Op0;
780    OperandList[1] = Op1;
781    OperandList[2] = Op2;
782    NumOperands = 3;
783    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
784    Op2.Val->Uses.push_back(this);
785  }
786  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
787    assert(NumOperands == 0 && "Should not have operands yet!");
788    OperandList = new SDOperand[4];
789    OperandList[0] = Op0;
790    OperandList[1] = Op1;
791    OperandList[2] = Op2;
792    OperandList[3] = Op3;
793    NumOperands = 4;
794    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
795    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
796  }
797  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
798                   SDOperand Op4) {
799    assert(NumOperands == 0 && "Should not have operands yet!");
800    OperandList = new SDOperand[5];
801    OperandList[0] = Op0;
802    OperandList[1] = Op1;
803    OperandList[2] = Op2;
804    OperandList[3] = Op3;
805    OperandList[4] = Op4;
806    NumOperands = 5;
807    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
808    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
809    Op4.Val->Uses.push_back(this);
810  }
811  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
812                   SDOperand Op4, SDOperand Op5) {
813    assert(NumOperands == 0 && "Should not have operands yet!");
814    OperandList = new SDOperand[6];
815    OperandList[0] = Op0;
816    OperandList[1] = Op1;
817    OperandList[2] = Op2;
818    OperandList[3] = Op3;
819    OperandList[4] = Op4;
820    OperandList[5] = Op5;
821    NumOperands = 6;
822    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
823    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
824    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
825  }
826  void addUser(SDNode *User) {
827    Uses.push_back(User);
828  }
829  void removeUser(SDNode *User) {
830    // Remove this user from the operand's use list.
831    for (unsigned i = Uses.size(); ; --i) {
832      assert(i != 0 && "Didn't find user!");
833      if (Uses[i-1] == User) {
834        Uses[i-1] = Uses.back();
835        Uses.pop_back();
836        return;
837      }
838    }
839  }
840};
841
842
843// Define inline functions from the SDOperand class.
844
845inline unsigned SDOperand::getOpcode() const {
846  return Val->getOpcode();
847}
848inline unsigned SDOperand::getNodeDepth() const {
849  return Val->getNodeDepth();
850}
851inline MVT::ValueType SDOperand::getValueType() const {
852  return Val->getValueType(ResNo);
853}
854inline unsigned SDOperand::getNumOperands() const {
855  return Val->getNumOperands();
856}
857inline const SDOperand &SDOperand::getOperand(unsigned i) const {
858  return Val->getOperand(i);
859}
860inline bool SDOperand::isTargetOpcode() const {
861  return Val->isTargetOpcode();
862}
863inline unsigned SDOperand::getTargetOpcode() const {
864  return Val->getTargetOpcode();
865}
866inline bool SDOperand::hasOneUse() const {
867  return Val->hasNUsesOfValue(1, ResNo);
868}
869
870/// HandleSDNode - This class is used to form a handle around another node that
871/// is persistant and is updated across invocations of replaceAllUsesWith on its
872/// operand.  This node should be directly created by end-users and not added to
873/// the AllNodes list.
874class HandleSDNode : public SDNode {
875public:
876  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
877  ~HandleSDNode() {
878    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
879  }
880
881  SDOperand getValue() const { return getOperand(0); }
882};
883
884class StringSDNode : public SDNode {
885  std::string Value;
886protected:
887  friend class SelectionDAG;
888  StringSDNode(const std::string &val)
889    : SDNode(ISD::STRING, MVT::Other), Value(val) {
890  }
891public:
892  const std::string &getValue() const { return Value; }
893  static bool classof(const StringSDNode *) { return true; }
894  static bool classof(const SDNode *N) {
895    return N->getOpcode() == ISD::STRING;
896  }
897};
898
899class ConstantSDNode : public SDNode {
900  uint64_t Value;
901protected:
902  friend class SelectionDAG;
903  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
904    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
905  }
906public:
907
908  uint64_t getValue() const { return Value; }
909
910  int64_t getSignExtended() const {
911    unsigned Bits = MVT::getSizeInBits(getValueType(0));
912    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
913  }
914
915  bool isNullValue() const { return Value == 0; }
916  bool isAllOnesValue() const {
917    int NumBits = MVT::getSizeInBits(getValueType(0));
918    if (NumBits == 64) return Value+1 == 0;
919    return Value == (1ULL << NumBits)-1;
920  }
921
922  static bool classof(const ConstantSDNode *) { return true; }
923  static bool classof(const SDNode *N) {
924    return N->getOpcode() == ISD::Constant ||
925           N->getOpcode() == ISD::TargetConstant;
926  }
927};
928
929class ConstantFPSDNode : public SDNode {
930  double Value;
931protected:
932  friend class SelectionDAG;
933  ConstantFPSDNode(double val, MVT::ValueType VT)
934    : SDNode(ISD::ConstantFP, VT), Value(val) {
935  }
936public:
937
938  double getValue() const { return Value; }
939
940  /// isExactlyValue - We don't rely on operator== working on double values, as
941  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
942  /// As such, this method can be used to do an exact bit-for-bit comparison of
943  /// two floating point values.
944  bool isExactlyValue(double V) const;
945
946  static bool classof(const ConstantFPSDNode *) { return true; }
947  static bool classof(const SDNode *N) {
948    return N->getOpcode() == ISD::ConstantFP;
949  }
950};
951
952class GlobalAddressSDNode : public SDNode {
953  GlobalValue *TheGlobal;
954  int offset;
955protected:
956  friend class SelectionDAG;
957  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
958                      int o=0)
959    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT) {
960    TheGlobal = const_cast<GlobalValue*>(GA);
961    offset = o;
962  }
963public:
964
965  GlobalValue *getGlobal() const { return TheGlobal; }
966  int getOffset() const { return offset; }
967
968  static bool classof(const GlobalAddressSDNode *) { return true; }
969  static bool classof(const SDNode *N) {
970    return N->getOpcode() == ISD::GlobalAddress ||
971           N->getOpcode() == ISD::TargetGlobalAddress;
972  }
973};
974
975
976class FrameIndexSDNode : public SDNode {
977  int FI;
978protected:
979  friend class SelectionDAG;
980  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
981    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
982public:
983
984  int getIndex() const { return FI; }
985
986  static bool classof(const FrameIndexSDNode *) { return true; }
987  static bool classof(const SDNode *N) {
988    return N->getOpcode() == ISD::FrameIndex ||
989           N->getOpcode() == ISD::TargetFrameIndex;
990  }
991};
992
993class ConstantPoolSDNode : public SDNode {
994  Constant *C;
995protected:
996  friend class SelectionDAG;
997  ConstantPoolSDNode(Constant *c, MVT::ValueType VT, bool isTarget)
998    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
999    C(c) {}
1000public:
1001
1002  Constant *get() const { return C; }
1003
1004  static bool classof(const ConstantPoolSDNode *) { return true; }
1005  static bool classof(const SDNode *N) {
1006    return N->getOpcode() == ISD::ConstantPool ||
1007           N->getOpcode() == ISD::TargetConstantPool;
1008  }
1009};
1010
1011class BasicBlockSDNode : public SDNode {
1012  MachineBasicBlock *MBB;
1013protected:
1014  friend class SelectionDAG;
1015  BasicBlockSDNode(MachineBasicBlock *mbb)
1016    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1017public:
1018
1019  MachineBasicBlock *getBasicBlock() const { return MBB; }
1020
1021  static bool classof(const BasicBlockSDNode *) { return true; }
1022  static bool classof(const SDNode *N) {
1023    return N->getOpcode() == ISD::BasicBlock;
1024  }
1025};
1026
1027class SrcValueSDNode : public SDNode {
1028  const Value *V;
1029  int offset;
1030protected:
1031  friend class SelectionDAG;
1032  SrcValueSDNode(const Value* v, int o)
1033    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1034
1035public:
1036  const Value *getValue() const { return V; }
1037  int getOffset() const { return offset; }
1038
1039  static bool classof(const SrcValueSDNode *) { return true; }
1040  static bool classof(const SDNode *N) {
1041    return N->getOpcode() == ISD::SRCVALUE;
1042  }
1043};
1044
1045
1046class RegisterSDNode : public SDNode {
1047  unsigned Reg;
1048protected:
1049  friend class SelectionDAG;
1050  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1051    : SDNode(ISD::Register, VT), Reg(reg) {}
1052public:
1053
1054  unsigned getReg() const { return Reg; }
1055
1056  static bool classof(const RegisterSDNode *) { return true; }
1057  static bool classof(const SDNode *N) {
1058    return N->getOpcode() == ISD::Register;
1059  }
1060};
1061
1062class ExternalSymbolSDNode : public SDNode {
1063  const char *Symbol;
1064protected:
1065  friend class SelectionDAG;
1066  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1067    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1068      Symbol(Sym) {
1069    }
1070public:
1071
1072  const char *getSymbol() const { return Symbol; }
1073
1074  static bool classof(const ExternalSymbolSDNode *) { return true; }
1075  static bool classof(const SDNode *N) {
1076    return N->getOpcode() == ISD::ExternalSymbol ||
1077           N->getOpcode() == ISD::TargetExternalSymbol;
1078  }
1079};
1080
1081class CondCodeSDNode : public SDNode {
1082  ISD::CondCode Condition;
1083protected:
1084  friend class SelectionDAG;
1085  CondCodeSDNode(ISD::CondCode Cond)
1086    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1087  }
1088public:
1089
1090  ISD::CondCode get() const { return Condition; }
1091
1092  static bool classof(const CondCodeSDNode *) { return true; }
1093  static bool classof(const SDNode *N) {
1094    return N->getOpcode() == ISD::CONDCODE;
1095  }
1096};
1097
1098/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1099/// to parameterize some operations.
1100class VTSDNode : public SDNode {
1101  MVT::ValueType ValueType;
1102protected:
1103  friend class SelectionDAG;
1104  VTSDNode(MVT::ValueType VT)
1105    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1106public:
1107
1108  MVT::ValueType getVT() const { return ValueType; }
1109
1110  static bool classof(const VTSDNode *) { return true; }
1111  static bool classof(const SDNode *N) {
1112    return N->getOpcode() == ISD::VALUETYPE;
1113  }
1114};
1115
1116
1117class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1118  SDNode *Node;
1119  unsigned Operand;
1120
1121  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1122public:
1123  bool operator==(const SDNodeIterator& x) const {
1124    return Operand == x.Operand;
1125  }
1126  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1127
1128  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1129    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1130    Operand = I.Operand;
1131    return *this;
1132  }
1133
1134  pointer operator*() const {
1135    return Node->getOperand(Operand).Val;
1136  }
1137  pointer operator->() const { return operator*(); }
1138
1139  SDNodeIterator& operator++() {                // Preincrement
1140    ++Operand;
1141    return *this;
1142  }
1143  SDNodeIterator operator++(int) { // Postincrement
1144    SDNodeIterator tmp = *this; ++*this; return tmp;
1145  }
1146
1147  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1148  static SDNodeIterator end  (SDNode *N) {
1149    return SDNodeIterator(N, N->getNumOperands());
1150  }
1151
1152  unsigned getOperand() const { return Operand; }
1153  const SDNode *getNode() const { return Node; }
1154};
1155
1156template <> struct GraphTraits<SDNode*> {
1157  typedef SDNode NodeType;
1158  typedef SDNodeIterator ChildIteratorType;
1159  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1160  static inline ChildIteratorType child_begin(NodeType *N) {
1161    return SDNodeIterator::begin(N);
1162  }
1163  static inline ChildIteratorType child_end(NodeType *N) {
1164    return SDNodeIterator::end(N);
1165  }
1166};
1167
1168template<>
1169struct ilist_traits<SDNode> {
1170  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1171  static SDNode *getNext(const SDNode *N) { return N->Next; }
1172
1173  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1174  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1175
1176  static SDNode *createSentinel() {
1177    return new SDNode(ISD::EntryToken, MVT::Other);
1178  }
1179  static void destroySentinel(SDNode *N) { delete N; }
1180  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1181
1182
1183  void addNodeToList(SDNode *NTy) {}
1184  void removeNodeFromList(SDNode *NTy) {}
1185  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1186                             const ilist_iterator<SDNode> &X,
1187                             const ilist_iterator<SDNode> &Y) {}
1188};
1189
1190} // end llvm namespace
1191
1192#endif
1193